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ABSTRACT Due to the increasing interest in employing smartphones as first-class citizens in high-
performance Edge computing environments, the necessity of software to facilitate the evaluation of load-
balancing strategies for smartphone-based clusters has emerged. Regarding this, to select the best strategy 
for a cluster with m smartphones, usually a number of g candidate strategies are evaluated based on a 
number of r scenarios that contain these smartphones, which differ in terms of the start battery levels 
required for these smartphones. Thus, each of the r scenarios must be prepared before evaluating each of 
the g strategies on each ri, so that the smartphones have the required start battery levels pre-configured for 
ri, which requires discharging or charging smartphones. This leads to a number of e = r*g scenario 
preparation events that must be sequentially developed, considering that the time required to develop each 
event depends on the previous event. Thus, the single-objective problem addressed here implies finding out 
the sequential order in which the events should be developed, so that the total time required to develop them 
is minimized. This problem is modeled as the ATSP (Asymmetric Traveling Salesman Problem), since 
defining the sequential order to develop the events is equivalent to defining the sequential order to visit the 
cities, and therefore, is an NP-Hard problem. Given the complexity of this problem, the novel software 
module BAGESS (Battery Aware Green Edge Scenario Sequencer) is proposed, which uses a genetic 
algorithm for defining the sequential order to develop the events. BAGESS’s performance outperforms 
those of the methods currently used for the problem, reaching significant savings regarding the time 
required to develop the events in the range [12, 85]%. 

INDEX TERMS edge computing, smartphone, profiling, benchmarking, evolutionary computing.  

I. INTRODUCTION 
In the last few years, the use of smartphones has increased 
significantly, and continues to increase [6]. Contemporary 
smartphone models have high processing power and 
memory capacity, and long-lasting rechargeable batteries, 
among other valuable features. Due to these reasons, high-
performance Edge computing environments consider 
smartphones as valuable computing resources, and promote 
the creation and use of smartphone-based clusters to 
distribute the execution of the tasks inherent to different 
kinds of Edge applications on the smartphones in the 

cluster. One example is distributing the tasks from AI 
(Artificial Intelligence) applications aimed to identify 
objects in images taken in urban environments via neural 
network models. 

In this context, to distribute the tasks inherent to a given 
application on the smartphones that compose the cluster, it 
is necessary to use an appropriate load-balancing strategy. 
The load-balancing strategies usually decide which tasks of 
the application are assigned to each smartphone, so that a 
given optimization objective is reached. In this respect, 
many load-balancing strategies have been proposed in the 
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literature for smartphone-based clusters [6], which differ in 
several aspects, including the optimization objectives 
considered (e.g., to minimize the time required to execute 
the tasks), the kind of algorithm utilized to decide the 
assignment of the tasks (e.g., heuristic and metaheuristic 
algorithms), and the smartphone attributes considered to 
decide such assignment (e.g., battery level, and CPU load).  

For selecting the best load-balancing strategy for a given 
cluster with m smartphones, the performance of a number 
of g candidate strategies should be evaluated on a number 
of r different scenarios inherent to the cluster. These r 
scenarios represent different initial states of the cluster. 
Specifically, these scenarios are composed by the m 
smartphones in the cluster, but differ in relation to the start 
battery levels, which are required for the m smartphones. 
Therefore, each of the r scenarios must be prepared before 
evaluating each of the g strategies on it. With respect to 
this, as detailed in [1], the preparation of a given scenario 
involves applying battery charge/discharge actions on the 
smartphones in the scenario, in order to reach the start 
battery levels required for these smartphones from the 
corresponding current battery levels, at the minimal 
possible time for the set of m smartphones. 

Thus, considering that each one of the r scenarios must 
be prepared before evaluating each of the g strategies on it, 
this leads to a number of e = r*g scenario preparation 
events. Since these e events aim to prepare scenarios 
composed by the same m smartphones, these e events must 
be sequentially developed one at a time. In addition, when 
these e events are sequentially developed, the current 
battery levels of the m smartphones in the scenario of each 
event are affected by the previous event in the sequential 
order. As a consequence of this, the time required for 
developing each event depends on the previous event in the 
sequential order. Therefore, the problem of defining the 
sequential order in which these e events should be 
developed, considering that the total time required to 
develop them should be minimized, is relevant in the 
context of facilitating the evaluation of diverse candidate 
load-balancing strategies for smartphone-based clusters. 

In connection with the ideas previously mentioned, 
different software/hardware tools [5, 6, 7, 8] have been 
proposed in the literature for simulating smartphone-based 
clusters. These tools allow researchers to simulate the 
creation of a cluster composed by smartphones of different 
models, and to define the attributes of such smartphones 
(e.g., current battery level, CPU load, screen state, and 
charge/discharge profiles). Moreover, these tools simulate 
the execution of a given load-balancing strategy on a 
created smartphone-based cluster, considering the attributes 
defined for the smartphones, and also the tasks of a given 
application. To complement the tools presented in recent 
work [7, 8], a software module was recently proposed [1], 
which aims at preparing a given scenario inherent to a 
created smartphone-based cluster. This module defines the 
battery charge/discharge actions that should be applied on 
the smartphones in the scenario, to reach the start battery 

levels required for these smartphones in such a scenario, 
from the corresponding current battery levels. However, to 
the best of our knowledge, the tools proposed so far in the 
literature do not contain software aimed to facilitate the 
evaluation of a number of candidate load-balancing 
strategies on a number of diverse scenarios inherent to a 
smartphone-based cluster created. 

