

VOLUME XX, 2024 1

Date of publication xxxx 00, 0000, date of current version xxxx 00, 0000.

Digital Object Identifier 10.1109/ACCESS.2022.Doi Number

BAGESS: A software module based on a
genetic algorithm to sequentially order load-
balancing evaluation scenarios over
smartphone-based clusters at the Edge
Virginia Yannibelli1, Matías Hirsch1, Juan Toloza1, Tim A. Majchrzak2, Tor-Morten Grønli3,
Alejandro Zunino1 and Cristian Mateos1
1 ISISTAN (UNICEN-CONICET), Tandil, Buenos Aires, Argentina
2 University of Agder, Kristiansand, Norway
3 Kristiania University College, Oslo, Norway

Corresponding author: Tim A. Majchrzak (e-mail: timam@uia.no).

ABSTRACT Due to the increasing interest in employing smartphones as first-class citizens in high-
performance Edge computing environments, the necessity of software to facilitate the evaluation of load-
balancing strategies for smartphone-based clusters has emerged. Regarding this, to select the best strategy
for a cluster with m smartphones, usually a number of g candidate strategies are evaluated based on a
number of r scenarios that contain these smartphones, which differ in terms of the start battery levels
required for these smartphones. Thus, each of the r scenarios must be prepared before evaluating each of
the g strategies on each ri, so that the smartphones have the required start battery levels pre-configured for
ri, which requires discharging or charging smartphones. This leads to a number of e = r*g scenario
preparation events that must be sequentially developed, considering that the time required to develop each
event depends on the previous event. Thus, the single-objective problem addressed here implies finding out
the sequential order in which the events should be developed, so that the total time required to develop them
is minimized. This problem is modeled as the ATSP (Asymmetric Traveling Salesman Problem), since
defining the sequential order to develop the events is equivalent to defining the sequential order to visit the
cities, and therefore, is an NP-Hard problem. Given the complexity of this problem, the novel software
module BAGESS (Battery Aware Green Edge Scenario Sequencer) is proposed, which uses a genetic
algorithm for defining the sequential order to develop the events. BAGESS’s performance outperforms
those of the methods currently used for the problem, reaching significant savings regarding the time
required to develop the events in the range [12, 85]%.

INDEX TERMS edge computing, smartphone, profiling, benchmarking, evolutionary computing.

I. INTRODUCTION
In the last few years, the use of smartphones has increased
significantly, and continues to increase [6]. Contemporary
smartphone models have high processing power and
memory capacity, and long-lasting rechargeable batteries,
among other valuable features. Due to these reasons, high-
performance Edge computing environments consider
smartphones as valuable computing resources, and promote
the creation and use of smartphone-based clusters to
distribute the execution of the tasks inherent to different
kinds of Edge applications on the smartphones in the

cluster. One example is distributing the tasks from AI
(Artificial Intelligence) applications aimed to identify
objects in images taken in urban environments via neural
network models.

In this context, to distribute the tasks inherent to a given
application on the smartphones that compose the cluster, it
is necessary to use an appropriate load-balancing strategy.
The load-balancing strategies usually decide which tasks of
the application are assigned to each smartphone, so that a
given optimization objective is reached. In this respect,
many load-balancing strategies have been proposed in the

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2024.3469641

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

 Yannibelli et al.: Preparation of Papers for IEEE Access (February 2024)

VOLUME XX, 2024 2

literature for smartphone-based clusters [6], which differ in
several aspects, including the optimization objectives
considered (e.g., to minimize the time required to execute
the tasks), the kind of algorithm utilized to decide the
assignment of the tasks (e.g., heuristic and metaheuristic
algorithms), and the smartphone attributes considered to
decide such assignment (e.g., battery level, and CPU load).

For selecting the best load-balancing strategy for a given
cluster with m smartphones, the performance of a number
of g candidate strategies should be evaluated on a number
of r different scenarios inherent to the cluster. These r
scenarios represent different initial states of the cluster.
Specifically, these scenarios are composed by the m
smartphones in the cluster, but differ in relation to the start
battery levels, which are required for the m smartphones.
Therefore, each of the r scenarios must be prepared before
evaluating each of the g strategies on it. With respect to
this, as detailed in [1], the preparation of a given scenario
involves applying battery charge/discharge actions on the
smartphones in the scenario, in order to reach the start
battery levels required for these smartphones from the
corresponding current battery levels, at the minimal
possible time for the set of m smartphones.

Thus, considering that each one of the r scenarios must
be prepared before evaluating each of the g strategies on it,
this leads to a number of e = r*g scenario preparation
events. Since these e events aim to prepare scenarios
composed by the same m smartphones, these e events must
be sequentially developed one at a time. In addition, when
these e events are sequentially developed, the current
battery levels of the m smartphones in the scenario of each
event are affected by the previous event in the sequential
order. As a consequence of this, the time required for
developing each event depends on the previous event in the
sequential order. Therefore, the problem of defining the
sequential order in which these e events should be
developed, considering that the total time required to
develop them should be minimized, is relevant in the
context of facilitating the evaluation of diverse candidate
load-balancing strategies for smartphone-based clusters.

In connection with the ideas previously mentioned,
different software/hardware tools [5, 6, 7, 8] have been
proposed in the literature for simulating smartphone-based
clusters. These tools allow researchers to simulate the
creation of a cluster composed by smartphones of different
models, and to define the attributes of such smartphones
(e.g., current battery level, CPU load, screen state, and
charge/discharge profiles). Moreover, these tools simulate
the execution of a given load-balancing strategy on a
created smartphone-based cluster, considering the attributes
defined for the smartphones, and also the tasks of a given
application. To complement the tools presented in recent
work [7, 8], a software module was recently proposed [1],
which aims at preparing a given scenario inherent to a
created smartphone-based cluster. This module defines the
battery charge/discharge actions that should be applied on
the smartphones in the scenario, to reach the start battery

levels required for these smartphones in such a scenario,
from the corresponding current battery levels. However, to
the best of our knowledge, the tools proposed so far in the
literature do not contain software aimed to facilitate the
evaluation of a number of candidate load-balancing
strategies on a number of diverse scenarios inherent to a
smartphone-based cluster created.

Thus, again, the problem addressed in this paper implies
defining the sequential order in which a given number of e
scenario preparation events should be developed, in such a
way that the total time required to develop them is
minimized. This problem is modeled here as the well–
known ATSP (Asymmetric Traveling Salesman Problem)
[2]. As the events to be sequentially developed can be
modeled as the cities to be visited, the time required to
develop each of these events can be modeled as the cost of
visiting each of the cities, and thus defining the sequential
order for developing the events is equivalent to defining the
sequential order to visit the cities. By modeling the
addressed problem as the ATSP, the complexity of the
addressed problem is equivalent to the complexity of the
ATSP; ATSP is a NP-Hard problem [2].

A novel software module named BAGESS (Battery
Aware Green Edge Scenario Sequencer) is proposed here,
which uses a single-objective genetic algorithm to
determine the best time-effective sequential order to
develop the e events. We utilize a genetic algorithm
specifically since the addressed problem is modeled as the
ATSP. Genetic algorithms have been shown to be effective
to solve the ATSP, achieving near-optimal solutions, and
sometimes optimal solutions, for medium and large ATSP
instances [2]. Therefore, a genetic algorithm is an
appropriate alternative for the addressed problem.

The main contributions of this paper are:
– A mathematical model for the addressed problem of
determining the sequential order in which a given number
of e scenario preparation events should be developed, so
that the total time required to develop them is minimized.
This model is defined based on the recognized
mathematical model proposed by Dantzig et al. [19] for the
Traveling Salesman Problem (TSP) and then extended for
the ATSP.
– An introduction to the software module BAGESS, which
utilizes a genetic algorithm for defining the sequential order
to develop the given e events. This genetic algorithm has
been designed to: a) explore different feasible sequential
orders for developing the e events one at a time, and b)
identify the sequential order that allows developing these e
events at the minimal possible time.
– An experimental evaluation of the genetic algorithm
utilized by BAGESS. Specifically, the genetic algorithm’s
performance was evaluated on 540 different instances of
the addressed problem, and then was compared with those
of the two methods currently used to determine the
sequential order to develop a given number of e scenario
preparation events. The obtained results indicate that the
algorithm outperforms the two mentioned methods,

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2024.3469641

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

 Yannibelli et al.: Preparation of Papers for IEEE Access (February 2024)

VOLUME XX, 2024 3

achieving significant savings in terms of the total time
required to develop the e events (i.e., savings on [12,
85]%). The significance of these results was validated with
the Mann–Whitney U statistical test [4], with a confidence
level of α = 0.001.
– BAGESS’s source code in Java 1.8, which includes the
genetic algorithm’s code, publicly available for reuse and
adaptation. Moreover, the above-mentioned 540 problem
instances are publicly available for experimentation.

The remainder of the paper is organized as follows. In
Section II, the addressed problem is described in detail, and
then the mathematical model of this problem is presented. In
Section III, the software module BAGESS is presented, and
then the genetic algorithm used by BAGESS is described in
detail, and the computational complexity of this algorithm is
analyzed. In Section IV, the computational experiments that
were developed for evaluating the performance of the genetic
algorithm used by BAGESS are presented, and after that the
results obtained by these experiments are presented and
analyzed in detail. In Section V, the main implications and
limitations of BAGESS are discussed. In Section VI, related
works from literature are reviewed. Finally, in Section VII,
the conclusion of this work and future work are presented.

II. PROBLEM DESCRIPTION: SEQUENCING LOAD-

BALANCING SCENARIOS

A. LOAD-BALANCING SCENARIOS
Suppose that a given number g of load-balancing strategies
are being considered as candidates to distribute the workload
on a cluster of m smartphones. To determine the best of these
strategies for achieving a specific objective on this cluster
(e.g., complete a set of tasks in the minimum time), the load
balancing performance of each strategy j (j = 1, …, g) should
be evaluated on a given number r of different scenarios
inherent to the cluster. Regarding this, each scenario i (i = 1,
…, r) is composed of the m smartphones belonging to the
cluster. In each scenario i, there are predefined target battery
levels for the m smartphones, which are required to evaluate
any strategy j on the scenario i. Besides, in each scenario i,
the m smartphones have the current battery levels associated
with them. To evaluate the load balancing performance of
any strategy j on scenario i, it is necessary to prepare such a
scenario.

The preparation of the scenario involves applying
sequences of battery charge/discharge actions on the m
smartphones in the scenario, to reach the target battery levels
predefined for these m smartphones from the corresponding
current battery levels, at the minimal possible time for the set
of m smartphones [1]. In this respect, the minimal possible
time to reach the target battery levels predefined for the m
smartphones depends on the difference between the current
and target battery levels of these smartphones. Specifically,
the higher the difference between the current and target
battery levels of these m smartphones, the higher the time to
reach the target battery levels predefined for these

smartphones. Once the m smartphones in the scenario have
reached their target battery levels, the scenario is considered
ready (or prepared) to evaluate any of the strategies. For a
detailed description of the scenario preparation problem, and
the most recent approach proposed for it, we refer to [1].

Considering the above-mentioned, each one of the r
scenarios should be prepared before evaluating each of the g
strategies over it. This means that each one of the r scenarios
should be prepared as many times as the number g of
strategies to be evaluated on it. This leads to a number of e =
r * g scenario preparation events. These e events differ in
terms of the scenario i to be prepared (i.e., events differ in
terms of the target and current battery levels considered for
the m smartphones) and/or the strategy j to be evaluated. In
addition, given that these e events aim to prepare scenarios
composed by the same m smartphones, the e events should
be developed sequentially one at a time. In this context, the
sequential order in which the e events are developed is really
important because the development of the k-th event depends
on the development of the (k-1)-th event, considering k = 2,
…, e. Specifically, suppose that the k-th event aims to
prepare the scenario scea in order to evaluate the strategy strc,
whereas the (k-1)-th event aims to prepare the scenario sceb
in order to evaluate the strategy strf, considering scea ≠ sceb
and/or strc ≠ strf. In the k-th event, to prepare the scenario
scea, first it is necessary to determine the current battery level
of each one of the m smartphones, and after that, the scenario
preparation approach proposed in [1] is used to determine the
sequences of battery charge/discharge actions to be applied
on the m smartphones, in order to reach the target battery
levels predefined for these smartphones from the current
battery levels, at the minimal possible time for the set of m
smartphones. Thus, the time required to prepare the scenario
scea is equivalent to the time amount required to apply the
sequences of battery charge/discharge actions indicated by
the mentioned approach on the m smartphones.

In order to determine the current battery level cbls,sce(k) of
each smartphone s (s = 1, …, m) in the scenario scea to be
prepared by the k-th event, it is necessary to consider that
cbls,sce(k) depends on two factors inherent to the (k-1)-th event.
The first factor tbls,sce(k-1) refers to the target battery level
predefined for each smartphone s in the scenario sceb to be
prepared by the (k-1)-th event. This factor means once the
scenario sceb is prepared, the battery level of each
smartphone s is equal to tbls,sce(k-1). The second factor ds,str(k-1)
refers to the battery level variation that each smartphone s
suffers once the strategy strf considered in the (k-1)-th event
is evaluated on the prepared scenario sceb. This factor is
relevant because the scenario sceb is prepared in order to
evaluate the strategy strf over it. The evaluation of strf on sceb
implies that strf will distribute workload on the m
smartphones, and thus, the battery level tbls,sce(k-1) of each of
the m smartphones will be subject to a decrease ds,str(k-1).
Therefore, once strf is evaluated on sceb, the battery level of
each smartphone s will be equal to tbls,sce(k-1) – ds,str(k-1). Then,

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2024.3469641

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

 Yannibelli et al.: Preparation of Papers for IEEE Access (February 2024)

VOLUME XX, 2024 4

given that the k-th event is carried out immediately after that
the (k-1)-th event is finished, the current battery level
cbls,sce(k) of each smartphone s will be equivalent to tbls,sce(k-1)
– ds,str(k-1). It is necessary to mention that the values of the
terms cbls,sce(k), and besides the predefined values of the terms
tbls,sce(k-1), are integer values on the range [0, 100]%. In
addition, the values of the terms ds,str(k-1) are predefined
integer values on the range [0, 100]%.

The sequential order in which the e scenario preparation
events are developed determines the current battery levels
considered by each of these events for the m smartphones to
be prepared, and consequently, impacts the time required by
each of these events to prepare the m smartphones. Having
this in mind, the scenario sequencing problem addressed here
involves defining the sequential order in which the e scenario
preparation events should be developed, in such a way that
the total time required to develop these e events is
minimized.

B. INSTANCE OF THE PROBLEM
Fig. 1 shows an instance of the addressed problem. In this
instance, a number of r = 3 scenarios, which are composed
by the same 3 smartphones, and a number of g = 2 load
balancing strategies, are considered. Then, from these
scenarios and strategies, a number of e = 6 scenario
preparation events are considered, in order to prepare each of
the 3 scenarios before evaluating each one of the 2 strategies
on it.

Fig. 1.a presents the three considered scenarios and details
the target battery level tbls,i predefined for each smartphone s
in each scenario i. Then, Fig. 1.b presents the two strategies
considered, and indicates the battery variation ds,j each
smartphone s can suffer after strategy j is evaluated on the set
of 3 smartphones. Fig. 1.c presents the six events defined
from the three scenarios and the two strategies, indicating the
scenario to be prepared by each event, and the strategy to be
evaluated on the scenario prepared by each event. Finally,
Fig. 1.d details the current battery level cbls,sce(1) to be
considered for each smartphone s in the first event to be
developed. In this sense, it is important to note that the first
event to be developed will be determined after the sequential
order of the e events is determined. This is described below
in detail.

Fig. 2.a shows a feasible sequential order to develop the
six events of Fig. 1.c one at a time. This order indicates that
the first event to be developed is event 3. Then, the events to
be developed in second and third place are events 4 and 5,
respectively. After that, the events to be carried out in fourth
and fifth place are 6 and 1, respectively. Finally, the sixth
event to be developed is event 2.

