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Abstract: The large amount of available data, generated every second via sensors, social networks,
organizations, and so on, has generated new lines of research that involve novel methods, techniques,
resources, and/or technologies. The development of big data systems (BDSs) can be approached
from different perspectives, all of them useful, depending on the objectives pursued. In particular, in
this work, we address BDSs in the area of software engineering, contributing to the generation of
novel methodologies and techniques for software reuse. In this article, we propose a methodology to
develop reusable BDSs by mirroring activities from software product line engineering. This means
that the process of building BDSs is approached by analyzing the variety of domain features and
modeling them as a family of related assets. The contextual perspective of the proposal, along
with its supporting tool, is introduced through a case study in the agrometeorology domain. The
characterization of variables for frost analysis exemplifies the importance of identifying variety, as
well as the possibility of reusing previous analyses adjusted to the profile of each case. In addition to
showing interesting findings from the case, we also exemplify our concept of context variety, which is
a core element in modeling reusable BDSs.

Keywords: reusability; big data systems; variety identification; agrometeorology domain

1. Introduction

Success in global markets for software-intensive products depends, among other
things, on shortening the time to market, as well as improving quality and evolution or
reducing the resources required. This aspect can be addressed using external or internal
strategies. External strategies include acquiring off-the-shelf components and having
development, maintenance, and support performed by third parties. In-house strategies
include global software development, for which resources are geographically distributed
according to specific needs, profiles, conditions, or costs [1], and software product line
(SPL) engineering and ecosystems, i.e., the strategic acquisition, creation, and reuse of software
assets [2–4]. Our research focuses on the latter context—that of engineering product lines
and ecosystems. This engineering differs from traditional systems’ development in two
fundamental respects [5]:

• It requires two distinct development processes: domain engineering and application
engineering. The first defines and models the commonality and variability, establish-
ing a platform for rapidly developing quality applications within the line. Application
engineering derives specific applications by strategically reusing that platform and
exploiting its variability.
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• It needs to explicitly define and manage variability. During domain engineering,
variability is introduced into all software assets, such as domain requirements, ar-
chitectural models, components, or test cases. During application engineering, it
is exploited to derive large-scale customized applications according to the needs of
customers and markets.

In this context, we can ask ourselves whether it would be possible to think about
developing reusable big data systems so that common and variable aspects are treated
as in an SPL. This would afford us the advantages of separating the complexity of BDS
design into domain and application analysis while, at the same time, allowing us to detect
the influences of these domains on the results obtained via the systems. Investigating the
literature, we see that there are several proposals that consider reuse during the develop-
ment of big data systems (BDSs). For example, the work [6] analyzes reusability concepts
in the context of the use and reuse of data, and the work described [7] addresses privacy
aspects when data are reused. It proposes a reuse taxonomy to delimit when data can be
used/shared and how to provide privacy. Other proposals have contributed to maximizing
data reuse by promoting the use of shared technologies such as cloud computing or shared
storage [8,9]. On the other hand, although there are several works in the literature on
reusability, almost all of them only focus on promoting data exchange, sharing, and reusing,
but not on the development of reusable software artifacts. In spite of in other areas of
computing, reusability is a key factor to guarantee systems with a higher quality, a better
time-to-market, lower development costs, etc.; in the development of big data systems, this
quality is still emerging.

Only one work relates to ours closely. In [10], the detection of common and variable
aspects within the development of BDSs is incorporated as a way of building families of
systems. The work presents a reference architecture that allows system designers to achieve
the following: (1) define requirements—the reference architecture identifies significant
requirements and shows variations according to the type of requirement; (2) develop and
evaluate solutions—the architecture identifies modules that must be developed in order
to allow a certain required capacity; and (3) integrate systems—existing systems can be
mapped to the modules of the reference architecture, which results in the easy identification
of conflict points where the interoperability between systems must be worked on.

According to this previous scenario, and differently from [10], in this work, we pro-
pose to take advantage of one of the most important engineering approaches promoting
reusability: software product line (SPL) engineering [3]. It has emerged as a paradigm
for domain-oriented software construction to obtain faster-developed and high-quality
software applications. Considering that the SPL development focuses on domain-oriented
reuse, its success depends on the identification, use, and administration of artifacts inside
those domains; therefore, the application of specific techniques for systematizing reuse
becomes crucial. In this work, we propose adaptations to/extensions of resources created
using the SPL paradigm to support the particularities of BDSs. The first and more impor-
tant adaptation is to approach BDSs as domain-oriented systems, that is, thinking of BDSs
as applications within a domain while developing software artifacts that can be reused
across them.

As a domain-oriented proposal, in this article, we present each of its steps through
case studies in a specific domain. We focus on the agrometeorology domain (the agrom-
eteorology domain was extracted from one of the most popular ontologies in agricul-
ture, named AGROVOC—developed by the Food and Agriculture Organization (FAO)
https://agrovoc.fao.org/browse/agrovoc/en/ accessed on 16 October 2024),which “deals
with all the weather-sensitive elements of agriculture production”, such as pollination,
animal migration, weather risk assessments, etc.

Our cases address the problem of frost, which is a climatic phenomenon that poses
a constant threat to crops around the world. It is critical to understand the differences
between two types of frost that affect crops: (1) radiation frost and (2) advection frost.
The first occurs on clear and calm nights, leading to the formation of a thermal inversion

https://agrovoc.fao.org/browse/agrovoc/en/
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where temperatures near the surface drop below freezing. There are several methods for
protecting a plant from this type of frost. On the other hand, the second occurs when a
mass of cold air suddenly invades a warmer area, which can also be accompanied by winds
and clouds. In this case, there is limited protection; to mitigate frost damage, it is crucial to
prevent and predict this weather phenomenon.

Frost prevention and prediction involve the use of early warning information about
the weather conditions that lead to frost, allowing farmers to take protective measures in a
timely manner. By receiving early warnings, farmers can make informed decisions that can
make the difference between catastrophic losses and a successful harvest. Therefore, under-
standing the characteristics of frost and taking proactive measures are essential to ensure
food security and economic well-being in regions affected by this climate phenomenon [11].

Currently, we are working on the problem of late frosts damaging fruit production by
developing a BDS for detection and/or prevention in a particular area of north Patagonia
(the valley of Rio Negro and the Neuquen rivers is an area that produces apples and pears
for export, so the quality of production is essential for its economy). This is a known
problem that several works in the literature have faced [12–15]; however, as far as we know,
there are no proposals that include reuse issues in this domain.

Thus, the main contributions of this paper are summarized as follows: (1) a reuse-
oriented big data methodology based on principles of software product line development,
(2) the development of domain and reusable case assets within the agrometeorology domain,
and (3) a case of reuse considering previous developments in the domain.

This article is organized as follows. The next section describes our reuse-oriented big
data methodology, together with the software artifacts to be developed and the components
to be used. Section 3 describes the development of two domain and reusable cases within
the agrometeorology domain by following a contextual (top-down) approach. In Section 5,
we highlight lessons learned about the development of the reusable cases and methodology.
Finally, we address conclusions and future work.

2. Materials and Methods

Traditional software and decision-making support (DMS) systems, including BDSs,
must collaborate with each other to reach the goal of having efficient AI-engineered soft-
ware systems, which should be able to process a huge amount of data, as well as perform
traditional organizational operating processes [16]. Developing both perspectives is like
thinking of a two-sided conceptualization. On the one hand, the software system must
satisfy operational stakeholders’ needs; on the other hand, the DMS system (using data ana-
lytics) must achieve accuracy and precision for decision making. Quality properties, such as
reusability, are also addressed by the two systems; however, the different conceptualizations
make researchers rethink the way these properties should be modeled.

By mirroring variability management and domain-oriented development in SPLs,
we might conceptualize data variety for BDSs as a set of cases that should be abstracted
according to their different varieties. Our methodology for reuse-oriented big data systems
takes advantage of SPL engineering to define common artifacts with variabilities that
will be instantiated during product development (Figure 1). Thus, as in SPL, we define a
two-phase development: (1) the domain Engineering, for developing common assets of a
domain, and (2) application engineering, for developing case applications from the above
common assets.