Thus, again, the problem addressed in this paper implies 
defining the sequential order in which a given number of e 
scenario preparation events should be developed, in such a 
way that the total time required to develop them is 
minimized. This problem is modeled here as the well–
known ATSP (Asymmetric Traveling Salesman Problem) 
[2]. As the events to be sequentially developed can be 
modeled as the cities to be visited, the time required to 
develop each of these events can be modeled as the cost of 
visiting each of the cities, and thus defining the sequential 
order for developing the events is equivalent to defining the 
sequential order to visit the cities. By modeling the 
addressed problem as the ATSP, the complexity of the 
addressed problem is equivalent to the complexity of the 
ATSP; ATSP is a NP-Hard problem [2].  

A novel software module named BAGESS (Battery 
Aware Green Edge Scenario Sequencer) is proposed here, 
which uses a single-objective genetic algorithm to 
determine the best time-effective sequential order to 
develop the e events. We utilize a genetic algorithm 
specifically since the addressed problem is modeled as the 
ATSP. Genetic algorithms have been shown to be effective 
to solve the ATSP, achieving near-optimal solutions, and 
sometimes optimal solutions, for medium and large ATSP 
instances [2]. Therefore, a genetic algorithm is an 
appropriate alternative for the addressed problem. 

The main contributions of this paper are: 
– A mathematical model for the addressed problem of 
determining the sequential order in which a given number 
of e scenario preparation events should be developed, so 
that the total time required to develop them is minimized. 
This model is defined based on the recognized 
mathematical model proposed by Dantzig et al. [19] for the 
Traveling Salesman Problem (TSP) and then extended for 
the ATSP. 
– An introduction to the software module BAGESS, which 
utilizes a genetic algorithm for defining the sequential order 
to develop the given e events. This genetic algorithm has 
been designed to: a) explore different feasible sequential 
orders for developing the e events one at a time, and b) 
identify the sequential order that allows developing these e 
events at the minimal possible time. 
– An experimental evaluation of the genetic algorithm 
utilized by BAGESS. Specifically, the genetic algorithm’s 
performance was evaluated on 540 different instances of 
the addressed problem, and then was compared with those 
of the two methods currently used to determine the 
sequential order to develop a given number of e scenario 
preparation events. The obtained results indicate that the 
algorithm outperforms the two mentioned methods, 
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achieving significant savings in terms of the total time 
required to develop the e events (i.e., savings on [12, 
85]%). The significance of these results was validated with 
the Mann–Whitney U statistical test [4], with a confidence 
level of α = 0.001.  
– BAGESS’s source code in Java 1.8, which includes the 
genetic algorithm’s code, publicly available for reuse and 
adaptation. Moreover, the above-mentioned 540 problem 
instances are publicly available for experimentation. 

The remainder of the paper is organized as follows. In 
Section II, the addressed problem is described in detail, and 
then the mathematical model of this problem is presented. In 
Section III, the software module BAGESS is presented, and 
then the genetic algorithm used by BAGESS is described in 
detail, and the computational complexity of this algorithm is 
analyzed. In Section IV, the computational experiments that 
were developed for evaluating the performance of the genetic 
algorithm used by BAGESS are presented, and after that the 
results obtained by these experiments are presented and 
analyzed in detail. In Section V, the main implications and 
limitations of BAGESS are discussed. In Section VI, related 
works from literature are reviewed. Finally, in Section VII, 
the conclusion of this work and future work are presented. 
 
II. PROBLEM DESCRIPTION: SEQUENCING LOAD-

BALANCING SCENARIOS 

A. LOAD-BALANCING SCENARIOS 
Suppose that a given number g of load-balancing strategies 
are being considered as candidates to distribute the workload 
on a cluster of m smartphones. To determine the best of these 
strategies for achieving a specific objective on this cluster 
(e.g., complete a set of tasks in the minimum time), the load 
balancing performance of each strategy j (j = 1, …, g) should 
be evaluated on a given number r of different scenarios 
inherent to the cluster. Regarding this, each scenario i (i = 1, 
…, r) is composed of the m smartphones belonging to the 
cluster. In each scenario i, there are predefined target battery 
levels for the m smartphones, which are required to evaluate 
any strategy j on the scenario i. Besides, in each scenario i, 
the m smartphones have the current battery levels associated 
with them. To evaluate the load balancing performance of 
any strategy j on scenario i, it is necessary to prepare such a 
scenario.  