To develop the six events following the sequential order
given in Fig. 2.a, it is required to define the current battery
level to be considered for each smartphone s in the scenario
of each event, considering the place given to each event in
the sequential order. In the case of the first event in the

sequential order (i.e., event 3), the current battery level
cbls,sce(1) of each smartphone s is a predefined integer value
on the range [0, 100]% (as detailed in Fig. 1.d, with the
purpose of representing the battery level of the smartphone s
at the moment of developing the first event). Unlike this, in
the case of the k-th event in the sequential order, considering
k = 2, …, 6, the current battery level cbls,sce(k) of each
smartphone s is tbls,sce(k-1) – ds,str(k-1), as was previously
described. For example, in the case of the second event (i.e.,
event 4), the current battery level cbl1,sce(2) of the smartphone
1 is calculated as tbl1,sce(1) – d1,str(1). Note that tbl1,sce(1)
represents the target battery level of the smartphone 1 in the
scenario of the first event (i.e., scenario 2), and is 90% (as
detailed in Fig. 1.a). Then, d1,str(1) represents the decrease in
the battery level tbl1,sce(1) of smartphone 1 once that the
strategy considered in the first event (i.e., the strategy 1) is
evaluated on the scenario of the first event, and is 10% (as
detailed in Fig. 1.b). Thus, the current battery level cbl1,sce(2)
of the smartphone 1 in the second event is 90% – 10% =
80%. Fig. 2.b presents in detail the current battery level
cbls,sce(k) determined for each smartphone s in the k-th event
of the sequential order, for all k.

Once the current battery levels of the 3 smartphones in the
scenario of each event are defined, the events are developed
following the sequential order given in Fig. 2.a. This means
that, for each event, the scenario inherent to the event is
prepared, according to the scenario preparation approach
proposed in [1]. Specifically, this approach is applied to the
scenario, and indicates the sequences of battery
charge/discharge actions to be applied on the three
smartphones, in order to reach the target battery levels of
these 3 smartphones from the current battery levels. Then,
the sequences of actions indicated by the approach are
applied on the three smartphones in the scenario. Thus, the
time required to prepare the scenario is equivalent to the time
required to apply the mentioned sequences of actions. Fig.
2.c shows the time required to prepare the scenario of each
one of the 6 events, according to the sequences of actions
indicated by the mentioned approach.

It is important to mention that other feasible sequential
orders can be defined to develop these six events. Given that
there are no precedence relationships between the events,
each one of the six events can be developed immediately
after any of the other 5 events. Thus, a number of 6! feasible
sequential orders can be defined to develop the six events.
Fig. 3.a shows other feasible sequential order to develop the
6 events, which is different from the one detailed in Fig. 2.a.
Then, Fig. 3.b details the current battery level cbls,sce(k)
determined for each smartphone s in the scenario of the k-th
event of this order, for all k. Finally, Fig. 3.c presents the
time required to prepare the scenario of each event, according
to the sequences of actions indicated by the previously
mentioned approach. Note that, as was previously explained,
the lower the difference between the current and target
battery levels of the three smartphones in the scenario of an

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2024.3469641

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

 Yannibelli et al.: Preparation of Papers for IEEE Access (February 2024)

VOLUME XX, 2024 5

event, the lower the time required by the sequences of actions
indicated to reach the target battery levels of these
smartphones from the current battery levels, and thus, the
lower the time required to prepare the scenario. For example,
in the case of the scenario of the event 4 (i.e., scenario 2), the
target battery levels tbls,i of the smartphones (i.e., 90%, 96%
and 34% for smartphone 1, 2 and 3, respectively) are closer
to the current battery levels cbls,sce(2) defined for these

smartphones in Fig. 2.b (i.e., 80%, 86% and 17% for
smartphone 1, 2 and 3, respectively) than the current battery
levels cbls,sce(5) defined for these smartphones in Fig. 3.b (i.e.,
22%, 10% and 21% for smartphone 1, 2 and 3, respectively).
For this reason, the time required to prepare the scenario of
the event 4 in Fig. 2.c is much lower than that required to
prepare this scenario in Fig. 3.c.

FIGURE 1. Instance of the addressed scenario sequencing problem.

FIGURE 2. Feasible solution for the problem instance shown in Fig. 1.

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2024.3469641

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

 Yannibelli et al.: Preparation of Papers for IEEE Access (February 2024)

VOLUME XX, 2024 6

FIGURE 3. Another feasible solution for the problem instance shown in Fig. 1.

C. MATHEMATICAL FORMULATION OF THE
PROBLEM

The previously described scenario sequencing problem has
significant similarities with the known ATSP (Asymmetric
Traveling Salesman Problem) [2]. Such similarities are
explained below in detail.

• The e scenario preparation events to be sequentially

developed are considered as equivalent to the e cities to
be sequentially visited in the ATSP.

• Each of the e events can be developed immediately after
any of the other events (i.e., there are no precedence
relationships between events). This is similar to the fact
that each one of the e cities can be visited immediately
after any of the other cities (i.e., a fully connected
network of e cities is considered in ATSP).

• The time required to develop the event h, immediately
after developing event q, is considered as equivalent to
the cost of visiting the city h, immediately after visiting
the city q (h, q {1, …, e} and h ≠ q).

• The sequential order to be defined for developing the e
events, which includes each event only once, is
considered as equivalent to the sequential order to be
defined for visiting the e cities, which includes each city
only once. However, these sequential orders have the
following difference: In the sequential order for visiting
the e cities, it is considered that once the e-th city is
visited, it is necessary to go back to the first visited city.
Unlike this, in the sequential order for developing the e
events, once developed the e-th event indicated in this
order, no other event must be developed.

• The total time required to develop the e events,
according to a sequential order given for these e events,
is considered as equivalent to the total cost of visiting
the e cities, according to a sequential order given for
these e cities. Nevertheless, to calculate the total time
required for developing the e events, it is considered the
time to develop the first event indicated in the given

order, and then the time required to develop the k-th
event in the given order immediately after of developing
the (k-1)-th event, for all k (k = 2, …, e). In contrast to
this, to calculate the total cost of visiting the e cities, it is
considered the cost of visiting the k-th city indicated in
the giver order immediately after visiting the (k-1)-th
city, for all k, and also the cost of going back to the first
visited city once visited the e-th city in the order.

• Determining the sequential order in which the e events
should be developed, so that the total time required for
developing these events is minimized. This is considered
equivalent to determining the sequential order in which
the e cities should be visited, in such a way that the total
cost of visiting these cities is minimized.

Therefore, the mathematical formulation of the scenario
sequencing problem is defined based on the formulation
proposed by Dantzig et al. [19] for the TSP and then
extended for the ATSP, and is presented below.

qh;u;Ezx*ttmin z
Eh Eq

hqhqz ≠=∈⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
+∑∑

∈ ∈

1 (1)

subject to:

10 =≠∈=∑
∈

q
Eh

hq u;hq;Eqx (2)

eu;hq;Eqx q
Eh

hq ≤≤≠∈=∑
∈

21 (3)

111 −≤≤≠∈=∑
∈

eu;qh;Ehx h
Eq

hq (4)

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2024.3469641

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

 Yannibelli et al.: Preparation of Papers for IEEE Access (February 2024)

VOLUME XX, 2024 7

eu;qh;Ehx h
Eq

hq =≠∈=∑
∈

0 (5)

221 −≤≤⊂≠−≤∑∑
∈ ∈

eS;ES;hqSx
Sh Sq

hq (6)

In this mathematical formulation, E is the set of e events to
be sequentially ordered, E = {1,…,e}.Then, tz is the time
required to develop the event z, when z is the first event in
the sequential order, and thus the development of z does not
depend on a previous event, and thq is the time required to
develop the event q, when q is immediately preceded by the
event h in the sequential order, and so the development of q
depends on the development of h. Recall that, as described in
Sections II.A and II.B, the time required to develop any of
the e events refers to the amount of time required to prepare
the scenario inherent to the event (i.e., to apply the sequences
of battery charge/discharge actions indicated by the scenario
preparation approach [1] on the m smartphones of the
scenario inherent to the event).

This mathematical formulation considers binary decision
variables xhq and integer decision variables uz. In this respect,
the variables xhq indicate if the event q is directly preceded by
the event h in the sequential order (xhq = 1) or not (xhq = 0).
Besides, the variables uz indicate the position of the event z in
the sequential order, considering uz = 1,…, e.

Moreover, this formulation has one objective function that
is defined by Eq. (1). This function aims to minimize the
total time required to sequentially develop the e events one at
a time, and is subject to the constraints defined by Eq. (2)-
(6). In this respect, the constraints defined by Eq. (2)-(5)
guarantee that each of the e events is included exactly once in
the sequential order. This is guaranteed if each of the events
in the positions [2, e] of the sequential order has exactly one
immediate predecessor event (Eq. (3)), and each of the events
in the positions [1, e-1] of the sequential order has exactly
one immediate successor event (Eq. (4)). Besides, the event
in the position 1 of the sequential order must not be preceded
by other event (Eq. (2)), and the event in the position e of the
sequential order must not be succeeded by other event (Eq.
(5)). Finally, the constraints defined by Eq. (6) guarantee a
single sequential order that includes the e events, preventing
partial sequential orders that include a subset of the e events.
These constraints are the well-known sub-tour elimination
constraints of Dantzig et al. [19].

The presented mathematical formulation of the addressed
scenario sequencing problem is based on the mathematical
formulation proposed by Dantzig et al. [19] for the TSP and
then extended for the ATSP, but differs from the latter in the
following aspects. Firstly, in addition to considering the
variables xhq of the formulation by Dantzig et al., the
variables uz are considered. Secondly, to define the objective
function (Eq. (1)), the term tz and the variables uz were
included in the objective function of the formulation by

Dantzig et al. Finally, since it is necessary to guarantee that
the first event in the sequential order is not preceded by other
event, and the e-th event in the sequential order is not
succeeded by other event, all the constraints of the
formulation by Dantzig et al. (excepting the sub-tour
elimination constraints) were adapted by including the
variables uz, which resulted in the constraints defined by Eq.
(3) and the constraints defined by Eq. (4). Besides, the
constraints defined by Eq. (2) and the constraints defined by
Eq. (5) were added to the formulation.

D. COMPLEXITY OF THE PROBLEM
Due to the similarities of the addressed scenario sequencing
problem with the ATSP, it is possible to claim that the
complexity of the scenario sequencing problem is equal to
the complexity of the ATSP. In this respect, the ATSP is
known to be an NP-Hard problem [2].

Given the complexity of the ATSP, during the last two
decades, different kinds of algorithms have been proposed in
the literature for solving this problem, including exact and
meta-heuristic algorithms. In this sense, the exact algorithms
(e.g., branching and shearing, and dynamic programming)
guarantee optimal solutions for the ATSP instances.
However, the runtime of these algorithms grows
exponentially with the number of cities to be visited, and
therefore are usually considered for solving only small ATSP
instances [20]. On the other hand, the meta-heuristic
algorithms (e.g., tabu search algorithms, simulated annealing
algorithms, genetic algorithms, and swarm intelligence
algorithms) are aimed to obtain high-quality solutions (not
necessarily the optimal solutions) for the ATSP instances, in
a reasonable runtime. Because of this reason, these
algorithms are generally considered by the research
community and practitioners to solve medium and large
ATSP instances [20].

With regard to the mentioned meta-heuristic algorithms,
genetic algorithms proposed in the last years for solving the
ATSP have reached near-optimal solutions, and sometimes
optimal solutions, for medium and large ATSP instances in a
reasonable runtime [2]. Besides, unlike the other meta-
heuristic algorithms, these genetic algorithms propose a very
natural and simple encoding for the ATSP solutions (i.e.,
solutions are encoded as permutations of the e cities to be
visited), and also propose search operators (i.e., crossover
and mutation operators feasible for permutations of the e
cities) that can be easily implemented, require a very low
runtime (i.e., the computing time complexity of these
operators is O(e)), and allow an effective exploration and
exploitation of the solution space inherent to the ATSP
instances..

Considering all the above-mentioned, a genetic algorithm
is proposed in the next section for the addressed scenario
sequencing problem (Section III), with the aim of achieving
high-quality solutions in an acceptable runtime, and thereby
outperforming the solutions that are provided by the two

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2024.3469641

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

 Yannibelli et al.: Preparation of Papers for IEEE Access (February 2024)

VOLUME XX, 2024 8

methods currently utilized for the addressed problem
(Section IV.C).

III. BAGESS
To address the previously described scenario sequencing
problem, we have developed a novel software module called
BAGESS (Battery Aware Green Edge Scenario Sequencer).
This module uses a genetic algorithm designed to determine
the best sequential order in which a given number of e
scenario preparation events should be developed. We
describe in detail below the input data of this module, and
then the general behavior and the main components of the
mentioned genetic algorithm that is considered as the core of
BAGESS.

A. INPUT DATA
As input data, BAGESS receives a given number of r
scenarios, which are composed by the same m smartphones.
Each scenario i contains a predefined target battery level tbls,i
for each smartphone s, where this level is an integer value on
the range [0, 100]%. Moreover, each of the m smartphones
has associated real timestamped battery charge/discharge
profiles. These profiles provide the time (in milliseconds)
required to charge/discharge the battery of the smartphone
from a given level to another given level.

Besides, BAGESS receives a given number of g strategies
to be evaluated on each scenario i. For each strategy j, the
estimated battery decrease ds,j that can be suffered by each
smartphone s once the strategy j is evaluated on the set of m
smartphones is given, where this decrease is an integer value
on the range [0, 100]%.

Finally, BAGESS receives a given number of e = r * g
scenario preparation events. Each of these e events includes
one scenario from the given r scenarios and one strategy
from the given g strategies. Besides, these e events differ
regarding the scenario and/or the strategy included. These e
events are predefined in this way since each one of the r
scenarios should be prepared before evaluating each one of
the g strategies over it.

It is necessary to note that in each scenario i received by
BAGESS as input data, the current battery level cbls,i of each
smartphone s is unknown. This is due to, as detailed in
Section II, the current battery level of each smartphone s in
the scenario inherent to each event is calculated once the
sequential order of the events is determined. In this respect,
BAGESS only receives the current battery level to be
considered for each smartphone s in the first event of the
sequential order.

B. GENETIC ALGORITHM
After BAGESS receives the input data, it applies the genetic
algorithm. This algorithm has been specially designed to
explore different feasible sequential orders for developing the
given e events one at a time, with the aim of finding the

sequential order that allows developing these e events at the
minimal possible time.

1) GENERAL BEHAVIOR
This genetic algorithm (see Algorithm 1) follows an iterative
behavior, and starts by generating an initial population with a
number of p feasible encoded solutions. Each one of these
encoded solutions represents a feasible sequential order to
develop the given e events one at a time. Then, the algorithm
evaluates each of these encoded solutions by a fitness
evaluation process, regarding the considered optimization
objective: minimizing the time required to sequentially
develop the e events one at a time.

In each one of the iterations, the algorithm applies a parent
selection process on the current population, with the aim of
defining which solutions will make up the mating pool, and
thus, will be used to create new encoded solutions.
Specifically, the algorithm utilizes the parent selection
process tournament selection [3], under a tournament size k,
for encouraging the selection of varied high–fitness solutions
with respect of the sequential order indicated to develop the e
events. Then, the algorithm organizes the solutions in the
mating pool into pairs, and applies a crossover process on
each pair of solutions, under a probability Pc, for creating a
pool of new solutions. In this respect, the crossover process
applied by the algorithm is feasible for the used solution
encoding, and creates new solutions by combining the
sequential orders indicated in the parent solutions to develop
the e events. Then, the algorithm applies a mutation process
on each new created solution, under a probability Pm, to
introduce diversity in the pool of new created solutions. In
this sense, the mutation process applied by the algorithm is
feasible for the solution encoding utilized, and modifies the
sequential order indicated to develop the e events.
Subsequently, the algorithm evaluates each new created
solution, by the fitness evaluation process. After that, the
algorithm applies a survival selection process on the current
population and the pool of new created solutions, to
determine which solutions will make up the population for
the subsequent iteration. Specifically, the algorithm uses the
survival selection process steady-state selection [3], under a
replacement percentage c, with the aim of maintaining the
best encoded solutions generated until the current iteration.

The algorithm iterates until a given number of I iterations
is reached. After this stop condition is achieved, the
algorithm provides BAGESS the best solution of the last
population, as the solution obtained to sequentially order the
e events to be developed.

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2024.3469641

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

 Yannibelli et al.: Preparation of Papers for IEEE Access (February 2024)

VOLUME XX, 2024 9

Algorithm 1 Pseudocode of the genetic algorithm
Input: e: events to be ordered sequentially
 I: the maximum number of iterations
 p: number of solutions in the population
 k: tournament size (tournament selection)
 Pc: crossover probability
 Pm: mutation probability
 c: replacement percentage (steady-state selection)
Output: solution (sequential order of the e events)
 1: pop = generate_initial_population(p, e);
 2: fitness_evaluation(pop);
 3: i = 1 (record the number of iterations);
 4: while i <= I do
 5: mating_pool = tournament_selection(pop, k);
 6: offspring = crossover(mating_pool, Pc);
 7: mutation(offspring, Pm);
 8: fitness_evaluation(offspring);
 9: pop = steady_state_selection(pop, offspring, c);
10: i = i + 1;
11: end while
12: solution = best_solution(pop);
13: return solution;

2) SOLUTION ENCODING
Each one of the solutions in the population of this algorithm
is represented as an e-tuple <o1, o2, …, oe>, where e is the
number of events to be sequentially developed. Each of the
terms oh (h=1,…, e) represents a different event from the e
events. Thus, each solution includes the e events once (i.e.,
each solution is a permutation of the e events), and represents
a feasible sequential order to develop the e events one at a
time.