Both phases include the basic activities of the big data process based on a domain problem.
For instance, we could wonder whether climate influences frosts differently, depending on the
environment, in order to discover similar (or different) climatic factors that may be relevant. This
problem is divided into domain and case development, and it is guided by our definition
of variety. Varieties are like alternatives to driving each activity within domain engineering,
for example, by detecting different environmental conditions, features, sources, etc. Then,
during application engineering, these alternatives (varieties) are selected to build the
domain or reusable products.
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Figure 1. Reuse-oriented big data methodology.

Our concepts of variety. In previous works, we have defined four types of vari-
eties [17,18]: (1) source variety, denoting the different types of data sources that can be useful
for the domain problem, such as structured, semi-structured, and without structure, and
the collection methods, such as publish–subscribe, event processing, etc.; (2) content variety,
identifying variables or factors extracted from sources that are useful when considered as
an analysis feature; (3) process variety, gathering information on techniques for data cleaning
and data analytics; and (4) context variety, denoting the situation or conditions under which
the problem domain can be applied.

For instance, we could set a case with specific weather conditions and soil (context
variety), collect data from structured datasets (source variety), select relevant features for
the case—temperature, rainfall, etc. (content variety), and analyze data using different
correlation techniques (process variety). For both types of engineering, context variety is the
main artifact providing the basis for reuse. It defines domain variations that will constrain
and affect the results of the process.

Let us introduce an example. The different types of contexts depend on each domain;
for instance, for the hydrology domain, water bodies can be classified as rivers, lakes,
seas, groundwater, etc., and water flows can be influenced by climatology, geology, and
so on. Particularly, the state of practice for predicting groundwater level fluctuations
as a function of meteorological variables is extensive. For example, in the study in [19],
general trends in local climate variation are examined in the Winnipeg, Canada, area,
analyzing the relationship between these trends and groundwater level fluctuations. From
the data analysis, it is concluded that these levels show a strong correlation with both
annual precipitation and average annual temperature.

At this point, we could ask ourselves whether these variables are equally relevant in
any similar analysis of groundwater level fluctuations. Then, from another analysis carried
out in the Mediterranean basin, where the Institute of Atmospheric Sciences and Climate of
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the Italian National Research Center (ISAC-CNR) has taken measurements of fluctuations
of an aquifer in the karst zone [20], it was concluded that precipitation and air humidity are
the significant variables. Clearly, the relevant variables are different for both cases. This
might indicate that variables affecting groundwater fluctuations (content variety) might
be influenced by specific contextual features (context variety). The Mediterranean area
is forested, with an average annual rainfall of 1.67 mm (2017–2022) and fA (sandy loam)
soils, very fast permeability, and wells located in the vicinity of urban areas. We consulted
the opinion of experts, and it was deemed reasonable to expect those relations in this
context; i.e., the most significant meteorological variables will be those indicated for the
Mediterranean area, differently from the area in Canada, which is a low-lying flood plain
with an extremely flat topography (the level of rainfall added to the vegetation makes soil
moisture very relevant in the Mediterranean area).

Variety influencing the process. During the domain engineering phase, the activities of
a big data process are influenced by variety in different ways (top of Figure 1):

• Domain collection refers to ways of collecting data and datasets that can be used. Source
variety here helps detect different data structures, acquisition techniques, etc.

• Domain preparation refers to the cleaning and preparation tasks necessary to transform
datasets into more suitable ones. The content variety helps determine the variables to
be considered. Process variety detects and defines preparation techniques needed for
the domain.

• Domain analytics involves the data analysis techniques and the processing types (batch, real-
time, and interactive). Process variety helps detect variations in data analysis techniques.

• Domain visualization refers to visualization alternatives to prepare results that will be
shown to users. Process variety determines visualization techniques.

• Domain access defines the ways in which users can access the results.

Representing variety. All the previous varieties defined are modeled using variabil-
ity models as a simplification of the Orthogonal Variability Model (OVM) notation [3],
which allows for documenting variation points and their variants as datasheets, including
the following:

• Variability subject: A variable element of the real world or a variable property of such
an element. Example: the color of a car.

• Variability object: A particular instance of a subject of variability. Example: red, green,
pink, etc.

• Variation point: a representation of a subject of variability within domain artifacts
enriched with context information.

• Variant: a representation of an object of variability.

Datasheets are used to model the design functionalities of SPLs; however, in the case
of variety modeling in BDSs, we applied a simplified view. In particular, variation points
(VPs) and variations were limited to the case of exposing a structure where a VP will have a
tag and a list of variations. For simplicity’s sake, the different relationships that may exist
between these elements were not used, nor were the optional points, alternative points,
etc. As an example, Figure 2 shows a content variety datasheet, where the weather variables’
variation point is the root of the hierarchy, and there is one variant for each possible variable
type (wind chill, wind speed, high temperature, and so on).

The supporting tool. Models are stored in a knowledge base named the Context-Based
Variety Management Tool (CoVaMaT) [17]. The domain varieties are stored as domain-variety
assets through the P-1 process (documenting domain variety) of CoVaMaT.

During the application engineering phase (bottom of Figure 1), the activities include
the same tasks as before, but for the development of a specific case. In this phase, firstly,
domain-case assets are generated by instantiating variation points of the domain (defined
during domain engineering) and storing these cases so that they are ready for reuse. They
are created via the P-2 process (instantiating domain case) of CoVaMaT. Once domain cases
exist, reusable case assets are generated by searching for similarity and reusing those stored
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domain-case assets. These activities are performed via the P-3 (defining reusable case) and P-4
(querying similar domain or case assets) processes.

Figure 2. Datasheet for recording content variety: an example.

At the same time, during the application engineering phase, we also associate instanti-
ated variants to the files used/generated during the execution of the previous activities of
the big data process (datasets, files, codes, etc.). These files are temporarily stored in an
external repository. At the moment, as CoVaMaT is an ongoing project, it does not have the
functionality to manage files. However, we structure an external repository with specific
folders to manage these files manually. At the bottom of Figure 1, we can see the four
folders created: (1) source datasets for storing datasets and files during the case collection ac-
tivity, (2) prepared datasets for storing the transformed datasets using the techniques defined,
(3) codes for uploading the codes (in general with Python) used for preparation, analytics,
and visualization tasks, and (4) for storing the results as graphics, papers, reports, etc.

Our variety identification process. In previous works [17,18], we have proposed
a variety identification process based on bottom-up and top-down approaches. These
approaches allow data analytics and domain experts to identify the four types of varieties
while developing big data activities. The approaches are not divided into a domain and an
application because both phases of engineering are carried out iteratively; that is, domain
assets might also be created during the development of domain cases. Thus, each execution
of the five activities of the big data process creates domain-variety assets while developing
domain or reusable case assets.

After the problem definition (1) (i.e., identifying influences on frosts to improve pre-
dictions), the top-down approach (Figure 3) begins with (2) the formulation of hypotheses
by an expert in the domain (what hypothesis do I have?), based on his or her prior knowledge,
which guides the subsequent analysis of data to validate those assumptions. Then, data
analysts begin to perform the big data process (3) to analyze data according to the defined
hypotheses (do the data corroborate?). Later, these results are returned to validate these
hypotheses (4), possibly visualizing the results in different ways, and to allow for its re-
formulation or the completion of the activities of the process, alternatively (5). As a result
of this approach, specific domain cases are generated that store the identified variations,
which can be reused in future instances, thus promoting efficiency and consistency in future
analyses within the same domain.

On the other hand, after (1) defining the problem, the B-VIP approach begins with
(2) the decision to conduct an exploratory study on the domain problem (what do the data
say?). Then, (3) data analysts begin data analysis without predefined hypotheses, allowing
patterns and trends to emerge naturally through a process of big data. The results obtained
during this study are returned and (4) subjected to a process of validation and discussion
with experts in the field. Then, (5) a decision can be made to end the process or reformulate
the search. The documentation in this approach focuses on the variety that emerges during
the exploratory study. The domain cases instantiated during this process are stored to be
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reused in future queries and analyses, thus contributing to the accumulation of knowledge
and efficiency in decision making.