The preparation of the scenario involves applying 
sequences of battery charge/discharge actions on the m 
smartphones in the scenario, to reach the target battery levels 
predefined for these m smartphones from the corresponding 
current battery levels, at the minimal possible time for the set 
of m smartphones [1]. In this respect, the minimal possible 
time to reach the target battery levels predefined for the m 
smartphones depends on the difference between the current 
and target battery levels of these smartphones. Specifically, 
the higher the difference between the current and target 
battery levels of these m smartphones, the higher the time to 
reach the target battery levels predefined for these 

smartphones. Once the m smartphones in the scenario have 
reached their target battery levels, the scenario is considered 
ready (or prepared) to evaluate any of the strategies. For a 
detailed description of the scenario preparation problem, and 
the most recent approach proposed for it, we refer to [1]. 

Considering the above-mentioned, each one of the r 
scenarios should be prepared before evaluating each of the g 
strategies over it. This means that each one of the r scenarios 
should be prepared as many times as the number g of 
strategies to be evaluated on it. This leads to a number of e = 
r * g scenario preparation events. These e events differ in 
terms of the scenario i to be prepared (i.e., events differ in 
terms of the target and current battery levels considered for 
the m smartphones) and/or the strategy j to be evaluated. In 
addition, given that these e events aim to prepare scenarios 
composed by the same m smartphones, the e events should 
be developed sequentially one at a time. In this context, the 
sequential order in which the e events are developed is really 
important because the development of the k-th event depends 
on the development of the (k-1)-th event, considering k = 2, 
…, e. Specifically, suppose that the k-th event aims to 
prepare the scenario scea in order to evaluate the strategy strc, 
whereas the (k-1)-th event aims to prepare the scenario sceb 
in order to evaluate the strategy strf, considering scea ≠ sceb 
and/or strc ≠ strf. In the k-th event, to prepare the scenario 
scea, first it is necessary to determine the current battery level 
of each one of the m smartphones, and after that, the scenario 
preparation approach proposed in [1] is used to determine the 
sequences of battery charge/discharge actions to be applied 
on the m smartphones, in order to reach the target battery 
levels predefined for these smartphones from the current 
battery levels, at the minimal possible time for the set of m 
smartphones. Thus, the time required to prepare the scenario 
scea is equivalent to the time amount required to apply the 
sequences of battery charge/discharge actions indicated by 
the mentioned approach on the m smartphones. 

In order to determine the current battery level cbls,sce(k) of 
each smartphone s (s = 1, …, m) in the scenario scea to be 
prepared by the k-th event, it is necessary to consider that 
cbls,sce(k) depends on two factors inherent to the (k-1)-th event. 
The first factor tbls,sce(k-1) refers to the target battery level 
predefined for each smartphone s in the scenario sceb to be 
prepared by the (k-1)-th event. This factor means once the 
scenario sceb is prepared, the battery level of each 
smartphone s is equal to tbls,sce(k-1). The second factor ds,str(k-1) 
refers to the battery level variation that each smartphone s 
suffers once the strategy strf considered in the (k-1)-th event 
is evaluated on the prepared scenario sceb. This factor is 
relevant because the scenario sceb is prepared in order to 
evaluate the strategy strf over it. The evaluation of strf on sceb 
implies that strf will distribute workload on the m 
smartphones, and thus, the battery level tbls,sce(k-1) of each of 
the m smartphones will be subject to a decrease ds,str(k-1). 
Therefore, once strf is evaluated on sceb, the battery level of 
each smartphone s will be equal to tbls,sce(k-1) – ds,str(k-1). Then, 
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given that the k-th event is carried out immediately after that 
the (k-1)-th event is finished, the current battery level 
cbls,sce(k) of each smartphone s will be equivalent to tbls,sce(k-1) 
– ds,str(k-1). It is necessary to mention that the values of the 
terms cbls,sce(k), and besides the predefined values of the terms 
tbls,sce(k-1), are integer values on the range [0, 100]%. In 
addition, the values of the terms ds,str(k-1) are predefined 
integer values on the range [0, 100]%. 

The sequential order in which the e scenario preparation 
events are developed determines the current battery levels 
considered by each of these events for the m smartphones to 
be prepared, and consequently, impacts the time required by 
each of these events to prepare the m smartphones. Having 
this in mind, the scenario sequencing problem addressed here 
involves defining the sequential order in which the e scenario 
preparation events should be developed, in such a way that 
the total time required to develop these e events is 
minimized. 

B. INSTANCE OF THE PROBLEM 
Fig. 1 shows an instance of the addressed problem. In this 
instance, a number of r = 3 scenarios, which are composed 
by the same 3 smartphones, and a number of g = 2 load 
balancing strategies, are considered. Then, from these 
scenarios and strategies, a number of e = 6 scenario 
preparation events are considered, in order to prepare each of 
the 3 scenarios before evaluating each one of the 2 strategies 
on it. 