To generate each one of the p solutions for the initial
population of the algorithm, a random-based process is
applied. This process begins from an empty e-tuple, and then
develops a number of e iterations. In each iteration h
(h=1,…,e), the process considers the events that have not
been included in the e-tuple yet, and randomly selects one of
these events. The selected event is placed in position h of the
e-tuple, and so is considered as the h-th event in the
sequential order represented by this e-tuple. Then, the current
battery level cbls,sce(h) of each smartphone s in the scenario
corresponding to this h-th event is calculated as detailed in
Section II. In this way, the random-based process defines the
event to be placed in each position h of the e-tuple, and
consequently, the sequential order indicated by the e-tuple to
develop the e events one at a time.

The solution presented in Fig. 2.a corresponds to a feasible
encoded solution for the problem instance shown in Fig. 1. In
this case, the encoded solution is represented as a 6-tuple,
since the number e of events is equal to six. Each position h
of this 6-tuple contains a different event from the 6 events,
and Fig. 2.b presents the current battery level cbls,sce(h)
defined for each smartphone s in the scenario of the event
placed in each position h of this 6-tuple. Then, this 6-tuple

indicates a feasible sequential order for developing the six
events one at a time.

3) FITNESS EVALUATION PROCESS
This process is used with the aim of evaluating each one of
the encoded solutions in the population of the algorithm
regarding the considered optimization objective. In this case,
the optimization objective is minimizing the time required to
sequentially develop the e events one at a time, as described
in Section II. Thus, for evaluating each one of the encoded
solutions according to this objective, the process follows the
behavior that is described below.

Considering a given encoded solution <o1, o2, …, oe>,
where each oh represents a different event from the e events,
the process estimates the time required to sequentially
develop the e events one at a time, following the sequential
order indicated by this solution. To do this, the process
develops a number of e iterations. In each iteration h, the
process considers the event oh (including the current battery
level cbls,sce(h) defined for each smartphone s in the scenario
inherent to this event), and estimates the time required to
develop the event oh. Recall that this time refers to the time
required to prepare the scenario inherent to the event oh.. To
estimate this time, the process applies the scenario
preparation approach proposed in [1] on the scenario inherent
to the event oh. This approach considers the current and
target battery levels of the m smartphones in the mentioned
scenario, and determines the sequences of battery
charge/discharge actions that should be applied on the m
smartphones, to reach the target battery levels of these m
smartphones from the corresponding current battery levels, at
the minimal possible time for the set of m smartphones.
Then, this approach provides the process: a) the sequences of
battery charge/discharge actions that should be applied on the
m smartphones in the scenario inherent to oh, and b) the time
estimated to apply these sequences of actions, which defines
the time estimated to prepare the scenario inherent to oh.

Once the e iterations are complete, the process adds the
estimated time for the e events, and thus obtains the
estimated time to sequentially develop the e events one at a
time, following the order indicated by the solution. Finally,
the process assigns this estimated time as the fitness value to
the encoded solution. By applying this process, the lower the
time estimated for a solution, the better the solution regarding
the considered optimization objective, and so the lower (i.e.,
better) the fitness value assigned to this solution.

Note that Fig. 2.c considers the event placed in each
position h (h=1,…,6) of the solution presented in Fig. 2.a,
and then details the time required to develop the event placed
in each position h, as estimated by the scenario preparation
approach proposed in [1]. Finally, Fig. 2.c details the time
(253.09 minutes) required to sequentially develop the six
events one at a time, following the order indicated by the
solution. This time has been obtained by adding the time

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2024.3469641

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

 Yannibelli et al.: Preparation of Papers for IEEE Access (February 2024)

VOLUME XX, 2024 10

estimated for the six events, which is the fitness value
assigned to the mentioned solution.

4) CROSSOVER PROCESS
The genetic algorithm utilizes a crossover process for
creating a pool of new encoded solutions from the encoded
solutions that make up the mating pool. Regarding the
mating pool, the genetic algorithm applies a known parent
selection process named tournament selection [3], to
determine which encoded solutions from the current
population will make up the mating pool. Then, the genetic
algorithm organizes the encoded solutions in the mating pool
into pairs, and applies the crossover process on each pair of
encoded solutions, under a probability Pc, to create new
encoded solutions. In this sense, we designed a feasible
crossover process for the solution encoding detailed in
Section III.B.2. Below, the behavior of this crossover process
is described in detail.

Considering two given encoded solutions named p1 and
p2, the crossover process creates two new encoded solutions
named o1 and o2. To achieve this, the process follows two
stages. In the first stage, the process applies a known
crossover operator named LOX (Linear Order Crossover
operator) [3] on p1 and p2. The operator LOX is applied here
because of this operator has been satisfactorily applied in the
literature to develop the crossover of solutions encoded as
permutations of n cities for the TSP [3]. To apply LOX on p1
and p2, the process develops the next steps. First, the process
randomly selects two positions c1 and c2 from the e positions
of the solution p1 (c1, c2 {1,…, e} and c1 < c2). After that,
to generate the new encoded solution o1 (o2), the process
copies the events placed in positions [c1, c2] of p1 (p2) to the
positions [c1, c2] of the solution o1 (o2), in the same order.
Finally, the process considers the events that have not been
included in the solution o1 (o2) yet, and places these events
in the empty positions of the solution o1 (o2), following the
order in which these events appear in p2 (p1). In the second

stage, the process goes through the e positions of the solution
o1 (o2). For each position h of o1 (o2), the process considers
the event placed in this position, and then calculates the
current battery level cbls,sce(h) of each smartphone s in the
scenario inherent to this event, as detailed in Section II. Once
the second stage is complete, the crossover process provides
the new encoded solutions o1 and o2 as result. Each of these
solutions represents a feasible sequential order to develop the
e events one at a time.

Fig. 4 shows in detail an example of the crossover process.
In this example, the crossover process is applied on the
encoded solutions p1 and p2, and then provides the encoded
solutions o1 and o2. In this respect, the solutions p1 and p2
correspond to the solutions presented in Fig 2 and Fig. 3,
respectively, for the problem instance detailed in Fig. 1.
Then, the positions c1 and c2 randomly selected by the
process are equal to 3 and 4, respectively. Thus, to create o1,
the events placed in positions [3, 4] of p1 (i.e., the events 5
and 6) are copied to the positions [3, 4] of o1, in the same
order. After that, the remaining events (i.e., the events 1, 2, 3
and 4) are copied in the empty positions of o1 (i.e., the
positions 1, 2, 5 and 6), following the relative order in which
these events appear in p2 (i.e., the relative order is 1, 3, 2 and
4). Similarly, to create o2, the events placed in positions [3,
4] of p2 (i.e., the events 5 and 2) are copied to the positions
[3, 4] of o2, in the same order. Subsequently, the remaining
events (i.e., the events 1, 3, 4 and 6) are copied in the empty
positions of o2 (i.e., the positions 1, 2, 5, and 6), following
the relative order in which these events appear in p1 (i.e., the
relative order is 3, 4, 6 and 1). Finally, for each position h (h
= 1,…, 6) of o1 (o2), the event placed in this position is
considered, and the current battery level cbls,sce(h) of each of
the 3 smartphones (s = 1,…,3) in the scenario inherent to this
event is calculated, as detailed in Section II, and considering
the values tbls,sce(h-1) and ds,str(h-1) detailed in Fig. 1.

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2024.3469641

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

 Yannibelli et al.: Preparation of Papers for IEEE Access (February 2024)

VOLUME XX, 2024 11

FIGURE 4. Example of the crossover process applied on encoded solutions for the problem instance shown in Fig. 1.

5) MUTATION PROCESS
The genetic algorithm applies a mutation process on each
encoded solution provided by the crossover process, under a
probability Pm, with the aim of incorporating diversity into
the pool of newly created encoded solutions, and
consequently, preserving the diversity of the population
during the search process developed by the algorithm. In this
respect, we designed a feasible mutation process for the
solution encoding detailed in Section III.B.2.

Given an encoded solution p1, the mutation process
provides a new encoded solution o1. To do that, the mutation
process comprises two stages. In the first stage, the process
applies a known mutation operator named IM (Inversion
Mutation operator) [3] on p1. The operator IM is utilized
here since the sequential application of the operators LOX
and IM has been successfully evaluated in the literature for
exploring solutions encoded as permutations of n cities for
TSP [3]. To apply IM on p1, the process performs the
following steps. First, the process randomly chooses two
positions c1 and c2 from the e positions of the solution p1
(c1, c2 {1,…, e} and c1 < c2). Then, to generate the new
encoded solution o1, the process copies the events placed in
positions [c1, c2] of p1 to the positions [c1, c2] of the
solution o1, in reverse order. To do this, the process develops
n iterations (n = c2 – c1 + 1). In each iteration t (t = 0,…, n-
1), the process copies the event placed in position (c1 + t) of
p1 to the position (c2 - t) of the solution o1. Finally, the
process considers the events that have not been included in
the solution o1 yet, and then copies these events to the
solution o1, in the same positions that these events have in

p1. In the second stage, the process goes through the e
positions of the solution o1. For each position h of o1, the
process considers the event placed in this position, and then
calculates the current battery level cbls,sce(h) of each
smartphone s in the scenario inherent to this event, as
detailed in Section II. After the second stage is finished, the
mutation process supplies the new encoded solution o1 as the
result. This new solution represents a feasible sequential
order to develop the e events one at a time.

Fig. 5 shows an example of the mutation process. In this
example, the process is applied on the encoded solution p1,
and provides the encoded solution o1. Regarding this, the
solution p1 corresponds to the solution presented in Fig. 2 for
the problem instance detailed in Fig. 1. Then, the positions c1
and c2 randomly selected by the process are equal to 2 and 4,
respectively. Therefore, to create the solution o1, the events
placed in positions [2, 4] of p1 (i.e., the events 4, 5 and 6) are
copied to the positions [2, 4] of o1 in the reverse order (i.e.,
the reverse order is 6, 5 and 4). After that, the remaining
events (i.e., the events 1, 2 and 3) are copied to the solution
o1, in the same positions that these events have in p1. In this
sense, the positions of the events 1, 2 and 3 in the solution p1
are 5, 6 and 1, respectively. Thus, the events 1, 2 and 3 are
copied to the positions 5, 6 and 1 of the solution o1. Finally,
for each position h (h=1,…,6) of the solution o1, the event
placed in this position is considered, and then the current
battery level cbls,sce(h) of each one of the 3 smartphones (s =
1,…,3) in the scenario inherent to this event is calculated, as
detailed in Section II, and taking into account the values
tbls,sce(h-1) and ds,str(h-1) detailed in Figure 1.

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2024.3469641

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

 Yannibelli et al.: Preparation of Papers for IEEE Access (February 2024)

VOLUME XX, 2024 12

FIGURE 5. Example of the mutation process applied on an encoded solution for the problem instance shown in Fig. 1.

C. COMPLEXITY OF THE GENETIC ALGORITHM
We analyze below the computing time complexity, and also
the spatial complexity, of the proposed genetic algorithm.

1) COMPUTING TIME COMPLEXITY
As detailed in Algorithm 1, the genetic algorithm starts by
applying sequentially the two processes indicated in lines 1-
2. Then, the algorithm develops a number of I iterations, as
indicated in line 4. In each of these iterations, the algorithm
applies sequentially the five processes indicated in lines 5-9.
Finally, the algorithm applies the process indicated in line 12.
Thus, to determine the computing time complexity of the
algorithm, it is necessary first to determine the computing
time complexity of each one of the processes applied by this
algorithm, which is detailed below.

Generate initial population: This process creates p encoded
solutions that are recorded in pop. To create each one of
these solutions, the process iterates on the e positions of an
empty e-tuple. For each position h, the process decides the
event to be placed in the position, and after that it calculates
the current battery level cbls,sce(h) of each of the m
smartphones in the scenario of this event. Thus, the
computing time complexity of this process is O(p*e*m).

Fitness evaluation: This process calculates the fitness value
of each one of the p encoded solutions in pop. To calculate
the fitness value of each solution, the process iterates on the e
positions of the solution. For each of these e positions, the
process considers the event located in this position, and then
estimates the time required to develop this event, by applying
the scenario preparation approach proposed in [1] on the
scenario inherent to this event. As detailed in Section 3.B.II,
this approach considers the m smartphones in the scenario,
and the current and target battery levels of each smartphone,
to determine the sequence of battery charge/discharge actions
that should be applied on each smartphone. It is necessary to
mention that the computing time complexity of this approach
is as detailed in Eq. (7), where I’ refers to the number of

iterations developed by the approach (i.e., 2000), and p’ is
the number of solutions in the population used by the
approach (i.e., 100). In this respect, given that each of these
p’ solutions encodes a possible sequence of actions for each
smartphone, the term a refers to the total number of actions
encoded in each solution p’, and is defined as detailed in Eq.
(8), where the term ⎪cbl(s) – tbl(s)⎪ refers to the number of
actions in the sequence encoded for the smartphone s.
Considering all the previously mentioned, the computing
time complexity of the fitness evaluation process is as
detailed in Eq. (9).

()aʹ*pʹ*IO (7)

∑
=

−=
m

s

)s(tbl)s(cbla
1

 (8)

()aʹ*pʹ*I*e*pO (9)

Tournament selection: This process selects p solutions from
pop to make up the mating pool. To select each one of these
p solutions, the process randomly chooses k solutions from
pop, and after that iterates on these k solutions, in order to
choose the solution with the best fitness value. Thus, the
computing time complexity of this process is O(p*k).

Crossover: This process is applied on each of the p/2 pairs of
encoded solutions in the mating pool, under a probability Pc.
Thus, a number of (p/2)*Pc pairs of encoded solutions are
crossed, and 2 new encoded solutions are obtained from each
pair. As a result, a number of (p/2)*Pc*2 = p*Pc new
solutions are created by applying this process. To create each
of these new solutions from a given pair of solutions, the
process follows two stages. In the first stage, the process
applies the operator LOX on this pair of solutions. This
operator iterates on the e positions of the solutions in the pair,
to determine the event to be placed in each of the e positions
of the new solution. In the second stage, the process iterates
on the e positions of the new solution. For each position h,

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2024.3469641

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

 Yannibelli et al.: Preparation of Papers for IEEE Access (February 2024)

VOLUME XX, 2024 13

the process considers the event placed in this position, and
then calculates the current battery level cbls,sce(h) of each of
the m smartphones in the scenario of this event. Thus, the
computing time complexity of this process is O(p*Pc*e*m).

It is necessary to mention that, as indicated in line 6 of
Algorithm 1, the p*Pc new solutions created by applying the
crossover process are recorded in offspring. In addition, the
p*(1-Pc) solutions in the mating pool that were not crossed
are also recorded in offspring. Thus, offspring contains (p*Pc
+ p*(1-Pc)) = p solutions.

Mutation: This process is applied on each of the p encoded
solutions in offspring, under a probability Pm. Therefore, a
number of p*Pm solutions in offspring are replaced with new
solutions obtained by applying this process. To obtain each
of these new solutions from a given solution, the process
follows two stages. In the first stage, the process applies the
operator IM on the given solution. This operator iterates on
the e positions of this solution, to determine the event to be
placed in each of the e positions of the new solution. In the
second stage, the process iterates on the e positions of the
new solution. For each position h, the process considers the
event placed in this position, and then calculates the current
battery level cbls,sce(h) of each of the m smartphones in the
scenario of this event. Therefore, the computing time
complexity of this mutation process is O(p*Pm*e*m).

Steady-state selection: This process selects p solutions from
pop and offspring, in order to make up the population for the
subsequent iteration. To achieve this, this process starts by
ordering the p solutions in pop, according to the fitness
values of these solutions, via the MergeSort method [21]. It is
necessary to mention that the computing time complexity of
this method is O(p*log(p)). After that, the process orders the
p solutions in offspring, according to the fitness values of
these solutions, via the mentioned method. Finally, the
process considers the replacement percentage c, and replaces
the p*(c/100) worst solutions in pop (i.e., solutions with the
worst fitness values) by the p*(c/100) best solutions in
offspring (i.e., solutions with the best fitness values). Thus,
the computing time complexity of this process is
O(p*log(p)).