Figure 3. Top-downapproach to the development of domain and reusable cases in the agrometeorol-
ogy domain.

3. Development of Two Application Cases in the Agrometeorology Domain

In this section, we describe the application of the top-down approach to the develop-
ment of two domain cases in the agrometeorology domain (Figure 3). The approach consists
of five main steps. In general terms, it starts from the definition of a domain problem (step
1), where the context variety is determined. The domain problem here should be researched
as deeply as possible. To do so, the stakeholders involved in this first step are not only
expert users and data analysts but also information available for this domain, such as
standards, related work, previous studies, etc. All of this information will help draw the
hypotheses for a particular case’s development (step 2). During the third step, the activities
of the domain and engineering phases for our big data process should be carried out. As
we described in the previous section, we do not build domain assets independently. Both
domain and application activities are performed iteratively, based on the development of
domain cases. This means filtering domain information through the relevance determined
by the cases. In addition, at this point, three varieties (source, content, and process) must
be identified and documented. Finally, steps 4 and 5 verify the hypotheses and terminate
or reformulate the application case, respectively.

The next parts of the article describe the activities performed at each step during the
development of the two domain cases.

Step 1: domain problem definition

We currently work with expert users of the National Institute of Agricultural Tech-
nology (INTA) at the experimental station in Alto Valle of Río Negro and Neuquén
(https://www.argentina.gob.ar/inta/cr-patagonia-norte/eea-altovalle accessed on 16 Oc-
tober 2024). Alto Valle is a region located in the north of Patagonia, which includes the
Neuquén, Limay, and Río Negro rivers. It is a productive area of approximately one hun-
dred thousand hectares, with an estimated annual production of seven hundred thousand
tons of pears and apples, destined mainly for export and for the concentrated juice industry.
In particular, the institute is dedicated to research on plant entomology and therapeutics,

https://www.argentina.gob.ar/inta/cr-patagonia-norte/eea-altovalle
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plant nutrition, plant pathology, irrigation and drainage, the post-harvest period, crop
management, etc.

The Alto Valle of Río Negro and Neuquén is an area that can be sub-delimited by
three specific zones according to the location of three main weather stations. In the right
side of Figure 3, we can see these stations and the covered zones, named Villa Regina
(https://sipan.inta.gob.ar/agrometeorologia/met/40/clima.htm accessed on 16 October
2024), Guerrico (https://sipan.inta.gob.ar/agrometeorologia/met/10/clima.htm accessed
on 16 October 2024), and Cinco Saltos (https://sipan.inta.gob.ar/agrometeorologia/met/
45/clima.htm accessed on 16 October 2024). The figure shows the delimited zones and the
geographic points of the weather stations in light blue (located in the center of each zone).
Although the zones are near each other, they have different characteristics with respect to
climate, soil, and vegetation.

At the same time, we analyzed information provided in related work from the litera-
ture on the detection and prediction of frosts within the agrometeorology domain.

The analysis of these works provides an overview of the main goals, source data,
variables, and results obtained in order to think about solutions to early frost detection.
Table 1 shows a summary of eight works from the literature described by goals, sources,
periods of study, analysis techniques, and results. Although this is not an exhaustive list
of all possible works in the literature, it provides a broad overview of the importance
of mining data on frost events in order to help determine mechanisms to protect crops
from frost.

Table 1. Summary of some related works about frost detection and prediction.

Works Objectives Sources/Period Analysis Results

Verdes et al. [21] 2000
(Rosario, Argentina)

Develop an empirical
prediction system for
frost protection of fruits
and vegetables

2601 daily records of a
weather station in
Zavalla (from 1973 to
1989)

Artificial neural
networks (ANNs),
simple Bayes (SB),
k-nearest neighbors
(k-NNs)

SB generated better
results than ANNs and
k-NNs in frost
detection, but it
obtained a higher
probability of false
detection

Ding et al. [22]
2019 (Japan)

Construction of
predictive models to
capture possible causal
relations between
environmental factors
and frost

Sensors in a local area
from 2017 to 2019

Correlation
Support vector
machine (SVM)

Temperature is the
most important factor
in predictive models;
humidity helps an early
alarm (2–3 h ahead),
and radiation improves
the sensitivity of the
response in a short
period

Ding et al. [23]
2020 (Japan)

Develop a causal model
for understanding
relationships between
past and future frost
events

Sensors in a local area
in 2017

Support vector
regression (SVR)
Structural causal model
(SCM)

Better results were
obtained with labeled
data and the task of
learning as
classification

https://sipan.inta.gob.ar/agrometeorologia/met/40/clima.htm
https://sipan.inta.gob.ar/agrometeorologia/met/10/clima.htm
https://sipan.inta.gob.ar/agrometeorologia/met/45/clima.htm
https://sipan.inta.gob.ar/agrometeorologia/met/45/clima.htm
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Table 1. Cont.

Works Objectives Sources/Period Analysis Results

Zhou et al. [12]
2022 (Australia)

Increase the prediction
frequency from once
per 12–24 h for the next
day or night’s events to
minute-wise
predictions for the next
hour’s events

Sensors from different
weather stations (from
2016 to 2017)

Recurrent neural
networks (RNNs)
Long short-term
memory (LSTM)
Gated recurrent unit
(GRU)
Artificial neural
network (ANN)

LSTM is more suitable
for a dataset of the
current year; ANN
models were faster
than RNN-based
models, with better
accuracy and
performance

Kotikot et al. [24]
2020 (Kenia)

Integrate local
characteristics of the
land surface with
weather variables to
map frost hotspots

282 observations
during frost seasons
(2011 and 2012),
NASA-LIS data,
MODIS sensor, and
radar topography data

Multicollinearity
Binary logistic
regression
Correlation

The model identified
areas of high frost
susceptibility using a
threshold based on the
probability of the
logistic model; it was
useful for managing
frost-damage
mitigation efforts

Gobbett et al. [13]
2020 (Australia)

Generate future climate
scenarios (from 2030 to
2050) to predict
night-time minimum
temperatures

MODIS with night-time
temperatures, elevation,
terrain indices, and
meteorological station
data

Multivariate adaptive
regression splines
(MARSs)

Elevation and
time-of-the-year
variables affect frost
occurrences; they
found a decrease in
frost at lower
elevations under the
tested future climate
scenarios

Diedrichs et al. [14]
2018 (Mendoza)

Frost prediction at least
24 h ahead with
SMOTE technique

Five meteorological
stations during
2001–2006

Bayesian networks
(BNs)
Random forest (RF)
Logistic regression (LR)
Binary trees (BTs)

The application of an
oversampling
technique showed
improvements in RF
and LR models

Talsma et al. [15]
2023 (Alcalde)

Application of
regression models to
predict temperature
and not just the
occurrence of frost

10 years of historical
data from the Natural
Resource Conservation
Service weather station

Random forest (RF)
Deep neural network
(DNN)
Convolution long
short-term memory
neural network (CNN)

CNN showed better
results, and the use of
soil temperature is a
key parameter in
longer-term predictions’
application (>24 h)

Highlighting aspects of the table, we can see that source data generally come from
weather stations. But in some cases, studies also include satellite imagery for elevation
and/or soil characteristics. These source data determine the set of variables used for the
studies. In general, for sources from weather stations, variables include temperature, wind,
humidity, dew, rain, and solar radiation. In addition, when data are obtained from sensors,
variables are related to topographic aspects such as elevation, convexity, etc. For example,
in [24], the variables are obtained from NASA’s Land Processes Distributed Active Archive
Center (LP DAAC), and NASA-LIS (https://lis.gsfc.nasa.gov/ accessed on 16 October 2024)
was used to identify relative soil moisture, wind speed, and specific humidity. Another
example, presented in [13], uses terrain metrics and vegetation indexes extracted from the
MODIS LST sensor (https://modis.gsfc.nasa.gov/data/dataprod/mod11.php accessed on
16 October 2024).

The preparation of datasets before analytics involves its own particularities in several
studies [12–15]. In general, datasets are normalized and prepared to contain temperatures
of certain time lapses, such as 1 h, 1 day, or sometimes more than one week, in order to train
the models on events that occurred some time before. With these datasets and the analysis

https://lis.gsfc.nasa.gov/
https://modis.gsfc.nasa.gov/data/dataprod/mod11.php
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techniques chosen, works can predict the minimum temperature at multiple prediction
lead times, such as 6–48 h [12], 24 h [15], etc.