Fig. 1.a presents the three considered scenarios and details 
the target battery level tbls,i predefined for each smartphone s 
in each scenario i. Then, Fig. 1.b presents the two strategies 
considered, and indicates the battery variation ds,j each 
smartphone s can suffer after strategy j is evaluated on the set 
of 3 smartphones. Fig. 1.c presents the six events defined 
from the three scenarios and the two strategies, indicating the 
scenario to be prepared by each event, and the strategy to be 
evaluated on the scenario prepared by each event. Finally, 
Fig. 1.d details the current battery level cbls,sce(1) to be 
considered for each smartphone s in the first event to be 
developed. In this sense, it is important to note that the first 
event to be developed will be determined after the sequential 
order of the e events is determined. This is described below 
in detail. 

Fig. 2.a shows a feasible sequential order to develop the 
six events of Fig. 1.c one at a time. This order indicates that 
the first event to be developed is event 3. Then, the events to 
be developed in second and third place are events 4 and 5, 
respectively. After that, the events to be carried out in fourth 
and fifth place are 6 and 1, respectively. Finally, the sixth 
event to be developed is event 2.  

To develop the six events following the sequential order 
given in Fig. 2.a, it is required to define the current battery 
level to be considered for each smartphone s in the scenario 
of each event, considering the place given to each event in 
the sequential order. In the case of the first event in the 

sequential order (i.e., event 3), the current battery level 
cbls,sce(1) of each smartphone s is a predefined integer value 
on the range [0, 100]% (as detailed in Fig. 1.d, with the 
purpose of representing the battery level of the smartphone s 
at the moment of developing the first event). Unlike this, in 
the case of the k-th event in the sequential order, considering 
k = 2, …, 6, the current battery level cbls,sce(k) of each 
smartphone s is tbls,sce(k-1) – ds,str(k-1), as was previously 
described. For example, in the case of the second event (i.e., 
event 4), the current battery level cbl1,sce(2) of the smartphone 
1 is calculated as tbl1,sce(1) – d1,str(1). Note that tbl1,sce(1) 
represents the target battery level of the smartphone 1 in the 
scenario of the first event (i.e., scenario 2), and is 90% (as 
detailed in Fig. 1.a). Then, d1,str(1) represents the decrease in 
the battery level tbl1,sce(1) of smartphone 1 once that the 
strategy considered in the first event (i.e., the strategy 1) is 
evaluated on the scenario of the first event, and is 10% (as 
detailed in Fig. 1.b). Thus, the current battery level cbl1,sce(2) 
of the smartphone 1 in the second event is 90% – 10% = 
80%. Fig. 2.b presents in detail the current battery level 
cbls,sce(k) determined for each smartphone s in the k-th event 
of the sequential order, for all k. 

Once the current battery levels of the 3 smartphones in the 
scenario of each event are defined, the events are developed 
following the sequential order given in Fig. 2.a. This means 
that, for each event, the scenario inherent to the event is 
prepared, according to the scenario preparation approach 
proposed in [1]. Specifically, this approach is applied to the 
scenario, and indicates the sequences of battery 
charge/discharge actions to be applied on the three 
smartphones, in order to reach the target battery levels of 
these 3 smartphones from the current battery levels. Then, 
the sequences of actions indicated by the approach are 
applied on the three smartphones in the scenario. Thus, the 
time required to prepare the scenario is equivalent to the time 
required to apply the mentioned sequences of actions. Fig. 
2.c shows the time required to prepare the scenario of each 
one of the 6 events, according to the sequences of actions 
indicated by the mentioned approach. 

It is important to mention that other feasible sequential 
orders can be defined to develop these six events. Given that 
there are no precedence relationships between the events, 
each one of the six events can be developed immediately 
after any of the other 5 events. Thus, a number of 6! feasible 
sequential orders can be defined to develop the six events. 
Fig. 3.a shows other feasible sequential order to develop the 
6 events, which is different from the one detailed in Fig. 2.a. 
Then, Fig. 3.b details the current battery level cbls,sce(k) 
determined for each smartphone s in the scenario of the k-th 
event of this order, for all k. Finally, Fig. 3.c presents the 
time required to prepare the scenario of each event, according 
to the sequences of actions indicated by the previously 
mentioned approach. Note that, as was previously explained, 
the lower the difference between the current and target 
battery levels of the three smartphones in the scenario of an 

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2024.3469641

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/



  Yannibelli et al.: Preparation of Papers for IEEE Access (February 2024) 

VOLUME XX, 2024 5 

event, the lower the time required by the sequences of actions 
indicated to reach the target battery levels of these 
smartphones from the current battery levels, and thus, the 
lower the time required to prepare the scenario. For example, 
in the case of the scenario of the event 4 (i.e., scenario 2), the 
target battery levels tbls,i of the smartphones (i.e., 90%, 96% 
and 34% for smartphone 1, 2 and 3, respectively) are closer 
to the current battery levels cbls,sce(2) defined for these 

smartphones in Fig. 2.b (i.e., 80%, 86% and 17% for 
smartphone 1, 2 and 3, respectively) than the current battery 
levels cbls,sce(5) defined for these smartphones in Fig. 3.b (i.e., 
22%, 10% and 21% for smartphone 1, 2 and 3, respectively). 
For this reason, the time required to prepare the scenario of 
the event 4 in Fig. 2.c is much lower than that required to 
prepare this scenario in Fig. 3.c. 