Best solution: This process iterates on the p solutions in pop,
in order to choose the solution with the best fitness value.
Thus, the computing time complexity of this process is O(p).

Besides determining the computing time complexity of the
processes applied by the genetic algorithm, it is necessary to
determine the number of times that each of these processes is
applied by this algorithm. In this respect, as detailed in
Algorithm 1, the processes indicated in lines 5-9 are applied
in each one of the I iterations developed by this algorithm.

Thus, considering the previously detailed computing time
complexity of the processes applied by the genetic algorithm,

and also the number of times that each of these processes is
applied by this algorithm, the computing time complexity TC
of this algorithm is as detailed in Eq. (10). By the summation
rule of the Big-Oh notation [21], and given that the 6th term
on the right-side of Eq. (10) is the higher-complexity term,
the computing time complexity TC of this algorithm can be
simplified as detailed in Eq. (11).

()+= m*e*pOTC

()+aʹ*pʹ*I*e*pO

()+k*p*IO

()+m*e*P*p*IO c

()+m*e*P*p*IO m

()+aʹ*pʹ*I*e*p*IO

()()+plog*p*IO

()pO (10)

which translates to:

()aʹ*pʹ*I*e*p*IOTC =

(11)

2) SPATIAL COMPLEXITY
To determine the spatial complexity of the genetic algorithm,
it is necessary to determine the spatial complexity of the data
structures and variables that are created and then allocated by
this algorithm in memory. To do this, because this algorithm
was implemented in Java 1.8, it is required to consider the
typical memory requirements for primitive types (e.g.,
integer and double variables), arrays, objects, and references
to objects, in Java implementations. These typical memory
requirements are considered here as indicated in [22, 31].

Data structures pop, mating_pool, and offspring: Each of
these data structures contains p solutions, and each of these p
solutions contains e events. For this reason, each of these
data structures was implemented as a two-dimensional p-by-e
array of Event objects. Besides, each Event object includes:
a) the identifier of the event, which is an integer variable on
the range [1,…, e], and b) the current battery levels cbls,sce(h)
defined for the m smartphones in the scenario of the event,
which are integer variables on the range [0,…, 100].

In order to define the spatial complexity inherent to each
one of these data structures, it is necessary to consider that
the two-dimensional p-by-e array contains p*e references to
Event objects, and each one of these references uses 8 bytes.
Moreover, each Event object uses 20 bytes plus (1 + m)*4
bytes: 16 bytes of overhead plus 4 bytes of padding plus 4
bytes for each of its (1 + m) integer variables. Therefore, the
spatial complexity of the three data structures (in bytes) is
3*(p*e*(8 + 20 + (1+m)*4)) = 96*p*e + 12*p*e*m.

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2024.3469641

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

 Yannibelli et al.: Preparation of Papers for IEEE Access (February 2024)

VOLUME XX, 2024 14

In the algorithm, each one of the three data structures has
associated an array of p double values, to record the fitness
value of each one of the p solutions in the structure. This
array uses 8 bytes for each of its p double values. Therefore,
the spatial complexity of the fitness value arrays associated
to the three data structures (in bytes) is 3*(p*8) = 24*p.

Data structure solution: This data structure is used to record
the best solution obtained by the genetic algorithm. This
solution contains e events. For this reason, this data structure
was implemented as an array of e Event objects. Thus, the
spatial complexity of this data structure (in bytes) is equal to
e*(8 + 20 + (1+m)*4) = 32*e + 4*e*m.

Data structures inherent to the fitness evaluation process:
Due to the fitness evaluation process of the genetic algorithm
applies the scenario preparation approach proposed in [1], it
is necessary to determine the spatial complexity of the data
structures created and then used by this approach in memory.
In this sense, as detailed in [1], this approach uses three main
data structures. Each of these structures contains p’ solutions
(i.e., 100), and each one of these solutions contains a actions,
considering a as detailed in Eq. (8). Then, each one of these
data structures was implemented as a two-dimensional p’-by-
a array of Action objects. In this respect, each Action object
includes: a) the kind of action (a boolean variable), b) the
initial battery level (an integer variable), c) the end battery
level (an integer variable), d) CPU load (an integer variable),
and e) screen state (a boolean variable).

For defining the spatial complexity of each of these data
structures, it is necessary to note that the two-dimensional p’-
by-a array contains p’*a references to Action objects, and
each of these references uses 8 bytes. In addition, each Action
object utilizes 34 bytes: 16 bytes of overhead plus 4 bytes of
padding plus 4 bytes for each of its 3 integer variables plus 1
byte for one each of its 2 boolean variables. Thus, the spatial
complexity of the three data structures (in bytes) is equal to
3*(p’*a*(8 + 34)) = 126*p’*a. Moreover, each of these data
structures has associated an array of p’ double values, which
allows to record the fitness value of each of the p’ solutions
in the structure. Thus, the spatial complexity of the arrays
associated to the three data structures (in bytes) is 3*(p’*8) =
24*p’.

Therefore, considering the previously mentioned spatial

complexity of the data structures created and then used by the
genetic algorithm, and also the spatial complexity of the data
structures created and then used by the approach proposed in
[1], the spatial complexity SC of this algorithm (in bytes) is
as detailed in Eq. (12).

++= m*e*p*e*p*SC 1296

+p*24

++ m*e*e* 432

+aʹ*p*126

ṕ*24 (12)

IV. COMPUTATIONAL EXPERIMENTS
As mentioned in Section III, BAGESS uses the previously
presented genetic algorithm to determine the sequential order
in which a given number of e scenario preparation events
should be developed, in such a way that the time required to
develop these e events one at a time is minimized. Thus,
computational experiments were developed with the aim of
evaluating the genetic algorithm’s performance on different
instances of the addressed scenario preparation event
sequencing problem.

In Section IV.A, the instance sets used to carry out these
experiments are presented. In Section IV.B, the experimental
setting considered for these experiments is detailed. In
Section IV.C, the two alternative methods for the problem
are described, for comparison purposes. Finally, in Section
IV.D, the results obtained by these experiments are both
presented and analyzed in detail.

A. INSTANCE SETS
In order to utilize different representative and realistic
experimental instances of the addressed problem, 54 sets of
instances of this problem were defined. Each one of these
instance sets contains 10 different instances, where each
instance includes a number of scenario preparation events.
The 54 instance sets differ in terms of the category of their
instances with respect to the five components that are
described below.

Component R: The number r of scenarios considered in
the instance, where r ∈ {10, 15, 20}. Thus, 3 different
categories of instances are considered in respect of the
number of scenarios, namely R10, R15 and R20.

Component G: The number g of load-balancing strategies
taken into account in the instance, where g ∈ {2, 4, 6}.
Therefore, 3 different categories of instances are considered
regarding the number of strategies, namely G2, G4 and G6.

Component M: The number m of smartphones that
compose the r scenarios of the instance. Given that m ∈ {4,
8, 16}, 3 different categories of instances are considered with
respect to the number of smartphones, namely M4, M8 and
M16. It is necessary to mention that each one of the r
scenarios includes target battery levels predetermined for the
m smartphones. Besides, these r scenarios differ in terms of
the target battery levels of the m smartphones.

Component D: The estimated battery percentage
decreases that can be suffered by the m smartphones
composing the scenarios considered in the instance, if the

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2024.3469641

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

 Yannibelli et al.: Preparation of Papers for IEEE Access (February 2024)

VOLUME XX, 2024 15

strategy considered in the instance is evaluated on the set of
m smartphones. These decreases are integer values on the
range [0, 20]%. This value range has been divided into two
disjoint subranges, with the aim of considering two different
categories of instances regarding D. Specifically, this range
has been divided into the next two subranges: [0, 10]% and
(10, 20]%, in order to determine the categories Low D (LD)
and High D (HD) with the same width, respectively.

Component E: The number e = r * g of events considered
in the instance. Given that r ∈ {10, 15, 20}, and g ∈ {2, 4,
6}, the number e ∈ {20, 30, 40, 60, 80, 90, 120}. Therefore,
seven different categories of instances are considered in
relation to the component E.

Tables I, II and III describe in detail the 54 defined
instance sets, regarding the five components above-
mentioned. In these tables, column 1 presents the name of
each instance set, considering that this name is composed by
the category of the instances with respect to the components
R, G, M, and D. Then, columns 2, 3 and 4 indicate the value
of the instances of each set in relation to the components R,
G and M, respectively. After that, column 5 indicates the
value range of the instances of each set in relation to the
component D. Subsequently, column 6 indicates the value of
the instances of each set in relation to the component E. Last,
column 7 details the number of instances that compose each
set.

TABLE I
CHARACTERISTICS OF THE DEFINED INSTANCE SETS WHERE G = 2.

Instance set R G M D E No. of instances

G2_R10_M4_HD 10 2 4 (10, 20] 20 10
G2_R10_M4_LD 10 2 4 [0, 10] 20 10
G2_R10_M8_HD 10 2 8 (10, 20] 20 10
G2_R10_M8_LD 10 2 8 [0, 10] 20 10
G2_R10_M16_HD 10 2 16 (10, 20] 20 10
G2_R10_M16_LD 10 2 16 [0, 10] 20 10
G2_R15_M4_HD 15 2 4 (10, 20] 30 10
G2_R15_M4_LD 15 2 4 [0, 10] 30 10
G2_R15_M8_HD 15 2 8 (10, 20] 30 10
G2_R15_M8_LD 15 2 8 [0, 10] 30 10
G2_R15_M16_HD 15 2 16 (10, 20] 30 10
G2_R15_M16_LD 15 2 16 [0, 10] 30 10
G2_R20_M4_HD 20 2 4 (10, 20] 40 10
G2_R20_M4_LD 20 2 4 [0, 10] 40 10
G2_R20_M8_HD 20 2 8 (10, 20] 40 10
G2_R20_M8_LD 20 2 8 [0, 10] 40 10
G2_R20_M16_HD 20 2 16 (10, 20] 40 10
G2_R20_M16_LD 20 2 16 [0, 10] 40 10

TABLE II
CHARACTERISTICS OF THE DEFINED INSTANCE SETS WHERE G = 4.

Instance set R G M D E No. of instances

G4_R10_M4_HD 10 4 4 (10, 20] 40 10
G4_R10_M4_LD 10 4 4 [0, 10] 40 10
G4_R10_M8_HD 10 4 8 (10, 20] 40 10
G4_R10_M8_LD 10 4 8 [0, 10] 40 10
G4_R10_M16_HD 10 4 16 (10, 20] 40 10
G4_R10_M16_LD 10 4 16 [0, 10] 40 10
G4_R15_M4_HD 15 4 4 (10, 20] 60 10
G4_R15_M4_LD 15 4 4 [0, 10] 60 10
G4_R15_M8_HD 15 4 8 (10, 20] 60 10
G4_R15_M8_LD 15 4 8 [0, 10] 60 10
G4_R15_M16_HD 15 4 16 (10, 20] 60 10
G4_R15_M16_LD 15 4 16 [0, 10] 60 10
G4_R20_M4_HD 20 4 4 (10, 20] 80 10
G4_R20_M4_LD 20 4 4 [0, 10] 80 10
G4_R20_M8_HD 20 4 8 (10, 20] 80 10
G4_R20_M8_LD 20 4 8 [0, 10] 80 10
G4_R20_M16_HD 20 4 16 (10, 20] 80 10
G4_R20_M16_LD 20 4 16 [0, 10] 80 10

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2024.3469641

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

 Yannibelli et al.: Preparation of Papers for IEEE Access (February 2024)

VOLUME XX, 2024 16

TABLE III

CHARACTERISTICS OF THE DEFINED INSTANCE SETS WHERE G = 6.

Instance set R G M D E No. of instances
G6_R10_M4_HD 10 6 4 (10, 20] 60 10
G6_R10_M4_LD 10 6 4 [0, 10] 60 10
G6_R10_M8_HD 10 6 8 (10, 20] 60 10
G6_R10_M8_LD 10 6 8 [0, 10] 60 10
G6_R10_M16_HD 10 6 16 (10, 20] 60 10
G6_R10_M16_LD 10 6 16 [0, 10] 60 10
G6_R15_M4_HD 15 6 4 (10, 20] 90 10
G6_R15_M4_LD 15 6 4 [0, 10] 90 10
G6_R15_M8_HD 15 6 8 (10, 20] 90 10
G6_R15_M8_LD 15 6 8 [0, 10] 90 10
G6_R15_M16_HD 15 6 16 (10, 20] 90 10
G6_R15_M16_LD 15 6 16 [0, 10] 90 10
G6_R20_M4_HD 20 6 4 (10, 20] 120 10
G6_R20_M4_LD 20 6 4 [0, 10] 120 10
G6_R20_M8_HD 20 6 8 (10, 20] 120 10
G6_R20_M8_LD 20 6 8 [0, 10] 120 10
G6_R20_M16_HD 20 6 16 (10, 20] 120 10
G6_R20_M16_LD 20 6 16 [0, 10] 120 10

B. EXPERIMENTAL SETTING
The genetic algorithm was run on each of the 10 instances of
each of the 54 instance sets detailed in Section IV.A. Given
that the genetic algorithms are not deterministic algorithms
[3], this genetic algorithm was run several times on each
instance (i.e., 30 runs), with the aim of achieving reliable
statistical results. For each one of the runs, the solution
reached by the genetic algorithm for the instance was
recorded. The fitness value of this solution (i.e., the time (in
minutes) required to develop the e events considered in the
instance one at a time, according to the sequential order
indicated by the solution) was also recorded. Besides, the
runtime required by the genetic algorithm to obtain this
solution for the instance was recorded.

To develop the runs of the genetic algorithm, the
parameter setting indicated in Table IV was used. It is
necessary to mention that preliminary experiments were
developed in order to select this parameter setting. In such
experiments, diverse parameter settings typically
recommended in the literature on genetic algorithms [3, 9]
were considered, which are detailed in Table V. For each one
of these parameter settings, the genetic algorithm was run
several times (i.e., 30 runs) on each instance, and then the
average fitness value of the 30 solutions achieved for each
instance was calculated. According to these experiments, the
parameter setting indicated in Table IV provided the best
average fitness values for the instances used.

TABLE IV

PARAMETER SETTING OF THE GENETIC ALGORITHM.

Parameter Value
Population size 50
k (Tournament selection) 3
Pc (Crossover) 1.0
Pm (Mutation) 0.1
c (Steady-state selection) 50%
Number of generations or iterations 200

TABLE V
PARAMETER SETTINGS CONSIDERED IN THE PRELIMINARY EXPERIMENTS.

Parameter Considered values

Population size {50, 100}
k (Tournament selection) {3, 4, 5}
Pc (Crossover) {0.7, 0.8, 0.9, 1.0}
Pm (Mutation) {0.05, 0.1}
c (Steady-state selection) {25%, 50%}
Number of generations or iterations {200, 400, 800, 1000}

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2024.3469641

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

 Yannibelli et al.: Preparation of Papers for IEEE Access (February 2024)

VOLUME XX, 2024 17

C. CURRENT METHODS FOR SEQUENCING LOAD-
BALANCING SCENARIOS

To comparatively evaluate the genetic algorithm’s
performance, the two methods currently utilized for
determining the sequential order to develop a given number e
of scenario preparation events one at a time are considered.
In this respect, one of these methods is named Sequential
Order by Scenario (SO-S), and the other method is named
Sequential Order by Load-Balancing Strategy (SO-LBS).
These two methods are described below in detail.

1) SEQUENTIAL ORDER BY SCENARIO (SO-S)
Given a number e = r * g of scenario preparation events, this
method sequentially orders the e events according to the
scenario included in these events. Specifically, the method
considers the number r of scenarios, and then develops a
number r of iterations. In each iteration i (i = 1,…, r), the
method considers the g events that include the scenario i, and
differ in terms of the considered strategy. Then, the method
adds these g events to the end of the sequential order (i.e.,
places these events in the positions [(g * (i - 1)) + 1, …, (g *
(i - 1)) + g] of the sequential order). Once the e events have
been added to the sequential order, the method goes through
the e positions of this sequential order. For each position h (h
= 1,…, e), the method considers the event placed in this
position, and calculates the current battery level cbls,sce(h) of
each smartphone s in the scenario inherent to this event, as
detailed in Section II. Thus, SO-S obtains and provides a
feasible order to develop the e events one at a time.