Then, when addressing the analysis techniques and methods applied in the studies,
we can see that applying different types of neural networks is the most frequent approach;
for example, recurrent neural networks (RNNs) in [12], artificial neural networks (ANNs)
in [12,21], and convolutional neural networks (CNNs) in [15]. Also, some studies apply a
random forest (RF) [14,15] and compare their behaviors and results against those of other
techniques, such as neural networks or logistic regression (LR) [14].

Finally, regarding the results, in addition to evaluating the analysis techniques with
respect to accuracy and performance [12,14,15,24], the works remark that some of the
most relevant variables involved in frost prediction are temperature, humidity, radiation,
and elevation.

In particular, in our work, user experts were interested in analyzing historical data
to predict the behavior of frosts and the influence of weather in the three zones (Regina,
Cinco Saltos, and Guerrico). Like in any other productive area, frosts cause great damage
to fruit plants, and during the spring season, this damage is really serious because leaves
and flowers are emerging. Therefore, we defined the main objective of the study as follows:

Analyze the influence of weather variables for late spring frosts in Alto Valle of
Río Negro and Neuquén

The objective was addressed as a context variety problem based on the zones (in orange
in Figure 3). Thus, the first activity was to apply the P-4 process (P-4, querying similar
domain-case assets) of CoVaMaT to find out whether there is a similar domain-variety asset
stored. In this case, the inputs of the process are the agrometeorology domain (extracted from
AGROVOC), the context variety based on zones, and the main objective defined. At this
point, CoVaMaT returned results indicating that there was no similar domain stored, so we
used the P-1 process (documenting domain variety) to document the three zones. As we can
see in Figure 4, through this process, we created the agrometeorology-domain asset with the
associated main objective, and the variation point (zones) with its variants (Villa Regina zone,
Guerrico zone, and Cinco Saltos zone).

Figure 4. P-1 process of CoVaMaT documenting the agrometeorology-domain asset, together with the
context variety for the objective.

It is important to highlight that, at this point, the agrometeorology-domain asset had
only the associated context variety because the other three varieties were defined later,
during the development of domain cases. Thus, in the next subsections, we describe
the development of two domain cases based on the context variety for Villa Regina and
Guerrico. In particular, during Domain Case 1—Villa Regina, we developed domain-case assets
and domain-variety assets in the context of the analysis of the Villa Regina zone. And in
Domain Case 2—Guerrico for the Guerrico zone, we reused the previously developed assets
in creating new reusable case assets. Cinco Saltos is not described in the article due to space
limitations. However, for the development of Domain Case 3—Cinco Saltos, we similarly
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reused the assets of the agrometeorology domain, as well as the assets of Villa Regina and
Guerrico domain cases.

3.1. Domain Case 1—Villa Regina

Here, we describe the next four steps (from 2 to 5) of the top-down approach performed
during the development of the domain case for the Villa Regina context (Figure 3).

Step 2: hypothesis definition

For the hypothesis definition, we analyzed not only the information provided by
expert users at INTA but also information from related works in the literature (Table 1).

From expert users, we obtained relevant information about the specific needs of the
zone being analyzed. For example, they started from the assumption that temperatures
have a strong influence on frosts, as described in some works in the literature [12,22].
However, expert users were not aware of the specific influences of other weather factors,
such as wind and rain. For example, they argued that “when it is raining or there is a strong
wind, there is no frost.” However, they also knew that this is not always the case, and it
depends on the wind speed and rainfall. Even in the related works presented in [22,24],
the authors analyzed the influences of these factors without finding strong relations or
conclusive results that influence frost.

Considering these previous concerns, we defined the first hypothesis as follows:

Hypothesis 1. Do wind and rain factors influence late frost events?

Another important aspect for the expert users was to know in which way weather
factors affect frosts before (minutes, hours, or even days) an event occurs. Thus, our second
hypothesis was defined as follows:

Hypothesis 2. How do specific weather factors influence frosts before they occur?

This concern was also studied in the literature [12,15].

Step 3: hypothesis processing

We performed the five activities involved in the big data process (in blue in Figure 3)
interacting with CoVaMaT for the documentation and recovery of the domain and reusable
assets (in green in Figure 3).

Big data process: collection activity. The source dataset was obtained from the
Villa Regina Weather Station, located in the same city, which stores 33 variables in 10 min
intervals from 5 July 2009 to 17 September 2019, with a total of 511.263 records.

During the collection activity for this domain (in the domain engineering phase),
we stored (through the P-1 process of CoVaMaT) the source variety associated with the
agrometeorology-domain asset (previously created in Figure 4). The source-variety asset was
documented with one variant (weather station of Villa Regina), as we can see in Figure 5.

Figure 5. P-1 process of CoVaMaT documenting the source variety associated with the agrometeorology-
domain asset.
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Big data process: preparation activity. In this activity, we created two types of
datasets. The first one, named Original Dataset Villa Regina, was generated by considering
information given by expert users according to the variables that could influence frost
events. Thus, we considered only 14 variables (Table 2). Also, we cleaned the dataset by
removing/replacing some outliers and null values (we used specific Python libraries to do
so, such as Pandas (https://pandas.pydata.org/ accessed on 16 October 2024) and KNNIm-
puter (https://scikit-learn.org/stable/modules/generated/sklearn.impute.KNNImputer.
html accessed on 16 October 2024).

The second dataset was built by adding a new continuous variable to the original
dataset (so, this dataset contains 15 variables.), named the FrostCont (in our analyses, we
consider “frost” the occurrence of a temperature less than or equal to 0 ◦C) variable, that
contains the value of the low-temperature n records ahead. Therefore, we could generate
several datasets of this type by setting the number of records in advance. This means
that, as the dataset stores one record each of 10 min, n = 6 stores the low temperature
corresponding to 1 h later, n = 12 corresponds to 2 h later, and so on. In Table 3, we can
see part of one dataset generated, in which the LowTemp variable is used to complete the
FrostCont variable, depending on the n value. Then, these datasets were named Dynamic
Dataset Villa Regina(n), depending on the n value.

Table 2. Selected variables for the Original Dataset Villa Regina.

Variable Description Format

HiTemp High temperature Numeric
LowTemp Low temperature Numeric
OutHum Out humidity Numeric
DewPt Dew point Numeric
WindSpeed Wing speed Numeric
WindRun Distance of traveled wind Numeric
WindChill Cooling effect of the wind Numeric
Bar Atmospheric pressure Numeric
Rain Rain presence Categoric
RainRate Rain average Numeric
SolarRad Solar radiation Numeric
SolarEnergy Solar energy Numeric
Hi SolarRad Max solar radiation Numeric
ET Evapotranspiration Numeric

Table 3. Examples of the Dynamic Dataset Villa Regina(n) with (a) n = 6, (b) n = 12, and (c) n = 138.

LowTemp FrostCont LowTemp FrostCont LowTemp FrostCont
1 0.5 1.0 1 0.5 −0.6 1 0.5 5.3
2 0.7 1.6 2 0.7 −0.7 2 0.7 5.1
3 0.6 1.6 3 0.6 −0.7 3 0.6 4.7
4 0.5 1.3 4 0.5 −0.8 4 0.5 3.8
5 0.4 0.8 5 0.4 −0.9 5 0.4 3.1
6 0.4 0.2 6 0.4 −1.1 6 0.4 2.1
7 1.0 −0.6 7 1.0 −1.5 7 1.0 1.9
8 1.6 −0.7 8 1.6 −1.5 8 1.6 1.8

. . . . . . . . . . . . . . . . . . . . . . . . . . .
13 −0.6 −1.5 13 −0.6 −1.0 13 −0.6 0.8
14 −0.7 −1.5 14 −0.7 −1.3 14 −0.7 0.7
. . . . . . . . . . . . . . . . . . . . . . . . . . .
139 5.3 2.8 139 5.3 10.1 139 5.3 14.8

(a) With n = 6—1 h (b) With n = 12—2 h (c) With n = 138—23 h

https://pandas.pydata.org/
https://scikit-learn.org/stable/modules/generated/sklearn.impute.KNNImputer.html
https://scikit-learn.org/stable/modules/generated/sklearn.impute.KNNImputer.html
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The last step was selecting values with similar occurrences of frost events and non-frost
events in the late-frost period (from July to September) to avoid the risk of overfitting.