 
 
 

 

FIGURE 1. Instance of the addressed scenario sequencing problem. 
 

FIGURE 2. Feasible solution for the problem instance shown in Fig. 1. 
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FIGURE 3. Another feasible solution for the problem instance shown in Fig. 1. 
 

 
C. MATHEMATICAL FORMULATION  OF THE 
PROBLEM 

The previously described scenario sequencing problem has 
significant similarities with the known ATSP (Asymmetric 
Traveling Salesman Problem) [2]. Such similarities are 
explained below in detail. 
 
• The e scenario preparation events to be sequentially 

developed are considered as equivalent to the e cities to 
be sequentially visited in the ATSP.  

• Each of the e events can be developed immediately after 
any of the other events (i.e., there are no precedence 
relationships between events). This is similar to the fact 
that each one of the e cities can be visited immediately 
after any of the other cities (i.e., a fully connected 
network of e cities is considered in ATSP). 

• The time required to develop the event h, immediately 
after developing event q, is considered as equivalent to 
the cost of visiting the city h, immediately after visiting 
the city q (h, q  {1, …, e} and h ≠ q). 

• The sequential order to be defined for developing the e 
events, which includes each event only once, is 
considered as equivalent to the sequential order to be 
defined for visiting the e cities, which includes each city 
only once. However, these sequential orders have the 
following difference: In the sequential order for visiting 
the e cities, it is considered that once the e-th city is 
visited, it is necessary to go back to the first visited city. 
Unlike this, in the sequential order for developing the e 
events, once developed the e-th event indicated in this 
order, no other event must be developed. 

• The total time required to develop the e events, 
according to a sequential order given for these e events, 
is considered as equivalent to the total cost of visiting 
the e cities, according to a sequential order given for 
these e cities. Nevertheless, to calculate the total time 
required for developing the e events, it is considered the 
time to develop the first event indicated in the given 

order, and then the time required to develop the k-th 
event in the given order immediately after of developing 
the (k-1)-th event, for all k (k = 2, …, e). In contrast to 
this, to calculate the total cost of visiting the e cities, it is 
considered the cost of visiting the k-th city indicated in 
the giver order immediately after visiting the (k-1)-th 
city, for all k, and also the cost of going back to the first 
visited city once visited the e-th city in the order.  

• Determining the sequential order in which the e events 
should be developed, so that the total time required for 
developing these events is minimized. This is considered 
equivalent to determining the sequential order in which 
the e cities should be visited, in such a way that the total 
cost of visiting these cities is minimized. 

 
Therefore, the mathematical formulation of the scenario 
sequencing problem is defined based on the formulation 
proposed by Dantzig et al. [19] for the TSP and then 
extended for the ATSP, and is presented below.  
 

qh;u;Ezx*ttmin z
Eh Eq

hqhqz ≠=∈⎟
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⎠

⎞

⎜
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⎝

⎛
+∑∑

∈ ∈

1  (1) 
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10 =≠∈=∑
∈

q
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∈
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Sh Sq
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In this mathematical formulation, E is the set of e events to 
be sequentially ordered, E = {1,…,e}.Then, tz is the time 
required to develop the event z, when z is the first event in 
the sequential order, and thus the development of z does not 
depend on a previous event, and thq is the time required to 
develop the event q, when q is immediately preceded by the 
event h in the sequential order, and so the development of q 
depends on the development of h. Recall that, as described in 
Sections II.A and II.B, the time required to develop any of 
the e events refers to the amount of time required to prepare 
the scenario inherent to the event (i.e., to apply the sequences 
of battery charge/discharge actions indicated by the scenario 
preparation approach [1] on the m smartphones of the 
scenario inherent to the event). 

This mathematical formulation considers binary decision 
variables xhq and integer decision variables uz. In this respect, 
the variables xhq indicate if the event q is directly preceded by 
the event h in the sequential order (xhq = 1) or not (xhq = 0). 
Besides, the variables uz indicate the position of the event z in 
the sequential order, considering uz = 1,…, e. 

Moreover, this formulation has one objective function that 
is defined by Eq. (1). This function aims to minimize the 
total time required to sequentially develop the e events one at 
a time, and is subject to the constraints defined by Eq. (2)-
(6). In this respect, the constraints defined by Eq. (2)-(5) 
guarantee that each of the e events is included exactly once in 
the sequential order. This is guaranteed if each of the events 
in the positions [2, e] of the sequential order has exactly one 
immediate predecessor event (Eq. (3)), and each of the events 
in the positions [1, e-1] of the sequential order has exactly 
one immediate successor event (Eq. (4)). Besides, the event 
in the position 1 of the sequential order must not be preceded 
by other event (Eq. (2)), and the event in the position e of the 
sequential order must not be succeeded by other event (Eq. 
(5)). Finally, the constraints defined by Eq. (6) guarantee a 
single sequential order that includes the e events, preventing 
partial sequential orders that include a subset of the e events. 
These constraints are the well-known sub-tour elimination 
constraints of Dantzig et al. [19]. 