Fig. 6.a shows the sequential order provided by SO-S to
develop the 6 events detailed in the problem instance shown
in Fig. 1, and then Fig. 6.b indicates the scenario sce(h) of the
event placed in each position h of this order. In this case, the

events that include scenario 1 (i.e, events 1 and 2) have been
placed in positions [1, 2] of the sequential order. After that,
the events that include scenario 2 (i.e, events 3 and 4) have
been placed in positions [3, 4] of the sequential order. Last,
the events that include scenario 3 (i.e, events 5 and 6) have
been placed in positions [5, 6] of the sequential order. Fig.
6.c presents the current battery level cbls,sce(h) defined for each
one of the 3 smartphones (s = 1,…,3) in the scenario sce(h)
of the event placed in each position h of this sequential order.

Regarding the computing time complexity of this method,
it is necessary to note that this method follows two stages. In
the first stage, this method iterates on the r scenarios. For
each scenario, this method iterates on the e events, to identify
the events that include the scenario, and add these events to
the end of the sequential order. Thus, the computing time
complexity of this first stage is O(r*e). In the second stage,
this method iterates on the e events in the sequential order.
For each event, this method calculates the current battery
levels cbls,sce(h) of the m smartphones in the scenario inherent
to the event. Thus, the computing time complexity of this
second stage is equal to O(e*m). Considering the computing
time complexity of the two mentioned stages, and by the
summation rule of the Big-Oh notation [21], the computing
time complexity of this method is max(O(r*e), O(e*m)).

In relation to the spatial complexity of this method, it is
necessary to mention that this method creates and then uses
one data structure to contain the e events in the sequential
order defined for them. This structure was implemented as an
array of e Event objects. Therefore, the spatial complexity of
this method (in bytes) is equal to e*(8 + 20 + (1+m)*4) =
32*e + 4*e*m.

FIGURE 6. Solution provided by the method SO-S for the problem instance shown in Fig. 1.

2) SEQUENTIAL ORDER BY LOAD-BALANCING
STRATEGY (SO-LBS)
Considering a given number e = r * g of scenario preparation
events, this method sequentially orders the e events
according to the strategy considered in these events. In

particular, the method considers the number g of strategies,
and develops a number g of iterations. In each iteration j (j =
1,…, g), the method considers the r events that include the
strategy j, and are different with respect to the considered
scenario. Next, these r events are added to the end of the

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2024.3469641

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

 Yannibelli et al.: Preparation of Papers for IEEE Access (February 2024)

VOLUME XX, 2024 18

sequential order (i.e., these events are placed in the positions
[(r * (j - 1)) + 1,…, (r * (j - 1)) + r] of the sequential order).
After the e events have been incorporated to the sequential
order, the method goes through the e positions of this
sequential order. For each one of the positions h (h = 1,…, e),
the method considers the event placed in this position, and
then calculates the current battery level cbls,sce(h) of each
smartphone s in the scenario inherent to this event, as
detailed in Section II. In this way, this method SO-LBS
obtains and provides a feasible order to develop the e events
one at a time.

Fig. 7.a shows the sequential order provided by SO-LBS
to develop the 6 events detailed in the problem instance
shown in Fig. 1, and next Fig. 7.b indicates the strategy str(h)
considered by the event placed in each position h of this
sequential order. In this sequential order, the events that
consider strategy 1 (i.e, events 1, 3 and 5) have been placed
in positions [1, 3]. Subsequently, the events that consider
strategy 2 (i.e, the events 2, 4 and 6) have been placed in
positions [4, 6]. Fig. 7.c presents the current battery level
cbls,sce(h) defined for each one of the 3 smartphones (s =
1,…,3) in the scenario sce(h) of the event placed in each
position h of this sequential order.

With respect to the computing time complexity of this
method, this method follows two stages. In the first of these
stages, this method iterates on the g strategies. For each
strategy, it iterates on the e events, to identify the events that
include the strategy, and add these events to the end of the
sequential order. Therefore, the computing time complexity
of this first stage is O(g*e). In the second of these stages, this
method iterates on the e events in the sequential order. For
each event, this method calculates the current battery level
cbls,sce(h) of each of the m smartphones in the scenario

inherent to the event. Therefore, the computing time
complexity of this second stage is equal to O(e*m). Taking
into consideration the computing time complexity of the
mentioned stages, and by the summation rule of the Big-Oh
notation [21], it is possible to say that the computing time
complexity of this method is equal to max(O(g*e), O(e*m)).

Regarding the spatial complexity inherent to this method,
it is necessary to consider that this method creates and next
utilizes one data structure for containing the e events in the
sequential order defined for them, and such structure was
implemented as an array of e Event objects. Thus, the spatial
complexity of this method (in bytes) is e*(8 + 20 + (1+m)*4)
= 32*e + 4*e*m.

3) EXPERIMENTAL EVALUATION OF THE METHODS
The previously described methods SO-S and SO-LBS allow
to quickly define a feasible sequential order to develop the e
events one at a time. However, these methods do not
consider the time required to develop the e events one at a
time. Unlike this, the genetic algorithm used by BAGESS
has been specially designed to minimize the time required to
develop the e events one at a time.

The methods SO-S and SO-LBS were applied on each of
the ten instances of each instance set. For each one of the
instances, the solution provided by SO-S, and also the
solution provided by SO-LBS, were recorded. Then, the
fitness values of these solutions were calculated as described
in Section III.B.3, with the aim of comparing these fitness
values with those of the 30 solutions provided by the genetic
algorithm for the same instance.

FIGURE 7. Solution provided by the method SO-LBS for the problem instance shown in Fig. 1.

D. EXPERIMENTAL RESULTS
In this section, we analyze the solutions obtained by the
genetic algorithm, and the methods SO-S and SO-LBS, for
the instance sets presented in Section IV.A. After that, we
analyze the runtime required by the genetic algorithm, and

also the mentioned methods, to provide the solutions for the
instance sets.

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2024.3469641

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

 Yannibelli et al.: Preparation of Papers for IEEE Access (February 2024)

VOLUME XX, 2024 19

1) ANALYSIS OF OBTAINED SOLUTIONS
Tables VI-VIII present the main results obtained by the
computational experiments developed. In these tables,
Column 1 details the name of each instance set used in these
experiments. Then, Columns 2-4 detail the average fitness
value of the solutions obtained by the genetic algorithm, the
method SO-S and the method SO-LBS for the instances of
each set, respectively. Recall that the fitness value of a
solution refers to the time required to develop the e events
considered in the instance one at a time, according to the
sequential order indicated by the solution. Next, Columns 5-7
detail the minimum fitness value of the solutions obtained by
the genetic algorithm, SO-S and SO-LBS for the instances of
each set, respectively. Finally, Columns 8-10 present the
maximum fitness value of the solutions obtained by the
genetic algorithm, SO-S and SO-LBS for the instances of
each set, respectively.

The average fitness value of the solutions obtained by the
genetic algorithm for each one of the instance sets is much
lower than that of the solutions obtained by SO-S, and also
considerably lower than that of the solutions obtained by SO-
LBS. Specifically, for all instance sets (i.e., 54 instance sets),
the difference between the average fitness values reached by
the genetic algorithm and SO-S is in the range of [339, 1334]
minutes. Besides, for the instance sets where G=2, the
difference between the average fitness values reached by the
genetic algorithm and SO-LBS is in the range of [1331,
4545] minutes. Then, for the instances sets where G=4, and
the instances sets where G=6, the difference between the
average fitness values obtained by the genetic algorithm and
SO-LBS is on the range [3241, 11942] minutes, and on the
range of [5380, 19474] minutes, respectively.

These results obtained respecting the average fitness value
are mainly due to the next reasons. For most instance sets
(i.e., 50 of the 54 sets), the maximum fitness value reached
by the genetic algorithm is lower than the minimum fitness
value reached by SO-S, and for all instance sets (i.e., 54
instance sets), the maximum fitness value reached by the
genetic algorithm is lower than the minimum fitness value
reached by SO-LBS. Moreover, for each of the 540 instances
utilized in these experiments, the fitness values of the 30
solutions reached by the genetic algorithm are significantly
lower than the fitness value of the solution provided by SO-S
and the fitness value of the solution provided by SO-LBS.
The statistical significance of these results was validated by
the Mann–Whitney U test [4], considering a confidence level
of α = 0.001.

Based on the previously mentioned results, the solutions
given by the genetic algorithm reduce the time required for
sequentially developing the e events considered in the
instances used. Tables IX-XI detail the average, minimum
and maximum RPD (Relative Percentage Difference) value
of the solutions provided by the genetic algorithm, regarding
the solutions provided by SO-S and SO-LBS, in terms of the
time required to sequentially develop the e events of the

instances. The metric RPD determines the percentage
difference of the time required to sequentially develop the e
events according to oEA (i.e., solution provided by the genetic
algorithm), regarding the time required to sequentially
develop the e events according to oSO-S (i.e., the solution
provided by SO-S) / oSO-LBS (i.e., solution provided by SO-
LBS). This metric is calculated as detailed in Eqs. (13-14),
where the terms T(oEA), T(oSO-S) and T(oSO-LBS) refer to the
fitness value of the solutions oEA, oSO-S and oSO-LBS,
respectively. Note that if the RPD value is a positive value,
this means that oEA provides a saving regarding oSO-S / oSO-LBS,
in terms of the time required to sequentially develop the e
events one at a time.

 100×
−

=
−

−

)o(T
)o(T)o(TRPD

SSO

EASSO (13)

 100×
−

=
−

−

)o(T
)o(T)o(TRPD

LBSSO

EALBSSO (14)

From the results detailed in Tables IX-XI, it can be

mentioned that the solutions given by the genetic algorithm
for the instances of each set provide a significant average
saving (average RPD), in terms of the time (in minutes)
required to sequentially develop the e events one at a time.
Specifically, for all instance sets, the average saving of the
solutions provided by the genetic algorithm regarding the
solutions given by SO-S is on the range [12, 43]%. Besides,
for the instance sets where G = 2, the average saving of the
solutions given by the genetic algorithm in respect of the
solutions given by SO-LBS is in the range [51, 69]%. Then,
for the instance sets where G = 4 or G = 6, the average saving
of the solutions provided by the genetic algorithm regarding
the solutions given by SO-LBS is in the range [66, 85]%.

Moreover, the solutions given by the genetic algorithm for
the instances of each set also provide a very good minimal
saving (minimal RPD). Specifically, for all instance sets, the
minimal saving of the solutions reached by the genetic
algorithm regarding the solutions reached by SO-S is in the
range [8, 37]%. In addition, for the instance sets where G = 2,
the minimal saving of the solutions given by the genetic
algorithm with respect to the solutions given by SO-LBS is
in the range [45, 65]%. Then, for the instance sets where G =
4 or G = 6, the minimal saving of the solutions provided by
the genetic algorithm respecting the solutions given by SO-
LBS is in the range [62, 85]%. These results obtained in
relation to the minimal saving indicate that, for each of the
540 instances utilized in the computational experiments, the
30 solutions reached by the genetic algorithm give a saving
in terms of the time (in minutes) required to sequentially
develop the e events of the instance.

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2024.3469641

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

 Yannibelli et al.: Preparation of Papers for IEEE Access (February 2024)

VOLUME XX, 2024 20

TABLE VI

AVERAGE, MINIMUM AND MAXIMUM TIME REQUIRED FOR SEQUENTIALLY DEVELOPING THE e EVENTS ACCORDING TO THE SOLUTIONS PROVIDED BY THE
GENETIC ALGORITHM (GA), THE METHOD SO-S AND THE METHOD SO-LBS, FOR EACH INSTANCE SET WHERE G = 2.

 Time required to develop the e events (minutes)

Instance set Average Minimum Maximum
 GA SO-S SO-LBS GA SO-S SO-LBS GA SO-S SO-LBS

G2_R10_M4_HD 930.30 1329.65 2261.31 796.03 1102.49 1833.84 **1098.90 1534.53 2612.05
G2_R10_M4_LD 866.46 1435.22 2700.51 755.68 1206.33 2289.56 **1008.46 1699.68 3163.44
G2_R10_M8_HD 1325.82 1717.52 2927.99 1266.61 1627.39 2745.22 **1444.24 1848.01 3139.36
G2_R10_M8_LD 1263.33 1809.38 3415.68 1182.40 1411.95 2562.66 **1332.85 1989.64 3830.77
G2_R10_M16_HD 1702.90 2089.49 3557.81 1645.36 1964.14 3380.16 **1852.48 2217.80 3766.01
G2_R10_M16_LD 1695.96 2167.05 4102.89 1566.73 2042.91 3910.85 **1849.59 2252.59 4266.75
G2_R15_M4_HD 1268.73 2072.13 3525.80 1143.22 1888.53 3058.40 **1451.04 2355.23 4118.53
G2_R15_M4_LD 1195.15 2076.57 3949.93 1043.81 1809.47 3410.70 **1310.15 2392.38 4600.78
G2_R15_M8_HD 1765.82 2551.90 4336.78 1567.10 2075.85 3602.75 **1983.05 2945.04 5047.98
G2_R15_M8_LD 1870.44 2631.78 4990.14 1777.24 2362.28 4574.16 **1991.24 2787.48 5300.03
G2_R15_M16_HD 2454.28 3016.26 5092.13 2294.29 2834.14 4728.41 **2659.66 3195.48 5421.08
G2_R15_M16_LD 2497.60 3241.30 6029.99 2397.73 3157.87 5793.18 **2583.15 3506.28 6405.28
G2_R20_M4_HD 1709.05 2696.33 4527.65 1513.28 2499.71 4174.86 **1863.01 2939.42 5064.79
G2_R20_M4_LD 1569.01 2775.66 5230.19 1209.62 2427.03 4608.40 **1804.25 3091.53 5754.86
G2_R20_M8_HD 2577.52 3368.57 5711.80 2380.10 3000.95 5095.59 **2753.04 3620.62 6081.51
G2_R20_M8_LD 2529.35 3699.94 6941.82 2310.23 3481.21 6551.10 **2784.65 4025.86 7652.56
G2_R20_M16_HD 3312.70 4063.24 6877.36 3170.70 3921.88 6629.93 **3395.38 4228.44 7223.67
G2_R20_M16_LD 3390.14 4249.21 7935.31 3331.07 3946.24 7422.69 **3495.45 4632.10 8581.98
Bold values indicate better average times.
Symbol ** indicates that the maximum time reached by GA is lower than the minimum times reached by SO-S and SO-LBS.

TABLE VII
AVERAGE, MINIMUM AND MAXIMUM TIME REQUIRED FOR SEQUENTIALLY DEVELOPING THE e EVENTS ACCORDING TO THE SOLUTIONS PROVIDED BY THE

GENETIC ALGORITHM (GA), THE METHOD SO-S AND THE METHOD SO-LBS, FOR EACH INSTANCE SET WHERE G = 4.

 Time required to develop the e events (minutes)
Instance set Average Minimum Maximum

 GA SO-S SO-LBS GA SO-S SO-LBS GA SO-S SO-LBS
G4_R10_M4_HD 1335.13 1802.43 4577.00 1131.78 1544.78 3489.43 **1487.28 2133.59 5792.30
G4_R10_M4_LD 1002.63 1521.47 5083.38 761.69 1170.58 3942.30 *1217.25 1879.69 6639.34
G4_R10_M8_HD 1758.28 2119.33 5248.99 1532.11 1748.37 4162.49 *1939.83 2445.27 6168.78
G4_R10_M8_LD 1582.58 2012.54 6727.38 1469.21 1717.36 5566.47 *1731.83 2334.23 7582.57
G4_R10_M16_HD 2251.47 2704.29 7136.86 2143.32 2575.72 6685.55 **2302.95 2894.39 7768.29
G4_R10_M16_LD 1891.84 2348.27 7765.47 1651.49 2258.79 7454.27 **2013.20 2468.19 8203.43
G4_R15_M4_HD 1872.46 2518.63 6582.86 1652.39 2237.48 5699.96 **2134.76 2855.27 7911.61
G4_R15_M4_LD 1485.02 2319.76 7889.95 1257.44 2050.05 7085.94 **1617.95 2629.10 9376.58
G4_R15_M8_HD 2763.21 3538.04 9236.26 2572.64 3374.29 8370.11 **2902.65 3752.57 10326.97
G4_R15_M8_LD 2264.68 2938.40 9716.87 1990.72 2631.39 8371.27 **2475.78 3305.70 11094.18
G4_R15_M16_HD 3389.09 3939.84 10353.63 3304.74 3794.76 9951.33 **3704.15 4139.02 10763.10
G4_R15_M16_LD 2975.24 3560.77 11586.58 2807.28 3383.88 11077.08 **3174.08 3723.57 12381.66
G4_R20_M4_HD 2413.02 3613.63 9990.10 2113.15 3400.56 8946.00 **2858.97 3987.14 10765.49
G4_R20_M4_LD 1986.86 3320.52 11204.89 1848.64 3148.04 10600.76 **2061.31 3470.48 12085.19
G4_R20_M8_HD 3494.24 4574.84 12137.34 3283.86 4203.82 10986.94 **3561.04 4845.18 13128.52
G4_R20_M8_LD 2865.20 3960.11 13243.04 2566.86 3640.93 12281.18 **3245.16 4180.42 14083.94
G4_R20_M16_HD 4397.33 5169.37 13688.41 4209.70 4867.43 12424.00 **4513.92 5377.51 14715.77
G4_R20_M16_LD 3982.95 4799.84 15925.89 3912.36 4611.14 15279.66 **4116.48 4944.71 16890.74
Bold values indicate better average times.
Symbol ** indicates that the maximum time reached by GA is lower than the minimum times reached by SO-S and SO-LBS.
Symbol * indicates that the maximum time achieved by GA is lower than the minimum time reached by SO-LBS.