Finally, with these two types of datasets created, we again documented assets of the
domain engineering phase. Here, we added new domain varieties for both content- and
process-variety assets. Thus, in Figure 6, we can see a new variation point (weather variables)
with 14 variants (Table 2) for the content-variety asset and another variation point (cleaning
and preparation) for the techniques and procedures used to identify and treat outliers, nulls,
and overfitting.

Big data process: analytics and visualization activities. Through these activities, we
performed several analyses in order to verify the hypotheses defined.

Considering Hypothesis 1 (Do wind and rain factors influence late frost events?), we
firstly explored the influence of the 13 variables with respect to low temperatures. To do
so, we identified correlations by applying two coefficients: (a) Pearson and (b) Spearman
(Kendall was discarded because the coefficient is more suitable for small datasets, and
in our analysis, the results were always far different.) [25]. In Figure 7, we show the
results (the order of the variables is the same for the two coefficients), for which we can
see only a few variations between them. For example, for Pearson, the DewPt variable
returned 45%, and for Spearman, 48%. In general, Spearman produced slightly better
results (≈1–2%). Also, in the figure, we can see that HiTemp (≈99%), WindChill (≈98%),
WindSpeed (≈47%), WindRun (≈47%), Hi SolarRad (≈44%), SolarEnergy (≈43%), SolarRad
(≈43%), and DewPt (≈40%) obtained the best results. On the other hand, Bar (≈−38%) and
OutHum (≈−61%) showed a considerable negative influence. The rest of the variables did
not obtain significant correlations.

Figure 6. P-1 process of CoVaMaT documenting the content and process variety assets.
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Figure 7. Correlation analysis for the Original Dataset Villa Regina.

Considering Hypothesis 1, with respect to the RainRate (stored in millimeters), we can
see that it does not have any influence on the low temperature, with a result of ≈0% in the
correlations. The WindSpeed variable obtained a moderate result (≈47%), but this value is
not good enough either. As these coefficients did not present us with a clear panorama
depicting their influences on frosts, we decided to analyze them separately and only with
frost events (temperatures below 0 °C). In this way, we analyzed and reorganized these
variables in order to obtain more insight into their behavior. For example, in Figure 8, scatter
graphs show the conditions of frosts, depending on the value of the variables. Figure 8a)
shows that, when the wind speed is greater than 13 km/h, the temperature is never below
0 °C, and consequently, there is no frost. Also, in Figure 8b), the graph shows that, when
rainfall is greater than 2.5 mm, the temperatures remain over 0 °C. In this way, although
we obtained moderate and low correlations between the variables using the coefficients,
we can see here that wind speed and rainfall have a great influence on frost events in this
zone. Increasing rainfall or wind speed generates low probabilities of frosts, delimited by
specific thresholds.

Figure 8. Scatter graphs analyzing rain rate and wind speed with respect to frosts.

Next, we considered Hypothesis 2 (How do specific weather factors influence frosts before
they occur?). In this case, we analyzed the 13 variables using the Dynamic Dataset Villa
Regina(n) from n = 0 to n = 138 for a period of 24 h. Thus, we generated 24 different
datasets and compared each other with the low temperature. In Figure 9, we show the
results, in which we can see the influences of the different variables during the 24 h. For
example, SolarRad (graphic 11) has a moderate/high influence (≈70%) between the first
2 and 4 h, which decreases in the next 20 h before starting to increase again at the 23rd h.
Something similar happens to HighTemp, DewPt, WindSpeed, etc. On the other hand, such
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variables as OutHum and Bar exhibit an inverse behavior, but with very low values during
the 24 h.

Once again, from the complete analysis of variables and correlations, we could not
obtain significant conclusions about rain and wind. So, we reorganized the data across the
24 datasets in order to evaluate the wind speed and rainfall needed to achieve temperatures
over 0 °C. In Figure 10, we show the relationship between wind and frosts, in which the
points denote the minimal wind speed for the absence of frost (the x-axis represents hours,
and the y-axis the independent variable (windspeed). Each point shows the minimum
measurement of this variable for the absence of frost). For example, given a particular time,
if, 2 or 3 h before, there was a wind speed of 14.5 km/h, there would be no frost. The wind
speed was tending to stabilize from 14 to 23 h at a speed of 32.20 km/h.

We performed the same analysis for the RainRate variable in Figure 11. The graph
shows that, given a particular time, the absence of frost required 0.8 mm of rain from 0 to
5 h before, versus 1.00 mm from 6 to 12 h before, and this value increased until 2.2 mm
23 h before.

Finally, we documented all the assets of this activity in CoVaMaT by creating new
process-variety assets in the domain. In Figure 12, we can see three new variation points for
(1) processing, defined with a batch variety due to our processes being performed in batch
mode, (2) correlation, defining the two coefficients used for the analytics, and (3) visualization,
denoting the graphs used to organize and analyze the information on frosts, wind, and rain.

Figure 9. Correlation analysis of Dynamic Dataset Villa Regina(n) from n = 0 to n = 138 according to
Pearson (blue) and Spearman (orange).
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Figure 10. Relationship between WindSpeed and FrostCont variables, considering the Dynamic Dataset
Villa Regina(n) from n = 0 to n = 138.

Figure 11. Relationship between RainRate and FrostCont variables, considering the Dynamic Dataset
Villa Regina(n) from n = 0 to n = 138.

Figure 12. Adding more process-variety assets with variants for the processing type, analysis and,
visualization techniques applied.

Step 4: hypothesis verification

In this step, we analyzed the information provided via the previous activities to verify
(or not) our two hypotheses (Hypotheses 1 and 2). In both cases, we divided the verification
into two branches: (1) a general one, relating all the weather variables to low temperatures,
and (2) a secondary one, analyzing only rain and wind with respect to temperatures below
0 °C (frost events).

In Hypothesis 1, the results of the first verification showed high/moderate positive
correlations between HiTemp, WindChill, WindSpeed, HiSolarRad, and DewPt and moderate
negative correlations between Bar and OutHum, with respect to LowTemp. Then, in the
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second branch, we obtained very different information, showing a strong relationship
between wind–rain and frosts. Here, we could determine which thresholds of wind speed
and rainfall were necessary to avoid temperatures below 0 °C.

Secondly, in Hypothesis 2, for the 24 h analysis, the first verification applying corre-
lations showed fluctuations between moderate and low values, but the same relations as
in Hypothesis 1 remained. Then, the analysis of rain and wind revealed more interesting
relationships, which determined the specific thresholds of wind speed and rainfall that
should happen n hours earlier to avoid frosts in a given time.

Step 5: reformulation or termination

At this point, for Domain Case 1—Villa Regina, we decided to finish. On one hand,
we had stored the assets for the agrometeorology domain; that is, we had performed the
domain engineering activities. On the other hand, for the creation of the domain case, in
the application engineering, we applied the P-2 process (P-2, instantiating domain case) for a
variety of instantiations of the created assets. The instantiation consisted of selecting only
the variants used in the Villa Regina case (VR). At the same time, we also associated the
variants with the files used/generated during the execution of the activities (datasets, files,
codes, etc.). These files were stored in an external repository (Figure 1).

In Figure 13, we can see the instantiated varieties of Domain Case VR, together with
these files; for example, the weather_station_Villa_Regina variant is associated with the
weather_station_VillaRegina.csv in the source datasets folder. Also, the variants related to the
preparation activity (oultiers, null values, and balance variants) are associated with Original
Dataset Villa Regina and 24 datasets, from n = 0 to n = 138, corresponding to Dynamic
Dataset Villa Regina(n), all stored in the prepared dataset folder.

Figure 13. Domain case VR created for the instantiation of the agrometeorology-domain asset, together
with associated files (during the application engineering phase).