The presented mathematical formulation of the addressed 
scenario sequencing problem is based on the mathematical 
formulation proposed by Dantzig et al. [19] for the TSP and 
then extended for the ATSP, but differs from the latter in the 
following aspects. Firstly, in addition to considering the 
variables xhq of the formulation by Dantzig et al., the 
variables uz are considered. Secondly, to define the objective 
function (Eq. (1)), the term tz and the variables uz were 
included in the objective function of the formulation by 

Dantzig et al. Finally, since it is necessary to guarantee that 
the first event in the sequential order is not preceded by other 
event, and the e-th event in the sequential order is not 
succeeded by other event, all the constraints of the 
formulation by Dantzig et al. (excepting the sub-tour 
elimination constraints) were adapted by including the 
variables uz, which resulted in the constraints defined by Eq. 
(3) and the constraints defined by Eq. (4). Besides, the 
constraints defined by Eq. (2) and the constraints defined by 
Eq. (5) were added to the formulation.  

D. COMPLEXITY OF THE PROBLEM 
Due to the similarities of the addressed scenario sequencing 
problem with the ATSP, it is possible to claim that the 
complexity of the scenario sequencing problem is equal to 
the complexity of the ATSP. In this respect, the ATSP is 
known to be an NP-Hard problem [2].  

Given the complexity of the ATSP, during the last two 
decades, different kinds of algorithms have been proposed in 
the literature for solving this problem, including exact and 
meta-heuristic algorithms. In this sense, the exact algorithms 
(e.g., branching and shearing, and dynamic programming) 
guarantee optimal solutions for the ATSP instances. 
However, the runtime of these algorithms grows 
exponentially with the number of cities to be visited, and 
therefore are usually considered for solving only small ATSP 
instances [20]. On the other hand, the meta-heuristic 
algorithms (e.g., tabu search algorithms, simulated annealing 
algorithms, genetic algorithms, and swarm intelligence 
algorithms) are aimed to obtain high-quality solutions (not 
necessarily the optimal solutions) for the ATSP instances, in 
a reasonable runtime. Because of this reason, these 
algorithms are generally considered by the research 
community and practitioners to solve medium and large 
ATSP instances [20]. 

With regard to the mentioned meta-heuristic algorithms, 
genetic algorithms proposed in the last years for solving the 
ATSP have reached near-optimal solutions, and sometimes 
optimal solutions, for medium and large ATSP instances in a 
reasonable runtime [2]. Besides, unlike the other meta-
heuristic algorithms, these genetic algorithms propose a very 
natural and simple encoding for the ATSP solutions (i.e., 
solutions are encoded as permutations of the e cities to be 
visited), and also propose search operators (i.e., crossover 
and mutation operators feasible for permutations of the e 
cities) that can be easily implemented, require a very low 
runtime (i.e., the computing time complexity of these 
operators is O(e)), and allow an effective exploration and 
exploitation of the solution space inherent to the ATSP 
instances..  

Considering all the above-mentioned, a genetic algorithm 
is proposed in the next section for the addressed scenario 
sequencing problem (Section III), with the aim of achieving 
high-quality solutions in an acceptable runtime, and thereby 
outperforming the solutions that are provided by the two 
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methods currently utilized for the addressed problem 
(Section IV.C). 

 
III. BAGESS 
To address the previously described scenario sequencing 
problem, we have developed a novel software module called 
BAGESS (Battery Aware Green Edge Scenario Sequencer). 
This module uses a genetic algorithm designed to determine 
the best sequential order in which a given number of e 
scenario preparation events should be developed. We 
describe in detail below the input data of this module, and 
then the general behavior and the main components of the 
mentioned genetic algorithm that is considered as the core of 
BAGESS. 

A. INPUT DATA 
As input data, BAGESS receives a given number of r 
scenarios, which are composed by the same m smartphones. 
Each scenario i contains a predefined target battery level tbls,i 
for each smartphone s, where this level is an integer value on 
the range [0, 100]%. Moreover, each of the m smartphones 
has associated real timestamped battery charge/discharge 
profiles. These profiles provide the time (in milliseconds) 
required to charge/discharge the battery of the smartphone 
from a given level to another given level.  

Besides, BAGESS receives a given number of g strategies 
to be evaluated on each scenario i. For each strategy j, the 
estimated battery decrease ds,j that can be suffered by each 
smartphone s once the strategy j is evaluated on the set of m 
smartphones is given, where this decrease is an integer value 
on the range [0, 100]%.  

Finally, BAGESS receives a given number of e = r * g 
scenario preparation events. Each of these e events includes 
one scenario from the given r scenarios and one strategy 
from the given g strategies. Besides, these e events differ 
regarding the scenario and/or the strategy included. These e 
events are predefined in this way since each one of the r 
scenarios should be prepared before evaluating each one of 
the g strategies over it.  