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2024.3469641

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

 Yannibelli et al.: Preparation of Papers for IEEE Access (February 2024)

VOLUME XX, 2024 21

TABLE VIII

AVERAGE, MINIMUM AND MAXIMUM TIME REQUIRED FOR SEQUENTIALLY DEVELOPING THE e EVENTS ACCORDING TO THE SOLUTIONS PROVIDED BY THE
GENETIC ALGORITHM (GA), THE METHOD SO-S AND THE METHOD SO-LBS, FOR EACH INSTANCE SET WHERE G = 6.

 Time required to develop the e events (minutes)

Instance set Average Minimum Maximum
 GA SO-S SO-LBS GA SO-S SO-LBS GA SO-S SO-LBS

G6_R10_M4_HD 1632.16 2054.47 7012.91 1540.69 1854.34 6470.43 **1777.68 2253.19 7762.28
G6_R10_M4_LD 1175.89 1700.56 8075.41 1100.02 1511.84 6186.76 **1251.04 1957.49 9527.43
G6_R10_M8_HD 2287.03 2723.32 8575.38 1892.85 2350.07 7892.42 *2563.28 2997.96 9355.02
G6_R10_M8_LD 1750.18 2290.02 9903.45 1580.99 2078.08 8826.13 **1954.37 2600.26 11933.06
G6_R10_M16_HD 2846.20 3247.44 10343.77 2602.81 2980.38 9724.17 *3032.71 3441.78 11510.40
G6_R10_M16_LD 2239.64 2578.77 11406.47 2015.31 2284.69 10200.17 *2433.70 2788.39 12516.34
G6_R15_M4_HD 2469.33 3377.21 10982.58 2221.06 3049.90 9621.01 **2661.59 3834.65 12770.11
G6_R15_M4_LD 1737.55 2549.38 11817.92 1629.32 2239.82 9396.10 **1822.74 2870.16 13485.04
G6_R15_M8_HD 3348.05 4121.49 13668.98 3227.14 3986.69 12608.51 **3452.35 4193.34 14622.95
G6_R15_M8_LD 2469.10 3204.31 14645.48 2308.23 2900.31 13487.35 **2693.32 3725.55 17160.75
G6_R15_M16_HD 4235.76 4829.86 15511.42 3962.95 4318.85 14388.85 *4560.01 5165.77 16380.50
G6_R15_M16_LD 3320.85 4036.60 17582.00 3138.14 3785.56 16537.87 **3517.34 4337.99 19139.98
G6_R20_M4_HD 3215.55 4305.68 14174.64 2843.97 3936.14 12277.75 **3472.56 4698.32 15975.80
G6_R20_M4_LD 2198.87 3334.68 15423.72 1933.96 3013.68 13954.73 **2579.07 3851.99 17818.28
G6_R20_M8_HD 4518.97 5454.61 17594.41 4029.12 4965.27 16335.39 **4797.40 5743.91 18328.64
G6_R20_M8_LD 3349.98 4452.32 20443.13 3149.82 4130.60 19037.71 **3571.41 4640.35 21364.12
G6_R20_M16_HD 5673.16 6589.09 21270.05 5416.38 6394.44 20092.72 **5898.53 6964.77 22342.04
G6_R20_M16_LD 4212.40 5217.01 23686.65 4107.39 5012.78 23036.96 **4329.39 5604.92 25566.14
Bold values indicate better average times.
Symbol ** indicates that the maximum time reached by GA is lower than the minimum times reached by SO-S and SO-LBS.
Symbol * indicates that the maximum time achieved by GA is lower than the minimum time reached by SO-LBS.

TABLE IX
AVERAGE, MINIMUM AND MAXIMUM RPD (%) VALUE REACHED BY THE GENETIC ALGORITHM REGARDING SO-S AND SO-LBS, FOR EACH INSTANCE SET

WHERE G = 2.

 RPD (%)
Instance Set Average Minimum Maximum

 SO-S SO-LBS SO-S SO-LBS SO-S SO-LBS
G2_R10_M4_HD 28.95 58.17 13.98 48.69 48.13 69.52
G2_R10_M4_LD 39.01 67.64 30.18 63.21 51.89 74.15
G2_R10_M8_HD 22.63 54.63 15.06 51.12 31.46 58.62
G2_R10_M8_LD 29.42 62.46 12.80 51.96 36.58 67.14
G2_R10_M16_HD 18.26 51.99 7.83 45.29 25.81 56.31
G2_R10_M16_LD 21.77 58.69 17.89 56.65 25.06 60.55
G2_R15_M4_HD 38.25 63.52 23.17 52.56 50.13 71.48
G2_R15_M4_LD 41.87 69.42 31.12 63.46 51.26 74.06
G2_R15_M8_HD 30.32 58.91 23.52 52.37 37.64 63.90
G2_R15_M8_LD 28.69 62.41 21.07 59.24 36.04 66.47
G2_R15_M16_HD 18.52 51.69 12.55 47.66 28.20 57.68
G2_R15_M16_LD 22.85 58.54 18.20 56.32 27.68 60.41
G2_R20_M4_HD 36.34 62.01 26.69 55.50 46.11 68.72
G2_R20_M4_LD 43.40 69.94 35.69 65.25 51.26 74.44
G2_R20_M8_HD 23.26 54.72 13.76 48.24 28.37 57.49
G2_R20_M8_LD 31.54 63.53 28.15 61.82 35.97 65.82
G2_R20_M16_HD 18.44 51.79 15.44 48.79 22.49 54.63
G2_R20_M16_LD 19.97 57.17 14.12 54.36 24.89 59.85

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2024.3469641

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

 Yannibelli et al.: Preparation of Papers for IEEE Access (February 2024)

VOLUME XX, 2024 22

TABLE X
AVERAGE, MINIMUM AND MAXIMUM RPD (%) VALUE REACHED BY THE GENETIC ALGORITHM REGARDING SO-S AND SO-LBS, FOR EACH INSTANCE SET

WHERE G = 4.

 RPD (%)
Instance Set Average Minimum Maximum

 SO-S SO-LBS SO-S SO-LBS SO-S SO-LBS
G4_R10_M4_HD 25.73 70.40 19.13 65.81 34.69 75.77
G4_R10_M4_LD 33.99 80.17 29.26 78.61 42.12 81.69
G4_R10_M8_HD 16.65 66.20 12.37 62.72 23.86 69.82
G4_R10_M8_LD 20.91 76.31 14.35 73.61 28.57 79.40
G4_R10_M16_HD 16.61 68.35 10.59 65.55 20.94 70.96
G4_R10_M16_LD 19.42 75.63 12.06 73.26 26.89 77.98
G4_R15_M4_HD 25.58 71.37 18.99 66.57 32.90 75.78
G4_R15_M4_LD 35.96 81.13 33.50 78.96 39.39 83.00
G4_R15_M8_HD 21.76 69.89 16.64 66.39 29.34 73.49
G4_R15_M8_LD 22.57 76.46 13.04 72.67 31.11 80.32
G4_R15_M16_HD 13.99 67.27 10.51 65.58 16.74 68.50
G4_R15_M16_LD 16.41 74.29 12.10 71.99 21.29 75.41
G4_R20_M4_HD 33.34 75.81 28.30 73.44 40.72 80.03
G4_R20_M4_LD 40.13 82.24 37.21 80.89 44.01 83.65
G4_R20_M8_HD 23.52 71.13 20.54 69.09 26.94 73.22
G4_R20_M8_LD 27.53 78.30 19.16 75.92 36.51 81.77
G4_R20_M16_HD 14.89 67.81 13.10 66.12 16.89 69.63
G4_R20_M16_LD 16.98 74.96 14.01 74.05 20.38 76.69

TABLE XI
AVERAGE, MINIMUM AND MAXIMUM RPD (%) VALUE REACHED BY THE GENETIC ALGORITHM REGARDING SO-S AND SO-LBS, FOR EACH INSTANCE SET

WHERE G = 6.

 RPD (%)
Instance Set Average Minimum Maximum

 SO-S SO-LBS SO-S SO-LBS SO-S SO-LBS
G6_R10_M4_HD 20.37 76.66 16.32 74.65 27.45 79.40
G6_R10_M4_LD 30.37 85.15 17.25 79.78 39.15 87.50
G6_R10_M8_HD 16.14 73.30 13.16 69.57 19.46 76.02
G6_R10_M8_LD 23.25 82.17 17.28 80.52 32.54 85.30
G6_R10_M16_HD 12.33 72.41 8.54 69.99 15.20 74.91
G6_R10_M16_LD 13.06 80.32 9.82 78.68 17.30 81.58
G6_R15_M4_HD 26.75 77.43 22.36 76.05 32.61 79.77
G6_R15_M4_LD 31.41 85.07 20.62 81.08 37.59 86.75
G6_R15_M8_HD 18.75 75.45 15.29 73.21 21.94 77.74
G6_R15_M8_LD 22.68 83.09 17.95 81.77 28.01 84.41
G6_R15_M16_HD 12.20 72.70 8.24 71.11 19.10 74.26
G6_R15_M16_LD 17.72 81.11 16.05 80.48 19.18 81.68
G6_R20_M4_HD 25.17 77.14 16.40 73.20 31.62 80.45
G6_R20_M4_LD 34.12 85.75 29.77 85.00 39.28 86.80
G6_R20_M8_HD 17.13 74.32 14.28 73.15 20.15 75.34
G6_R20_M8_LD 24.71 83.58 20.91 82.40 28.08 84.84
G6_R20_M16_HD 13.89 73.31 12.31 72.26 15.42 73.98
G6_R20_M16_LD 19.15 82.20 15.20 81.40 24.19 83.38

2) RUNTIME ANALYSIS
Tables XII-XIV present the average runtime (in minutes)
required by the genetic algorithm (GA), the method SO-S
and the method SO-LBS, for each one of the 54 instance sets
utilized in the computational experiments. The computational
experiments were developed on a PC equipped with an AMD

Ryzen 5 with six 2022 MHz cores, 16 GB of RAM, and
SDD, running Manjaro. Moreover, the genetic algorithm, and
the methods SO-S and SO-LBS, were implemented in Java
1.8.

From Tables XII-XIV, it is possible to mention that the
runtime required by the genetic algorithm increases as both
the number e of events considered in the instances, and the

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2024.3469641

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

 Yannibelli et al.: Preparation of Papers for IEEE Access (February 2024)

VOLUME XX, 2024 23

number m of smartphones that compose the scenarios of
these events, increase (see values of E and M in Tables I-III).
This is consistent with the fact that, as detailed in Section
III.C.1, the computing time complexity of this algorithm,
O(I*p*e*I’*p’*a), increases as both e and m increases (recall
that a depends on m, as detailed in Eq. (8)). Regarding this,
as detailed in Sections III.B and III.C.1, the genetic algorithm
applies different processes (i.e., fitness evaluation process,
crossover process, and mutation process) on solutions
encoded as an e-tuple <o1, o2, …, oe>. Thus, the number e of
events impacts the runtime of these processes, and as a result
the runtime of the algorithm. Besides, given an encoded
solution, the fitness evaluation process estimates the time
required to develop each of the e events, by applying the
scenario preparation approach proposed in [1] on the
scenario of each event. Thus, the runtime of the fitness
evaluation process is also impacted by the runtime required
by the approach proposed in [1]. Respecting this, the runtime
required by this approach depends on the number of
smartphones that compose the scenario on which the
approach is applied, as detailed in [1]. Therefore, the number
m of smartphones that compose the scenarios of the e events
impacts on the runtime of the mentioned approach, and as a
result the runtime of the fitness evaluation process and the
runtime of the algorithm.

Tables XII-XIV also indicate that the runtimes required by
the methods SO-S and SO-LBS are significantly lower than
that required by the genetic algorithm, for each of the 54
instance sets. These results coincide with the fact that the
computing time complexities of SO-S and SO-LBS are
considerably lower than the computing time complexity of
the genetic algorithm. Recall that, the computing time
complexity of SO-S is max(O(r*e), O(e*m)) (as detailed in
Section IV.C.1), and the computing time complexity of SO-
LBS is max(O(g*e), O(e*m)) (as detailed in Section IV.C.2),
whereas the computing time complexity of the genetic
algorithm is O(I*p*e*I’*p’*a). Regarding this, as detailed in
Section IV.C, the methods SO-S and SO-LBS determine a
sequential order to develop the e events one at a time, based
on a predefined ordering criterion. Specifically, SO-S
sequentially orders the e events according to the scenario
included in these events (i.e., order by scenario), whereas
SO-LBS sequentially orders the e events according to the
strategy included in these events (i.e., order by strategy). In
addition, these ordering criteria do not consider or estimate
the time required to develop the e events one at a time.
Unlike these methods, as detailed in Section III.B, the genetic

algorithm is aimed to determine the sequential order to
develop the e events, in such a way that the time required for
developing these e events one at a time is minimized. To
achieve this aim, the algorithm works on a population of
solutions encoded as the previously mentioned e-tuple, and
iteratively applies the previously mentioned processes, as
well as selection processes, on the encoded solutions that
compose this population. Thus, the runtime of the genetic
algorithm is impacted by the size of the population, the
number of iterations, and also the runtimes of the mentioned
processes.

However, it is necessary mentioning that, for each one of
the 54 instance sets, the runtime required by the genetic
algorithm to obtain the solutions for the instances is a really
small percentage (i.e., < 0.40%) of the time needed for
sequentially developing the e events considered in these
instances according to the order indicated in these solutions.
For example, for the instance set named G6_R20_M16_HD,
the runtime required by the genetic algorithm to obtain the
solutions for the instances (i.e., 16.75 minutes) is 0.30% of
the time needed for sequentially developing the events
considered in the instances according to the order indicated
in these solutions (i.e., 5673.16 minutes).

Besides, it is necessary to note that, for each one of the 54
instance sets, the runtime required by the genetic algorithm to
obtain the solutions plus the time needed for developing the
events considered in the instances according to these
solutions is lower (i.e., [12, 43]% lower) than the time
needed for developing these events according to the solutions
provided by SO-S, and besides is lower (i.e., [51, 85]%
lower) than the time needed for developing these events
according to the solutions provided by SO-LBS. For
example, for the instance set G6_R20_M16_HD mentioned,
the runtime required by the genetic algorithm to obtain the
solutions (i.e., 16.75 minutes) plus the time needed to
develop the events considered in the instances according to
these solutions (i.e., 5673.16 minutes) is 5689.91 minutes.
This value is 13.76% lower than the time needed to develop
such events according to the solutions provided by SO-S (i.e.,
6589.09 minutes), and is 73.25% lower than the time needed
to develop such events according to the solutions provided by
SO-LBS (i.e., 21270.05 minutes).

All in all, we can confirm that the runtime needed by the
genetic algorithm to obtain the solutions for the instances
used is appropriate in the context of the addressed problem.

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2024.3469641

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

 Yannibelli et al.: Preparation of Papers for IEEE Access (February 2024)

VOLUME XX, 2024 24

TABLE XII
AVERAGE RUNTIME (IN MINUTES) REQUIRED BY THE GENETIC ALGORITHM (GA), THE METHOD SO-S AND THE METHOD SO-LBS, FOR EACH INSTANCE SET

WHERE G = 2.