3.2. Domain Case 2—Guerrico

As we describe at the beginning of this section, this second case is built with a zone-
based contextualization for the agrometeorology domain under study (Villa Regina and
Guerrico—Figure 4). During the development of the Villa Regina domain case, we stored
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and documented all the agrometeorology-domain assets of the first zone, and this information
is now available for reuse during the development of this new case.

In Figure 14, we show how the assets were recovered from the repositories. The first
task applied the P-4 process (P-4, querying similar domain-case assets) of CoVaMaT to find out
whether there was a similar domain-variety asset stored. We set as inputs the agrometeorology
domain (extracted from AGROVOC), the context variety with the Guerrico zone, and the
main objective (labeled as 1 in Figure 14). The process searched in the repositories of
domain-variety assets (labeled as 2) and domain-case assets (labeled as 3) for similar assets,
recovering the agrometeorology-domain assets and Domain Case VR, respectively.

Next, we continued with the last four steps of the top-down approach (Figure 3) for
developing this new domain case. The first step was already performed by defining the
context variety (of the Alto Valle zones) in the domain.

Figure 14. P-4 process retrieving stored assets: (1) query assets, (2) search for domain-variety assets,
and (3) search for domain-case assets.

Step 2: hypothesis definition

We defined here the same two hypotheses as in the Villa Regina case, and we added a
new user expert’s requirement. Users wanted to analyze the different behaviors of weather
variables in different zones (as we documented in CoVaMaT as a context variety in Figure 4).
As Guerrico is a colder zone than Villa Regina, with more frosts in spring, user experts
wanted to know about variations in the behavior of some weather variables. In other words,
we addressed the influence of context on reusable variables during BDS development. So,
we added a new hypothesis:
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Hypothesis 3. Do the variables analyzed for Villa Regina have the same influence in Guerrico
with respect to frosts?

Step 3: hypothesis processing

We again performed the five activities of the big data process. In order to simplify the
description of the work, we highlight here the new tasks performed and the documenta-
tion/creation/reuse of new assets (in CoVaMaT).

For the documentation of the new case (Figure 15), we applied the P-3 process (defining
reusable case) of CoVaMaT, which already had the assets recovered via steps (2) and (3) in
Figure 14. In Figure 15, the 1 label denotes the creation of the Gerrico reusable case, and the
2 label represents the instantiation of the Guerrico zone for the context variety.

Next, during the collection activity of the big data process, we created a new source-
variety asset representing the Guerrico weather station as part of the semi-structured dataset
variation point (labeled as 3 in the figure). As this variant did not exist previously, it was
firstly created via the P-1 process as part of the source-variety asset (of the agrometeorology-
domain asset) and then instantiated to the reusable case; therefore, here, we interacted with
the two phases (domain and application). We can see this new variant in orange in the
figure. Also, in this activity, we stored the weather_station_Guerrico.csv file in the source
dataset folder.

Next, as we applied the same techniques as in the preparation activity for the Villa
Regina domain case, we only instantiated existing variants in the reusable case. Thus, in
this activity (labeled s 4 in Figure 15), we created the new datasets Original Dataset Guerrico,
with 14 weather variables, and the 24 Dynamic Dataset Guerrico(n) datasets with the new
FrostCont variable containing the value of the low-temperature n records ahead (from n = 0
to n = 138).

During the analytics activity of the big data process, we applied the same techniques
and processes as in Villa Regina. We only created a new variation point (Comparison),
including one variant to perform a percentage change analysis [26,27]. It was added via the
P-1 process (domain phase) and instantiated (application phase) through the P-3 process
(labeled as 5 in the figure).

Figure 15. P-3 process for documenting Reusable Case Guerrico from the agrometeorology-domain assets.
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For Hypothesis 1, in the analytics activity, we performed the correlation analysis
of the 13 variables with respect to low temperature. Pearson and Spearman coefficients
were again applied, obtaining some similar results with respect to high, moderate, and low
influences as in Villa Regina. Also, for Hypothesis 2, the application of the coefficients for
the 24 h period generated some similar behaviors. Next, for the analysis of the wind and
rain for both hypotheses, we also noted some similar results, but with different impacts. For
example, in Figure 16, which denotes the relationship between wind and frosts, we can see,
unlike Figure 10 for Villa Regina, that a wind speed greater than 24.10 km/h is necessary
4 h before a given time for the absence of frost, and a speed greater than 41.8 km/h 8 h
before (considering both events separately).

Figure 16. Relationship between WindSpeed and FrostCont variables considering Dynamic Dataset Villa
Regina(n) from n = 0 to n = 138 in Guerrico.

In order to verify Hypothesis 3, we applied the percentage change analysis for figures
obtained from the two zones—Villa Regina and Guerrico.

In Figure 17, we show this analysis for the two correlation coefficients. In the graph, a
positive result indicates that the Guerrico zone obtained a higher value than Villa Regina
for the variable and coefficient, and a negative result indicates the inverse; that is, Villa
Regina obtained a higher coefficient for the variable. We can see, in some cases, significant
differences between both zones. For example, Bar presented positive variations of more
than 22%, and SolarEnergy more than 9%. On the other hand, DewPt generated a negative
percentage change with (≈−19%) or (≈−11%) for OutHum. Other variables, such as
WindSpeed, WindRun, HiTemp, and WindChill, registered a low percentage change, denoting
no variation between the two zones. Something really different occurred with RainRate and
Rain, for which Spearmean coefficients generated highly positive variations.

Figure 17. Percentage change analysis between Villa Regina and Guerrico for Hypothesis 1 of the
13 variables wrt low temperature

Similarly, in Figure 18, we show the percentage change analysis for both dynamic datasets
(Dynamic Dataset Villa Regina (n) and Dynamic Dataset Guerrico(n) from n = 0 to n = 138).
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As we can see, WindSpeed, WindRun, HiTemp, and WindChill again obtained low percent-
age changes.

Comparing the percentage changes between original and dynamic datasets
(Figures 17 and 18), we can observe that original datasets generated fewer variations in
coefficients of both zones. At the same time, in some cases, positive variations of the
first datasets were negative in the dynamic datasets. This happened specifically for wind
variables (the last three in both figures). Also, for rain variables, in both cases, we observed
great differences among the two coefficients.

Figure 18. Percentage change analysis between Villa Regina and Guerrico analyzing a 24 h period.

From a deeper analysis, in Figure 19, we again show the percentage change analysis of
wind and rain variables between both zones during a 24 h period. The figure shows the
percentage differences needed in Guerrico with respect to Villa Regina to avoid frost. As we
can see, all percentages are positive, indicating that Guerrico needs more wind speed and
rain to prevent frost events. For example, with respect to WindSpeed (Figure 19a), Guerrico
needs 49.69% more wind speed 4 h before a given time than Villa Regina, and 11 h before, it
needs 111.31%. With respect to RainRate (Figure 19b), in the first 3 h, there is no difference
between zones; however, between the 4th and 14th h before, Guerrico needs more than 60%
of rainfall to avoid frost.

Figure 19. Percentage change analysis for (a) wind speed, (b) wind run, and (c) rain rate variables in a
24 h period for Villa Regina and Guerrico,

Step 4: hypothesis verification

In this step, we analyzed the information provided during the previous analysis to
evaluate the three hypotheses. The first two produced similar results regarding which
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variables had more or less influence on frost events. The main differences were specifically
based on the fact that percentages were always greater in Guerrico than in Villa Regina.
This fact was then verified through Hypothesis 3.

From the analysis of these three hypotheses, we can conclude the following:

• Guerrico has lower min temperatures than Villa Regina.
• Guerrico is less influenced by high temperatures, the dew point, evapotranspiration, and

humidity than Villa Regina in terms of frosts. Guerrico is influenced more by atmospheric
pressure, solar energy, solar radiation, wind speed, wind chill, and rain than Villa Regina in
terms of frosts.

• Guerrico requires between 11.03% and 111.31% higher wind speeds than Villa Regina to
prevent frosts.

• Guerrico requires between 11.2% and 89.41% more wind chill than Villa Regina to pre-
vent frosts.