It is necessary to note that in each scenario i received by 
BAGESS as input data, the current battery level cbls,i of each 
smartphone s is unknown. This is due to, as detailed in 
Section II, the current battery level of each smartphone s in 
the scenario inherent to each event is calculated once the 
sequential order of the events is determined. In this respect, 
BAGESS only receives the current battery level to be 
considered for each smartphone s in the first event of the 
sequential order. 

B. GENETIC ALGORITHM 
After BAGESS receives the input data, it applies the genetic 
algorithm. This algorithm has been specially designed to 
explore different feasible sequential orders for developing the 
given e events one at a time, with the aim of finding the 

sequential order that allows developing these e events at the 
minimal possible time.  
 
1) GENERAL BEHAVIOR 
This genetic algorithm (see Algorithm 1) follows an iterative 
behavior, and starts by generating an initial population with a 
number of p feasible encoded solutions. Each one of these 
encoded solutions represents a feasible sequential order to 
develop the given e events one at a time. Then, the algorithm 
evaluates each of these encoded solutions by a fitness 
evaluation process, regarding the considered optimization 
objective: minimizing the time required to sequentially 
develop the e events one at a time.  

In each one of the iterations, the algorithm applies a parent 
selection process on the current population, with the aim of 
defining which solutions will make up the mating pool, and 
thus, will be used to create new encoded solutions. 
Specifically, the algorithm utilizes the parent selection 
process tournament selection [3], under a tournament size k, 
for encouraging the selection of varied high–fitness solutions 
with respect of the sequential order indicated to develop the e 
events. Then, the algorithm organizes the solutions in the 
mating pool into pairs, and applies a crossover process on 
each pair of solutions, under a probability Pc, for creating a 
pool of new solutions. In this respect, the crossover process 
applied by the algorithm is feasible for the used solution 
encoding, and creates new solutions by combining the 
sequential orders indicated in the parent solutions to develop 
the e events. Then, the algorithm applies a mutation process 
on each new created solution, under a probability Pm, to 
introduce diversity in the pool of new created solutions. In 
this sense, the mutation process applied by the algorithm is 
feasible for the solution encoding utilized, and modifies the 
sequential order indicated to develop the e events. 
Subsequently, the algorithm evaluates each new created 
solution, by the fitness evaluation process. After that, the 
algorithm applies a survival selection process on the current 
population and the pool of new created solutions, to 
determine which solutions will make up the population for 
the subsequent iteration. Specifically, the algorithm uses the 
survival selection process steady-state selection [3], under a 
replacement percentage c, with the aim of maintaining the 
best encoded solutions generated until the current iteration. 

The algorithm iterates until a given number of I iterations 
is reached. After this stop condition is achieved, the 
algorithm provides BAGESS the best solution of the last 
population, as the solution obtained to sequentially order the 
e events to be developed. 
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Algorithm 1 Pseudocode of the genetic algorithm 
Input: e: events to be ordered sequentially 
            I: the maximum number of iterations 
            p: number of solutions in the population 
            k: tournament size (tournament selection) 
            Pc: crossover probability 
            Pm: mutation probability 
            c: replacement percentage (steady-state selection) 
Output: solution (sequential order of the e events) 
  1:  pop = generate_initial_population(p, e); 
  2:  fitness_evaluation(pop); 
  3:  i = 1 (record the number of iterations); 
  4:  while i <= I do 
  5:     mating_pool = tournament_selection(pop, k); 
  6:     offspring = crossover(mating_pool, Pc);  
  7:     mutation(offspring, Pm); 
  8:     fitness_evaluation(offspring); 
  9:     pop = steady_state_selection(pop, offspring, c); 
10:     i = i + 1; 
11:  end while 
12:  solution = best_solution(pop); 
13:  return solution; 

 
2) SOLUTION ENCODING 
Each one of the solutions in the population of this algorithm 
is represented as an e-tuple <o1, o2, …, oe>, where e is the 
number of events to be sequentially developed. Each of the 
terms oh (h=1,…, e) represents a different event from the e 
events. Thus, each solution includes the e events once (i.e., 
each solution is a permutation of the e events), and represents 
a feasible sequential order to develop the e events one at a 
time.  

To generate each one of the p solutions for the initial 
population of the algorithm, a random-based process is 
applied. This process begins from an empty e-tuple, and then 
develops a number of e iterations. In each iteration h 
(h=1,…,e), the process considers the events that have not 
been included in the e-tuple yet, and randomly selects one of 
these events. The selected event is placed in position h of the 
e-tuple, and so is considered as the h-th event in the 
sequential order represented by this e-tuple. Then, the current 
battery level cbls,sce(h) of each smartphone s in the scenario 
corresponding to this h-th event is calculated as detailed in 
Section II. In this way, the random-based process defines the 
event to be placed in each position h of the e-tuple, and 
consequently, the sequential order indicated by the e-tuple to 
develop the e events one at a time. 