Instance set Average runtime (minutes)
 GA SO-S SO-LBS

G2_R10_M4_HD 0.51 1.0E-06 1.0E-06
G2_R10_M4_LD 0.52 1.0E-06 1.0E-06
G2_R10_M8_HD 0.77 1.0E-06 1.0E-06
G2_R10_M8_LD 0.78 1.0E-06 1.0E-06
G2_R10_M16_HD 1.34 1.0E-06 1.0E-06
G2_R10_M16_LD 1.36 1.0E-06 1.0E-06
G2_R15_M4_HD 1.15 1.0E-06 1.0E-06
G2_R15_M4_LD 1.16 1.0E-06 1.0E-06
G2_R15_M8_HD 1.72 1.0E-06 1.0E-06
G2_R15_M8_LD 1.80 1.0E-06 1.0E-06
G2_R15_M16_HD 2.97 1.0E-06 1.0E-06
G2_R15_M16_LD 3.20 1.0E-06 1.0E-06
G2_R20_M4_HD 2.07 1.0E-05 1.0E-05
G2_R20_M4_LD 2.07 1.0E-05 1.0E-05
G2_R20_M8_HD 3.13 1.0E-05 1.0E-05
G2_R20_M8_LD 3.20 1.0E-05 1.0E-05
G2_R20_M16_HD 5.45 1.0E-05 1.0E-05
G2_R20_M16_LD 5.76 1.0E-05 1.0E-05

TABLE XIII
AVERAGE RUNTIME (IN MINUTES) REQUIRED BY THE GENETIC ALGORITHM (GA), THE METHOD SO-S AND THE METHOD SO-LBS, FOR EACH INSTANCE SET

WHERE G = 4.

Instance set Average runtime (minutes)
 GA SO-S SO-LBS

G4_R10_M4_HD 2.53 1.0E-05 1.0E-05
G4_R10_M4_LD 2.55 1.0E-05 1.0E-05
G4_R10_M8_HD 3.26 1.0E-05 1.0E-05
G4_R10_M8_LD 3.36 1.0E-05 1.0E-05
G4_R10_M16_HD 5.22 1.0E-05 1.0E-05
G4_R10_M16_LD 5.07 1.0E-05 1.0E-05
G4_R15_M4_HD 3.52 1.0E-04 1.0E-04
G4_R15_M4_LD 3.54 1.0E-04 1.0E-04
G4_R15_M8_HD 4.53 1.0E-04 1.0E-04
G4_R15_M8_LD 4.67 1.0E-04 1.0E-04
G4_R15_M16_HD 7.26 1.0E-04 1.0E-04
G4_R15_M16_LD 7.05 1.0E-04 1.0E-04
G4_R20_M4_HD 4.89 1.0E-03 1.0E-03
G4_R20_M4_LD 4.93 1.0E-03 1.0E-03
G4_R20_M8_HD 6.30 1.0E-03 1.0E-03
G4_R20_M8_LD 6.49 1.0E-03 1.0E-03
G4_R20_M16_HD 10.09 1.0E-03 1.0E-03
G4_R20_M16_LD 9.80 1.0E-03 1.0E-03

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2024.3469641

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

 Yannibelli et al.: Preparation of Papers for IEEE Access (February 2024)

VOLUME XX, 2024 25

TABLE XIV

AVERAGE RUNTIME (IN MINUTES) REQUIRED BY THE GENETIC ALGORITHM (GA), THE METHOD SO-S AND THE METHOD SO-LBS, FOR EACH INSTANCE SET
WHERE G = 6.

Instance set Average runtime (minutes)

 GA SO-S SO-LBS
G6_R10_M4_HD 3.49 1.0E-04 1.0E-04
G6_R10_M4_LD 3.54 1.0E-04 1.0E-04
G6_R10_M8_HD 4.28 1.0E-04 1.0E-04
G6_R10_M8_LD 4.34 1.0E-04 1.0E-04
G6_R10_M16_HD 7.47 1.0E-04 1.0E-04
G6_R10_M16_LD 7.11 1.0E-04 1.0E-04
G6_R15_M4_HD 5.84 1.0E-03 1.0E-03
G6_R15_M4_LD 5.89 1.0E-03 1.0E-03
G6_R15_M8_HD 7.53 1.0E-03 1.0E-03
G6_R15_M8_LD 7.76 1.0E-03 1.0E-03
G6_R15_M16_HD 12.05 1.0E-03 1.0E-03
G6_R15_M16_LD 11.71 1.0E-03 1.0E-03
G6_R20_M4_HD 8.12 1.0E-02 1.0E-02
G6_R20_M4_LD 8.18 1.0E-02 1.0E-02
G6_R20_M8_HD 10.46 1.0E-02 1.0E-02
G6_R20_M8_LD 10.78 1.0E-02 1.0E-02
G6_R20_M16_HD 16.75 1.0E-02 1.0E-02
G6_R20_M16_LD 16.27 1.0E-02 1.0E-02

V. DISCUSSION
In this section, the main contributions of BAGESS are
discussed. After that, the validity of the results obtained by
BAGESS is explained.

1) CONTRIBUTIONS
In lack of previous support to automate experiments
involving battery-driven mobile devices, in this work, a new
software component called BAGESS is proposed and then
evaluated, in order to address the problem of sequentially
ordering several load-balancing experimental scenarios, so
that the time required to prepare these scenarios one at a time
is minimized. It must be taken into account that, for
preparing a single scenario composed of several battery-
driven devices, charging and discharging actions must be
applied on each device to reach its target battery level pre-
configured in the scenario from its current battery level. The
preparation of a single scenario was addressed by applying
the approach proposed in [1]. However, in the duty of
comparatively evaluating diverse load-balancing strategies,
many scenarios that are composed of the same battery-driven
devices, and vary regarding the target battery levels pre-
configured for these devices, need to be prepared.

Commonly, after evaluating a load-balancing strategy on a
single prepared scenario, the target battery level reached by
each device via the scenario preparation suffers a decrease
due to the work-load assigned by the strategy to the devices,
which defines the current battery level of each device in the
next scenario to be prepared. The problem addressed by
BAGESS is determining the next scenario to be prepared,
considering the closeness between the current and pre-
configured target battery levels of the devices in the scenario.

More specifically, given a set of load-balancing scenarios,
each one provided with target battery levels pre-configured
for the devices, and given the load-balancing strategy to be
considered in each scenario, detailing the estimated battery
decreases that the devices can suffer once the strategy is
evaluated on them, BAGESS provides a feasible sequential
order to prepare the scenarios one at a time, minimizing the
time required to prepare these scenarios.

BAGESS effectiveness was evaluated on 540 different
problem instances that vary in the amount of scenarios,
amount of devices composing these scenarios, target battery
levels pre-configured for these devices, and load-balancing
strategies. Sequencing scenarios with BAGESS provides
researchers an average saving of [12, 43]% and [51, 85]%
regarding the methods SO-S and SO-LBS, respectively, in
terms of the time required to sequentially prepare the
scenarios one at a time.

To use BAGESS for devices different from those provided
in the public repository, the user must collect battery traces, a
task that can be time consuming but is facilitated and can be
achieved with the profiling platform explained in [15] and
Motrol [8]. Collecting traces is not only required for applying
BAGESS, but also for simulating the execution of a given
load-balancing strategy in the context of DewSim [18],
which means that the benefit is twofold. A limitation of
BAGESS is that the resulting sequential ordering of the
scenarios does not consider devices battery’s thermal stress,
which might affect them when exposing batteries to several
charging/discharging cycles without resting time between
scenarios preparation. Finally, with BAGESS, the
capabilities of a generic testing platform are expanded; it
aims at being an integral tool to facilitate experimental

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2024.3469641

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

 Yannibelli et al.: Preparation of Papers for IEEE Access (February 2024)

VOLUME XX, 2024 26

reproducibility, and can be applied for evaluating and
validating load balancing strategies for Edge/Dew
Computing environments.

2) RESULTS VALIDITY
The accuracy of our results is explained by the accuracy of
our experimental methodology, specifically the data source
used for simulating discharging/charging events and the
trace-based simulation approach that timely relates battery
level drops/increments with mobile device components
usage. All the data employed by this approach is profiled
using a controlled procedure performed over real battery-
powered devices. Details of such a procedure along with
validation tests, can be found in [18]. Thus, we refer as
device profile to the data set composed by traces with
information of battery level behavior for various discrete
components usage. In the current work, we used four device
profiles corresponding to the following smartphone models:
Xiaomi Mi A2 lite, Xiaomi Redmi Note 7, Motorola Moto
G6 and Samsung A30. Each device profile is composed of
twenty full baseline battery behavior traces – from 2% to
100% – that allow researchers to model a wide variety of
charging/discharging scenarios considering steady CPU
usages of 0, 30, 50, 75 and 100 percentage and on/off screen
states. Despite being a time consuming task, once obtained, a
device profile can be used as many times as needed to feed
the simulation methodology [18] to faithfully simulate
battery level drops and increments, i.e., -1% and +1%
(dis)charging scenarios in a timeline. Moreover, this
approach has been used to represent battery behavior in other
works [28, 29] where different load balancing strategies for
mobile distributed computing were studied. In this work, we
use (dis)charging battery profiles as input for simulating the
preparation time of mobile devices clusters running a
sequence of load balancing tests scenarios.

Our experiment design considers problem instances that
are representative of load-balancing evaluation scenarios for
mobile distributed computing, and sufficient because the
particular configuration values used are realistic and
practicable in in-vivo tests with the testing platform with
which this work contributes. The variables considered in the
problem instances include different cluster sizes (i.e., number
of smartphones) – with random combinations of the
smartphone models previously referred whose initial battery
level is also randomly set –, number of load balancing
strategies commonly used when performing in-lab
comparisons, number of scenarios usually used to evaluate
each load balancing strategy, estimated battery drops that the
evaluation of each strategy produces on devices, and finally,
the number of scenario preparation events which results from
multiplying the number of evaluation scenarios times the
number of load balancing strategies. In total 540 problem
instances were run. Variables and values were explained in
Section IV.A.

Providing that constituent parts of genetic algorithms are
subject to parameters fine tuning, which is done via
exploratory tests to find the appropriate population size,
number of solutions competing in tournament selection,
crossover probability, mutation probability, among other
parameters, we run preliminary tests on the problem
instances. Moreover, given that randomness is present in
solutions obtained with genetic algorithms, with the aim of
reporting reliable results we have foreseen that solution
quality comparisons of our proposal w.r.t other heuristics
were done considering the average of 30 runs of the genetic
algorithm for every problem instance. Besides, we run Man-
Witnney tests, in order to test statistical significance of such
results.

VI. RELATED WORKS
Measuring and comparing the outcome of different load
balancing techniques when scavenging computing resources
using a set of real battery-powered nodes, such as
smartphone clusters, requires a systematic procedure to
restore experimental conditions between one measurement
and another. When measurements are based on metrics
derived directly or indirectly from nodes battery level, e.g.,
fairness, restoration implies to perform dis/charging events
over several physical batteries until they reach pre-defined
levels of charge configured in the scenario under evaluation.
Indeed, it is a time-consuming task that takes even longer
when it is performed without taking advantage of proximity
between current and target battery levels, causing in turn
unnecessary smartphone batteries over utilization.

Studies evaluating load balancing techniques and their
impact on battery usage in distributed mobile computing
environments comprising real battery-powered nodes clusters
are scarce. A common practice to measure such impact is
through virtually modeled batteries [27]. For instance, Mattia
& Beraldi [12] propose a load balancing technique for
maximizing the lifespan of homogeneous SBCs (Single
Board Computer) battery-driven clusters. Experiments were
done with real SBC clusters, but battery charging and
discharging behaviors are simulated using SBCs energy
consumption profiles and real-time measurements of CPU
usage in different states (idle, running). Aslanpour et al. [13]
propose an energy-aware scheduling algorithm for operating
a serverless Edge computing cluster powered with battery-
driven nodes. The algorithm prioritizes the execution and
migration of functions replicas differentiating between well-
powered, low-powered, vulnerable and powerless nodes.
Scheduling comparisons are performed with a real cluster of
Raspberry Pis and using real traces of renewable energy to
simulate different charging rates of a virtually modeled
battery. In relation to model batteries virtually, it is important
to characterize node performance and energy consumption.
Aslanpour et al. [14] propose WattEdge, a fine-grained
profiling framework to measure nine energy consumption
factors in edge nodes including connectivity, memory,

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2024.3469641

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

 Yannibelli et al.: Preparation of Papers for IEEE Access (February 2024)

VOLUME XX, 2024 27

storage, CPU, among others, through different stress tests.
The framework is structured in separate software and
hardware modules that run tests, monitor hardware usage and
temperature, and log current, volts and wattage parameters.
The framework also provides some stress tests for profiling
battery charging and discharging behavior under variable
conditions via PiJuice, a portable power platform specially
designed for Raspberry Pi. Other work in this field [15]
proposes a profiling and benchmarking tool targeting
Android mobile devices to automate battery trace capturing
under configurable resources usage. Tools like these help in
automating data gathering that is used as input for modeling
complex entities such as battery behavior. The methodology
[18] in which we base the validation of BAGESS also relies
on a custom Android application to data gathering (profile
device building), though the purpose of our toolset is to
realize full in-vivo experimentation with smartphone clusters.

In [10, 11, 23], like in our work, performed experiments
include smartphones as battery-powered nodes, however the
impact of the load balancing proposals on batteries were not
assessed. By contrast, the measurements were centered on
metrics such as throughput, speedup, data transferring
volume varying nodes quantity, nodes topology and tasks
division schemes. Energy-related metric included in these
works relates power consumption with resource utilization,
which is obtained via a profiling procedure and a power
monitor device. Works using residual battery capacity
indicators over real batteries are [24, 25]. The indicator can
be obtained through the battery management API available in
mobile operating systems. The experiments show how the
proposed load balancing approach impacts on the battery
level of smartphones which have heterogeneous computing
capabilities and battery capacities. It was not within the
objectives of the experimental methodology employed in
these works to provide a systematic approach for replicating
experiments and/or testing under varying initial battery
levels, features that would help to increase results robustness
and statistical confidence. Our work aims at filling this gap.

The necessity of performing tests on real batteries is
specifically present in research attained to the improvement
of battery management systems. In [26] a HIL (hardware in
loop) set up and procedure was proposed to test and validate
battery-fuel gauge algorithms. These algorithms track the
battery state of charge that is informed to users as remaining
battery percentage. The HIL includes customized aluminum
casts where batteries are kept while being tested under
varying operation conditions. The temperature inside the cast
can be set and controlled within a range from -25 to +45
Celsius. Another hardware plugged into this case is used to
inject programmable loads and measure battery parameters
like voltage, current and temperature. Like the module we
have proposed, the described HIL and procedure aim at
automating the preparation of tests to be run over real
batteries. A fundamental difference between [26] and our
testing platform is that in [26] several batteries are treated as

different study subjects, while in our work, several batteries -
smartphones- are treated as a single study object (i.e.
smartphone cluster). To the best of our knowledge, our work
is the first proposing a software-based systematic approach
for preparing a set of tests which, in conjunction with
hardware of our own previously published, represent another
step towards facilitating the empirical assessment of load
balancing techniques over real battery-powered settings, and
particularly smartphone clusters.

VII. CONCLUSIONS AND FUTURE WORK
In this paper, the problem of defining the sequential order to
develop a given number of load-balancing scenario
preparation events has been addressed, considering that the
total time required to develop them should be minimized.
This problem has been modeled as the well-known ATSP,
and, therefore, is a NP-Hard problem.

To solve the addressed problem, a novel software module
named BAGESS has been proposed, which uses a genetic
algorithm to determine the sequential order in which the
given events should be developed, in such a way that the total
time required to develop them is minimized. This genetic
algorithm has been specially designed to: a) explore many
different feasible sequential orders for developing the given
events one at a time, and b) identify the sequential order that
allows developing these events at the minimal possible time.

Computational experiments have been developed with the
aim of evaluating the performance of the genetic algorithm
utilized by BAGESS on different representative and realistic
experimental instances of the addressed problem. In this
regard, the performance of this algorithm has been evaluated
on 54 instance sets. Each of these instance sets contains 10
different instances, where each instance includes a number of
scenario preparation events. The 54 instance sets differ in
terms of the category of their instances with respect to five
well-defined components (i.e., number of events, number of
scenarios, number of smartphones that compose the
scenarios, number of load-balancing strategies, and estimated
battery variation that the smartphones suffer once each
strategy is evaluated). After that, the performance of this
algorithm on each of the 54 instance sets has been compared
with those of the two methods currently used for determining
the sequential order to develop a given number of events one
at a time, namely SO-S and SO-LBS.