• Guerrico requires at least 63% more rain than Villa Regina to prevent frosts.

Step 5: reformulation or termination

In this step, we decided to finish Domain Case 2—Guerrico. We applied the P-2 process
for variety instantiation, which stored the case in the repository as a reusable case asset
(labeled as 6 in Figure 15).

3.3. Domain Case 3—Cinco Saltos

As aforementioned, this domain case is not described here due to space limitations.
However, since it was considered for evaluating the proposal, it is important to highlight
three main characteristics of this case:

• Cinco Saltos was developed as a reusable case, and it was documented and stored in
CoVaMaT as Reusable Case Cinco Saltos (by applying P-3 and P-4 processes).

• The hypotheses defined in Cinco Saltos were the same as in Guerrico (three hypothe-
ses). Thus, we could reuse, in addition to the assets developed for the agrometoeo-
rology domain, the assets for the Villa Regina and Guerrico cases. In the case of the
assets defined for Reusable Case Guerrico, we could reuse the assets created for the third
hypothesis regarding the influencing variables in the three zones.

• We did not have to add any new domain assets (within the agrometerology asset)
because they could be completely reused.

4. Results

We analyzed results from two different points of view. On the one hand, we compared
our case studies to related works in Table 1. Like the works [14,22–24], we defined a
main objective to analyze the influence of weather variables on late frosts. We used similar
weather variables as relevant features, concluding that temperature was the most influential
factor for frost occurrence. Differently from those studies, we did not use information
about elevation or soil types. But the most relevant difference was revealed with respect
to wind and rain since none of the related studies found strong influences. We found not
only that these factors were important for analysis (at the time they occur and in the hours
before) but also the differences between their thresholds in both zones (Villa Regina and
Guerrico). We concluded that the influences depend on the context, and we determined
specific thresholds in which the wind and rain should be analyzed. These results can be
considered as starting points to define new hypotheses for new domain-case applications
that allow expert users to detect or prevent frost.

On the other hand, as in any other methodology that proposes software reuse, it
was necessary to evaluate the reusable component development (https://insights.sei.cmu.
edu/library/a-framework-for-software-product-line-practice-version-50/ accessed on 16
October 2024). This means we should analyze the time required to develop the services
of the reusable components, which are pre-built pieces of software that can be used in
multiple applications. In our case, reusable components encapsulate functionality as big

https://insights.sei.cmu.edu/library/a-framework-for-software-product-line-practice-version-50/
https://insights.sei.cmu.edu/library/a-framework-for-software-product-line-practice-version-50/
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data processing services in order to reduce the amount of work needed for the application
development phase, that is, the creation of domain and reusable case assets.

To clarify the notion of service in the context of the BDS development process carried
out in our case studies, in Table 4 (in the table, times are defined in days), we detailed the set
of seventeen services/tasks (from S0 to S16), along with the days required for each activity:
Domain Problem Definition, Collection, Preparation, Analysis, Visualization, and Access.
Services were analyzed by dividing the cases into four categories, including information
from all developed cases (Villa Regina, Gerrico, and Cinco Saltos):
• Traditional application case Villa Regina (TCaseVR) looked at the time required for the

development of the activities of the big data process without documenting variability,
like a traditional big data application. It was the base case for comparison.

• Domain-case application Villa Regina (DCaseVR) looked at the time required when the
T-VIP approach was applied, so identifying variety became an additional activity
alongside the traditional process of the previous case.

• Reusable Case Guerrico (RCaseG) reused assets from Domain Case Villa Regina using
CoVaMaT, so identifying a variety suitable for the requirements of the new area helps
take advantage of the case with an already documented variety (DCaseVR).

• Reusable Case Cinco Saltos (RCaseCS) is similar to the case of Guerrico (RCaseG), but
Villa Regina and Guerrico were already stored in CoVaMaT.

Table 4. Time required in days for each case category defined.

Activity Services/Tasks TCaseVR DCaseVR RCaseG RCaseCS

Domain
problem
collection

S0. Defining the domain-case problem 30 90 10 10

Collection S1. Collecting data from sensor 5 10 5 5

Preparation

S2. Deleting useless variables 10 15 2 2
S2. Deleting useless variables 10 15 2 2
S3. Imputation of null values 30 35 2 2
S4. Adding new variable (FrostCont) 15 20 2 2
S5. Balancing data for late frosts 3 8 2 2
S6. Dealing with oultier values 30 35 2 2
S7. Creating two datasets: original and dynamic 30 35 10 10

Analytics

S8. Computing a correlation analysis on the original dataset 15 20 5 5
S9. Computing a deeper analysis of the rain and 25 30 5 5
wind variables in the original dataset
S10. Computing a correlation analysis on the dynamic dataset 10 15 2 2
S11. Computing a frost analysis of the rain and 25 30 5 5
wind variables in the dynamic dataset
S15. Computing percent change analysis — — 36 15

Visualization
S12. Visualizing results from H1 10 15 5 5
S16. Visualizing results for H3 — — 10 5
S13. Visualizing results from H2 10 15 5 5

Access S14. Making results available 30 35 10 10

TOTAL in
days 278 408 118 92

For instance, during S0, defining the domain-case problem, we can see that the definition
of the problem takes 30 days for TCaseVR when we conduct the first communication
with the experts, determine their needs, identify data, and form the hypotheses. Then, in
DCaseVR, the number of days increases to 90 because it includes not only the activities
mentioned in the traditional case but also the search for related work in the literature, the
definition of the domain, the structuring of varieties, etc. Finally, the reusable cases RCaseG
and RCaseCS took 10 days, including the adaptation of each case, and we firstly verified
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whether the hypotheses were exactly the same, and then we continued with the analysis
of reusability and subsequent reuse. We should remark here that the calculation of the
time involved some informal separation of tasks between those related to traditional big
data processes and our reuse-based development. For instance, structuring variety was
taken into account only during the applications of CoVaMaT processes, without interfering
during the traditional processing.

In another example, during S8, computing a correlation analysis on the original dataset, we
can see that, in TCaseVR, it took us 15 days since the Pearson and Spearman correlation
analysis was performed based only on the original dataset; however, in DCaseVR, it took
us 20 days because we had to not only compute the correlation but also document the
results as assets of CoVaMaT. In the reusable cases RCaseG and RCaseCS, it took only
5 days because it involved only remaking the correlations with the recovered assets for the
sets of the other reusable cases.

In addition, in the table, we can see that services S15, computing percentage change
analysis and S16, visualizing results for H3, were only developed for the RCaseG and RCaseCS
cases since those services refer to reusable cases only. We can also see that the times for
Guerrico for these services were greater than for Cinco Saltos because the latter used the
previously created assets (of RCaseG).

Figure 20 shows a simplified view of Gantt charts (the Gantt charts are specified in
months due to space limitations), in which we can graphically observe the time for the
four categories of cases. The first case, which represents the traditional big data process
(TCaseVR), took a little over nine months to be developed. However, the domain case Villa
Regina (DCaseVR), developed by applying our methodology, took almost thirteen months,
that is, four months more. This was expected because, in this last case, we had to create
the agrometeorology-domain assets and the domain-case assets. But the real advantages
appeared during the next developments of the Guerrico and Cinco Saltos cases (RCaseG
and RCaseCS), in which time was reduced abruptly.

Figure 20. Simplified view of Gantt charts for the four cases evaluated.

In the same sense, in Figure 21, the bar chart shows the differences in the percentages
of the time required for TCaseVR compared to the other three cases. Clearly, the chart
shows that DCaseVR took 46% more time than the traditional case. However, for the
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two reusable cases, RCaseG and RCaseCS, the difference was negative, indicating a time
reduction of 55% and 65%, respectively. Therefore, for these two cases, the savings are
really interesting.

Figure 21. Differences in the percentages of time required for TCaseVR compared to the other
three cases.

Threats to Validity

When faced with the results of a study, we have to ask ourselves whether they are
correct, without errors or biases, whether they can be attributed to chance, and whether they
are applicable to other contexts. In general, two types of study validity are defined: internal
validity and external validity. Internal validity assesses the degree to which the results
obtained in a particular study are correct. It determines whether the observed results can
be attributed to the new proposal evaluated. There are two main errors that could threaten
the internal validity of a study. These are biases (also called systematic errors) and random
errors. External validity (or generalization) assesses the degree to which conclusions drawn
from a study can be extrapolated or generalized beyond the cases studied. It depends on
the size and characteristics of the cases and the context in which it is to be applied.