Based on the performance comparison developed, it is
possible to conclude that the solutions given by the genetic
algorithm for the instances of each set provide a significant
average saving, in terms of the time (in minutes) required to
sequentially develop the events one at a time. Specifically,
for all instance sets, the average saving of the solutions given
by the genetic algorithm regarding the solutions given by
SO-S is on the range [12, 43]%, and regarding the solutions
given by SO-LBS is on the range [51, 85]%. Therefore, the
solutions given by the genetic algorithm significantly reduce

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2024.3469641

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

 Yannibelli et al.: Preparation of Papers for IEEE Access (February 2024)

VOLUME XX, 2024 28

the time required for sequentially developing the events
considered in the instances used.

In future work, the incorporation of other optimization
objectives in the addressed problem will be analyzed. The
currently considered objective is minimizing the time
required to sequentially develop the given events one at a
time. As detailed in Section II, the development of each one
of these events consists of applying sequences of battery
charge/discharge actions on the smartphones considered in
the scenario inherent to the event, in order to reach the target
battery levels predefined for these smartphones, from the
corresponding current battery levels. It is necessary to
mention that the application of these sequences of battery
charge/discharge actions on these smartphones can wear the
smartphones’ batteries, when there is not adequate resting
time for these batteries between the developments of the
different events, which can reduce the lifespan of these
batteries. Due to this, it is convenient to minimize the wear of
the smartphones’ batteries during the development of the
given events. A possible alternative to do that is including
resting times for the smartphones’ batteries between the
developments of the different given events. However, this
alternative increases the total time required to sequentially
develop the given events. Taking all this into account, an bi-
objective extension of the problem addressed in this work
emerges, which implies defining the sequential order for
developing a given number of events, in such a way that: a)
the total time required to develop these events one at a time is
minimized, and b) the wear suffered by the batteries of the
smartphones considered in these events is minimized. This
extension considers two objectives that are relevant and also
conflictive in the context of sequentially developing the
given scenario preparation events.

This bi-objective extension of the addressed problem will
be studied in detail, which includes analyzing alternatives to
estimate the wear that can be suffered by the smartphones’
batteries, throughout the development of the given events.
Besides, given that this bi-objective extension is an NP-Hard
problem, the application of multi-objective meta-heuristic
algorithms will be analyzed to solve this extension. Initially,
the application of multi-objective genetic algorithms will be
analyzed (e.g., the well-known NSGA-III [30]), considering
the solution encoding, and also the crossover and mutation
processes, utilized in the genetic algorithm proposed in this
work. In addition, different alternatives for minimizing the
runtime required by these multi-objective genetic algorithms
will be studied, with the aim of these algorithms being able to
provide solutions in an acceptable runtime to BAGESS. One
of these alternatives involves parallelizing the search and
optimization process carried out by these multi-objective
algorithms [17].

Author Contributions: Conceptualization, V.Y., M.H., J.T.,
C.M.; Methodology, V.Y.; Software, V.Y., M.H., J.T., C.M;
Validation, V.Y.; Formal Analysis, V.Y.; Investigation, V.Y,
M.H., T.M., T.G., A.Z., C.M.; Resources, A.Z., C.M.; Data
Curation, V.Y.; Writing – Original Draft Preparation, V.Y.,
M.H., T.M., T.G.; Visualization, V.Y., M.H.; Supervision,
M.H., C.M.; Project Administration, C.M. All authors have
checked the manuscript and have agreed to the submission in
the specified author order.

Data Availability Statement: The software and data (i.e.
problem instances) used to evaluate the genetic algorithm can
be found at https://github.com/matieber/BAGESS

REFERENCES

[1] Yannibelli, V., Hirsch, M., Toloza, J., Majchrzak, T.A.,

Zunino, A., and Mateos, C., “Speeding up Smartphone-
Based Dew Computing: In Vivo Experiments Setup
Via an Evolutionary Algorithm”, Sensors, 23(3), pp.
1388, 2023.

[2] Pop, P.C., Cosma, O., Sabo, C., and Sitar, C.P., “A
comprehensive survey on the generalized traveling
salesman problem”, European Journal of Operational
Research, vol. 314(3), pages 819-835, 2024.

[3] Eiben, A. E., and Smith, J. E., Introduction to
Evolutionary Computing, 2nd. Edition. Ed. Berlin,
Germany: Springer, 2015.

[4] Mann, H. B., and Whitney, D. R., “On a test of
whether one of two random variables is stochastically
larger than the other”, The Annals of Mathematical
Statistics, vol. 18, no. 1, pp. 50–60, 1947.

[5] Ahammad, I., “Fog Computing Complete Review:
Concepts, Trends, Architectures, Technologies,
Simulators, Security Issues, Applications, and Open
Research Fields”, SN Computer Science, 4(6), pp.765,
2023.

[6] Hirsch, M., Mateos, C. and Zunino, A., “Augmenting
computing capabilities at the edge by jointly exploiting
mobile devices: A survey”, Future Generation
Computer Systems, 88, pp.644-662. 2018.

[7] Mateos, C., Hirsch, M., Toloza, J.M. and Zunino, A.
“LiveDewStream: A stream processing platform for
running in-lab distributed deep learning inferences on
smartphone clusters at the edge”, SoftwareX, 20,
pp.101268, 2022.

[8] Toloza, J.M., Hirsch, M., Mateos, C. and Zunino, A.,
“Motrol: A hardware-software device for batch
benchmarking and profiling of in-lab mobile device
clusters”, HardwareX, 12, p.e00340, 2022.

[9] Rajwar, K., Deep, K., and Das, S., “An exhaustive
review of the metaheuristic algorithms for search and
optimization: taxonomy, applications, and open

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2024.3469641

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

 Yannibelli et al.: Preparation of Papers for IEEE Access (February 2024)

VOLUME XX, 2024 29

challenges”, Artificial Intelligence Review, vol. 56, pp.
13187–13257, 2023.

[10] Huang, Yakun, et al. "Enabling DNN acceleration with
data and model parallelization over ubiquitous end
devices." IEEE Internet of Things Journal 9.16 (2021):
15053-15065.

[11] Mao, Jiachen, et al. "Modnn: Local distributed mobile
computing system for deep neural network." Design,
Automation & Test in Europe Conference &
Exhibition (DATE), 2017. IEEE, 2017.

[12] G. P. Mattia and R. Beraldi, “Lifespan and energy-
oriented load balancing algorithms across sets of nodes
in Green Edge Computing”, in IEEE Cloud Summit,
Baltimore, MD, USA, 2023, pp. 41-48.

[13] Aslanpour, M.S., Toosi, A.N., Cheema, M.A. and
Gaire, R., “Energy-aware resource scheduling for
serverless edge computing”, in 22nd IEEE
International Symposium on Cluster, Cloud and
Internet Computing (CCGrid), 2022, pp. 190-199.

[14] Aslanpour, M.S., Toosi, A.N., Gaire, R. and Cheema,
M.A., “WattEdge: a holistic approach for empirical
energy measurements in edge computing”, in 19th
International Conference on Service-Oriented
Computing (ICSOC 2021), Virtual Event, November
22–25, 2021, pp. 531-547.

[15] Hirsch, M., Mateos, C., Zunino, A. and Toloza, J., “A
platform for automating battery-driven batch
benchmarking and profiling of Android-based mobile
devices”, Simulation Modelling Practice and Theory,
109, pp.102266, 2021.

[16] Luo, Q., Hu, S., Li, C., Li, G. and Shi, W., “Resource
scheduling in edge computing: A survey”, IEEE
Communications Surveys & Tutorials, 23(4), pp.2131-
2165, 2021.

[17] Falcón-Cardona, J.G., Hernández-Goméz, R., Coello,
C.A., Catillo Tapia, M.G., “Parallel Multi-Objective
Evolutionary Algorithms: A Comprehensive Survey”,
Swarm and Evolutionary Computation, 67, pp. 100960,
2021.

[18] Hirsch, M., Mateos, C., Rodriguez, J.M. and Zunino,
A., “DewSim: A trace‐driven toolkit for simulating
mobile device clusters in Dew computing
environments”, Software: Practice and Experience,
50(5), pp.688-718, 2020.

[19] Dantzig, G.; Fulkerson, J.; Johnson, S., “Solution of a
Large-Scale Traveling-Salesman Problem”, Operations
Research, Vol. 2, pp.393–410, 1954.

[20] Wu, C., Fu, X., Pei, J., and Dong, Z., “A Novel
Sparrow Search Algorithm for the Traveling Salesman
Problem”, IEEE Access, Vol. 9, pp. 153456-153471,
2021.

[21] Cormen, T.H., Leiserson, C.E., Rivest, R.L., and Stein,
C., Introduction to Algorithms, Fourth Edition. Ed.
Cambridge, Massachusetts: The MIT Press, 2022.

[22] Sedgewick, R., and Wayne, K., Algorithms, Fourth
Edition. Ed. United States: Addison-Wesley, 2011.

[23] Loke, Seng W., et al. “Mobile computations with
surrounding devices: Proximity sensing and
multilayered work stealing”, ACM Transactions on
Embedded Computing Systems (TECS) 14.2 (2015): 1-
25.

[24] Viswanathan, Hariharasudhan, et al. “Uncertainty-
aware autonomic resource provisioning for mobile
cloud computing”, IEEE transactions on parallel and
distributed systems 26.8 (2014): 2363-2372.

[25] Ghasemi-Falavarjani, Simin, Mohammadali
Nematbakhsh, and Behrouz Shahgholi Ghahfarokhi.
“Context-aware multi-objective resource allocation in
mobile cloud”, Computers & Electrical Engineering 44
(2015): 218-240.

[26] Avvari, G. V., et al. “Experimental set-up and
procedures to test and validate battery fuel gauge
algorithms”, Applied Energy 160 (2015): 404-418.

[27] Mesdaghi, A., and Mollajafari, M. “Improve
performance and energy efficiency of plug-in fuel cell
vehicles using connected cars with V2V
communication”, Energy Conversion and Management
306 (2024): 118296.

[28] Hirsch, Matías, Juan Manuel Rodriguez, Cristian
Mateos, and Alejandro Zunino. “A two-phase energy-
aware scheduling approach for cpu-intensive jobs in
mobile grids”, Journal of Grid Computing 15 (2017):
55-80.

[29] Hirsch, Matías, Cristian Mateos, Alejandro Zunino,
Tim A. Majchrzak, Tor-Morten Grønli, and Hermann
Kaindl. “A task execution scheme for dew computing
with state-of-the-art smartphones”, Electronics 10, no.
16 (2021): 2006.

[30] K. Deb and H. Jain, “An evolutionary many-objective
optimization algorithm using reference-point-based
nondominated sorting approach, part I: solving
problems with box constraints,” IEEE Transactions on
Evolutionary Computation, vol. 18, no. 4, pp. 577–601,
2014.

[31] https://docs.oracle.com/javase/specs/jvms/se8/html/jvm
s-2.html#jvms-2.2. Accessed August 6, 2024.

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2024.3469641

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

 Yannibelli et al.: Preparation of Papers for IEEE Access (February 2024)

VOLUME XX, 2024 30

VIRGINIA YANNIBELLI received a PhD.
Degree in Computer Science in 2009, and a BSc.
Degree in Systems Engineering in 2005, at the
Faculty of Exact Sciences, UNICEN University,
Argentina. She is Professor at the Department of
Computing, Faculty of Exact Sciences, UNICEN
University, and besides Scientific Researcher at
the National Scientific and Technological
Research Council of Argentina (CONICET).

She is moreover a member of the ISISTAN
Institute (Tandil Software Engineering Research Institute), UNICEN-
CONICET, Argentina. She has served as guest editor in special issues
from reputed international journals (e.g., Information Processing and
Management Journal published by Elsevier), and also as organizer/chair of
workshops/tracks from reputed international conferences (e.g., IJCAI and
MICAI). Her research areas include Artificial Intelligence, Evolutionary
Computing, Metaheuristics, Optimization, Scheduling, and Cloud/Dew
Computing.

MATÍAS HIRSCH graduated as Systems
Engineering from Universidad Nacional del
Centro de la Provincia de Buenos Aires
(UNCPBA), Buenos Aires, Argentina in 2010.
Since then, at the beginning of his professional
career, he gain experience working for several
software factory companies. In 2013, he gained a
scholarship to start his doctoral studies. In 2018
he received his Ph.D in Computer Science from
UNCPBA. Currently, he is an assistant professor

at UNCPBA, a member of the Instituto Superior de Ingenieria de Software
Tandil (ISISTAN) and, since 2020, he has held a position as a researcher
at CONICET. Under the supervision of Prof. Cristian Mateos and Prof.
Alejandro Zunino, he has published around 16 Sci-index Journal papers
and 9 conference papers. His research interests are in the fields of Parallel
and Distributed Computing, Mobile Computing, Edge Computing, Dew
Computing, IoT, Big Data.

JUAN TOLOZA graduated as Systems Engineer
from the National University of the Center of the
Province of Buenos Aires (UNICEN), Buenos
Aires, Argentina in 2009. In 2009, he obtained a
scholarship to begin his doctoral studies. In 2013,
he received his PhD in Computer Science from
UNLP. Currently, he is an adjunct ordinary
professor at UNICEN, a member of the Instituto
Superior de Ingenieria de Software Tandil
(ISISTAN) and, since 2020, he has held the

position of assistant professional of CONICET under the supervision of
Prof. Alejandro Zunino. He has published 23 journal papers and 22
conference papers. His research interests are embedded systems, control
systems, Distributed Computing, Mobile and IoT.

TIM A MAJCHRZAK (M’08–SM’18) received
Bachelor and Master of Science in Information
Systems degrees from the University of Münster,
Germany, in 2006 and 2007, respectively. He
received his PhD from the University of Münster
in 2011. He currently is professor in Information
Systems at the University of Agder (UiA) in
Kristiansand, Norway. He also is a member of the
Centre for Integrated Emergency Management
(CIEM) at UiA.

His research comprises technical, socio-
technical, and organizational aspects of Software Engineering, often in the
context of Mobile Computing. He also engages in diverse interdisciplinary
Information Systems topics, most notably targeting Crisis Prevention and
Management. His research projects typically have an interface to industry
and society.

Prof. Majchrzak is a senior member of the IEEE and the IEEE
Computer Society, a member of the Gesellschaft für Informatik e.V., and a
member of the Association for Information Systems (AIS).

TOR-MORTEN GRØNLI (M’03) received
Bachelor in Information Technology from
Norwegian School of IT in 2004, and Master of
Technology in Computer Science degree from the
Brunel University, London, UK in 2007. He
received his PhD from Brunel University,
London, UK in 2011. He currently is professor in
applied computer science at Kristiania
University College (KUC) in Oslo, Norway. He
is a founding member of the Mobile Technology

Lab at KUC.
His research comprises technical, sociotechnical, and applied

perspectives of Software Engineering, often in the context of Mobile
Computing. He also engages in diverse interdisciplinary research, bridging
from applied computer science to information systems. His research
projects typically have an interface to industry and society.

Prof. Grønli is a member of the IEEE, IEEE Computer Society, ACM
and of the Association for Information Systems (AIS).

ALEJANDRO ZUNINO received a PhD.
Degree in Computer Science in 2003. He is the
Director of the Tandil Scientific and
Technological Center (CCT CONICET Tandil)
and Director of the Tandil Institute of Software
Engineering (ISISTAN) of the National
University of the Center of Buenos Aires
Province (UNICEN) and the National Scientific
and Technical Research Council (CONICET). He
is an Associate professor at the Department of

Computing, UNICEN and a Principal Researcher of CONICET. He has
published more than 100 journals papers and more than 80 conference
papers. His main research interests are in the area of distributed
computing, including edge, dew, mobile and service-oriented computing.

CRISTIAN MATEOS received a PhD. Degree
in Computer Science in 2008, a MSc. Degree in
Systems Engineering in 2005, and a BSc. Degree
in Systems Engineering in 2002 at the Faculty of
Exact Sciences, UNICEN University, Argentina.
He is a Full Associate Professor at the UNICEN,
and Independent Researcher at the National
Scientific Council of Argentina (CONICET).

He has published 99 papers in journals (77
ISI-indexed), 68 papers in national and

international conferences, and 11 book chapters (+2915 citations according
to GS). He has served as (lead) guest editor in special issues from reputed
venues (e.g. Future Generation Computer Systems - Elsevier, and
Information Processing and Management - Elsevier). His main research
interests are parallel and distributed programming, with a special emphasis
on methods for gridifying/parallelizing applications, application-level
parallelism, (mobile) Grid/Cloud middlewares and platforms, Service-
Oriented Computing and Web Services.

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2024.3469641

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