Systematic biases can lead to an overestimation or underestimation of the true effect
of a proposal under study. In our evaluation, the way we performed measurements might
have introduced a calculation bias when determining the duration of an activity. Then, in
our case, a major concern involves the calculation of times associated with the activities
of the big data process (Table 4). Time was defined for the four cases, and it can include
variations, depending on the domains or contexts. Furthermore, the definition of the
seventeen activities has been specially formulated only for the developed cases, and it
could not be applicable in a similar way to other domains. Thus, our validation has a strong
dependence on the tasks/times defined.

Other errors might come from collecting information differently, depending on the
stakeholder’s role (i.e., data scientist, software engineer, or domain expert), including
their profiles, expertise, and domain knowledge. In our case, information was collected
and processed by following an agreed-upon conceptualization of terms; however, we
are aware that a more formal procedure is needed to encourage generalization to inter-
and intra-domain applications, in which a multiplicity of actors can bring also multiple
interpretations. Therefore, in part, these biases can be avoided with good protocols that
comprehensively define what information should be recorded and how, including all
activities of the big data process, and applying them exactly the same for all participants.

A different but related thread involves the selection of participants during run-
ning/evaluating the cases. Obviously, participants’ knowledge can introduce biases due to
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previous experience. A more extensive evaluation would require further experimentation
involving the application of reuse cases by people other than those who created the original
domain-variety models.

In order to improve the generalizability and reliability of the research findings, future
studies should also include a validation of the reusability in CoVaMaT. Its knowledge base
should provide a set of standard services for each activity (probably related to particular
domains), allowing validation to be comparable within and across domains.

5. Discussion

From our experiences in designing the methodology and its application on domain
and reusable cases, we can draw the following lessons learned:

• Quality is more than performance for big data systems. Nowadays, most research in
the field of BDS quality features is focused on performance, reliability, and other
properties evaluated at the execution time. However, BDSs are software systems that
must be designed and evaluated by considering the other properties as well, including
modularity, reusability, and so on. Traditionally, developing software systems as SPLs
has brought the benefits of reusability to reality through domain and application
engineering. Therefore, treating BDSs as any other software system would afford
similar benefits, at least potentially speaking. We have learned here that this is perhaps
possible. We have adapted the traditional way of developing SPLs to a possible world
for BDS: the world of domain assets and case assets. By conceptually separating what
is relevant as domain features and instantiating them as cases, we might mirror a
traditional SPL development and, consequently, focus BDS design on what is common
and variable. This would provide a way of dealing with modeling reusable assets
from different activities during BDS development, separating concerns and focusing
on what a BDS needs to reuse during each stage of its lifecycle.

• Variability turns into variety, and context is everywhere. Variable and common features
may be managed through variability management techniques, such as datasheets in
OVM notation, now turning the focus into variety. We have redefined variety for BDSs,
including source, content, and process diversity; however, when analyzing any system
domain, usually, we register contextual features as constraints of the model, and BDSs
are not an exception. Traditionally, the same system will behave differently, depending
on its targeted organization, since usually, that system requires adaptation. For BDSs,
context variety, as we defined, is transversal to every activity, and it constrains or drives
the steps of the development process. From identification to reuse, context variety
is immersed in our thoughts when selecting similar cases, discharging other ones,
keeping some features, etc. So, we have learned that traditional variability also applies
to BDSs, and it is a core concept that can be modeled in practice.

• Many stakeholders but one holistic goal: Our methodology should be transferred to
industry, and to do so, understanding its rationale is essential. The development team
groups people with different backgrounds and expertise, which make this team more
valuable indeed. However, now, every participant must understand that he/she is
working under a larger umbrella, which is called “variety identification”. Every time
he/she is doing the work, the mandatory question should be, “Is there anything here
that we can use similarly in the future”? In this way, identifying common and variable
domain assets becomes part of the stakeholder’s daily work, not only a verification
activity conducted every so often over a certain period of time. We have learned that
changing the way of thinking and integrating a variety identification team takes a
while; however, everything becomes easy once the team has “changed its mind”.

• Nothing is possible without support. Successful reuse means classifying and storing
assets for reuse, and this is impossible without a supporting tool. CoVaMaT was
conceived of as such a tool, although its services are quite elementary yet. In spite
of this, we are aware that an efficient and perhaps intelligent repository is the key
to recovering the most appropriate domain assets. In our limited experience with
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CoVaMaT, we have learned that the best tool is always desirable, but an in-progress
prototype might be enough to start showing the benefits of reuse. And this is an
important aspect of reaching stakeholder’s support and commitment. In conclusion,
supporting the variety identification and reuse project is a core element, and it cannot
be reached without a supporting tool; however, not having the best one is not an
excuse for not trying.

• Reuse should not be a silver bullet. We all know that reuse offers many benefits, but we
should be certain that reuse is effective, too. To do so, we must obtain measurements
that are beyond doubt. Identifying candidate assets for reuse is just a first step since
the effort and time invested in reuse might hinder the entire process. For instance, we
might identify a case asset, such as a data analysis process, which seems interesting
for a new case; however, adaptation might require adding different data preparation,
feature selection, etc. So, is this reuse really effective? We have learned that our
methodology and tool need an extension that allows for measuring how effective the
reuse is. And this fact sets the basis for one line of future work, as we summarize in
the next section.

• Thinking of reuse may help in more than one way. Finally, with respect to the case studies,
the new findings mostly depended on our context-based perspective of the frost
analyses, which helped in (1) improving the findings themselves by adding new
possible influencing factors and (2) setting a base for future reuse by structuring
intermediate and final assets as domain-application cases.

6. Conclusions

Reusability is one of the most valuable software qualities for software systems due
to its benefits, including increased efficiency, cost reduction, a faster time to market, etc.
However, unlike other development paradigms, such as service-oriented or component-
based options, of which reuse is a key aspect, in BDSs, it has not been addressed yet. Reuse
mechanisms are only oriented towards the use of existing methodologies, aiming to make
them adaptable to this kind of system. However, the development of BDSs is not trivial, and
it involves several particularities that are not present in other paradigms. Thus, we propose
a new methodology that takes advantage of domain-oriented mechanisms to build domain
assets for reuse. In our methodology, each domain activity of the big data process builds
these assets, which can be reused when developing BDSs (or case applications). Then, the
separation into domain and application phases provides support for development for and
with reuse. We have described the top-down perspective on variety identification through a
case study of frost analysis. The study revealed interesting findings for the domain, as well
as a proof of concept for our proposal.

Clearly, a two-phase development is not enough to ensure reusability. The new
methodology should provide mechanisms to support the construction of reusable software
artifacts. In this line, we proposed the concept of context variety as a key element to
promote flexibility. Commonalities and their variabilities are defined iteratively during the
two phases and instantiated in application development, allowing the creation of one or
more systems.

We have also implemented a supporting tool, called CoVaMaT. Its prototype allows
developers to document and retrieve assets to be used during the development of specific
case applications. However, the current version of the tool needs further development.
Firstly, code-level assets should be stored in repositories managed by the tool so that all
the different assets are reached uniformly. Secondly, a more sophisticated search algorithm
would be nice to improve similarity checking, which is currently just simple checking. And
finally, more services might be added to make a domain-oriented search possible (perhaps
by standardizing the domain vocabulary through the use of domain standards).

On the other hand, as we mentioned in the previous section, we are working on
evaluating successful reuse during the application of our methodology. Thus, we are
elaborating a reuse analysis model, adapted from three previous works [28,29], in which we
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evaluated reuse during the development of software product lines. We will evaluate assets
that can be completely reused (as they were defined), partially reused (with adaptations),
and/or used to detect the need to add new ones. The main idea of the model is to create
reuse scenarios [30] based on the set of predefined operations associated with CoVaMaT.
This reuse analysis model is still in a preliminary stage.
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