The solution presented in Fig. 2.a corresponds to a feasible 
encoded solution for the problem instance shown in Fig. 1. In 
this case, the encoded solution is represented as a 6-tuple, 
since the number e of events is equal to six. Each position h 
of this 6-tuple contains a different event from the 6 events, 
and Fig. 2.b presents the current battery level cbls,sce(h) 
defined for each smartphone s in the scenario of the event 
placed in each position h of this 6-tuple. Then, this 6-tuple 

indicates a feasible sequential order for developing the six 
events one at a time. 
 
3) FITNESS EVALUATION PROCESS 
This process is used with the aim of evaluating each one of 
the encoded solutions in the population of the algorithm 
regarding the considered optimization objective. In this case, 
the optimization objective is minimizing the time required to 
sequentially develop the e events one at a time, as described 
in Section II. Thus, for evaluating each one of the encoded 
solutions according to this objective, the process follows the 
behavior that is described below. 

Considering a given encoded solution <o1, o2, …, oe>, 
where each oh represents a different event from the e events, 
the process estimates the time required to sequentially 
develop the e events one at a time, following the sequential 
order indicated by this solution. To do this, the process 
develops a number of e iterations. In each iteration h, the 
process considers the event oh (including the current battery 
level cbls,sce(h) defined for each smartphone s in the scenario 
inherent to this event), and estimates the time required to 
develop the event oh. Recall that this time refers to the time 
required to prepare the scenario inherent to the event oh.. To 
estimate this time, the process applies the scenario 
preparation approach proposed in [1] on the scenario inherent 
to the event oh. This approach considers the current and 
target battery levels of the m smartphones in the mentioned 
scenario, and determines the sequences of battery 
charge/discharge actions that should be applied on the m 
smartphones, to reach the target battery levels of these m 
smartphones from the corresponding current battery levels, at 
the minimal possible time for the set of m smartphones. 
Then, this approach provides the process: a) the sequences of 
battery charge/discharge actions that should be applied on the 
m smartphones in the scenario inherent to oh, and b) the time 
estimated to apply these sequences of actions, which defines 
the time estimated to prepare the scenario inherent to oh. 

Once the e iterations are complete, the process adds the 
estimated time for the e events, and thus obtains the 
estimated time to sequentially develop the e events one at a 
time, following the order indicated by the solution. Finally, 
the process assigns this estimated time as the fitness value to 
the encoded solution. By applying this process, the lower the 
time estimated for a solution, the better the solution regarding 
the considered optimization objective, and so the lower (i.e., 
better) the fitness value assigned to this solution. 

Note that Fig. 2.c considers the event placed in each 
position h (h=1,…,6) of the solution presented in Fig. 2.a, 
and then details the time required to develop the event placed 
in each position h, as estimated by the scenario preparation 
approach proposed in [1]. Finally, Fig. 2.c details the time 
(253.09 minutes) required to sequentially develop the six 
events one at a time, following the order indicated by the 
solution. This time has been obtained by adding the time 
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estimated for the six events, which is the fitness value 
assigned to the mentioned solution. 

 
4) CROSSOVER PROCESS 
The genetic algorithm utilizes a crossover process for 
creating a pool of new encoded solutions from the encoded 
solutions that make up the mating pool. Regarding the 
mating pool, the genetic algorithm applies a known parent 
selection process named tournament selection [3], to 
determine which encoded solutions from the current 
population will make up the mating pool. Then, the genetic 
algorithm organizes the encoded solutions in the mating pool 
into pairs, and applies the crossover process on each pair of 
encoded solutions, under a probability Pc, to create new 
encoded solutions. In this sense, we designed a feasible 
crossover process for the solution encoding detailed in 
Section III.B.2. Below, the behavior of this crossover process 
is described in detail. 

Considering two given encoded solutions named p1 and 
p2, the crossover process creates two new encoded solutions 
named o1 and o2. To achieve this, the process follows two 
stages. In the first stage, the process applies a known 
crossover operator named LOX (Linear Order Crossover 
operator) [3] on p1 and p2. The operator LOX is applied here 
because of this operator has been satisfactorily applied in the 
literature to develop the crossover of solutions encoded as 
permutations of n cities for the TSP [3]. To apply LOX on p1 
and p2, the process develops the next steps. First, the process 
randomly selects two positions c1 and c2 from the e positions 
of the solution p1 (c1, c2  {1,…, e} and c1 < c2). After that, 
to generate the new encoded solution o1 (o2), the process 
copies the events placed in positions [c1, c2] of p1 (p2) to the 
positions [c1, c2] of the solution o1 (o2), in the same order. 
Finally, the process considers the events that have not been 
included in the solution o1 (o2) yet, and places these events 
in the empty positions of the solution o1 (o2), following the 
order in which these events appear in p2 (p1). In the second 

stage, the process goes through the e positions of the solution 
o1 (o2). For each position h of o1 (o2), the process considers 
the event placed in this position, and then calculates the 
current battery level cbls,sce(h) of each smartphone s in the 
scenario inherent to this event, as detailed in Section II. Once 
the second stage is complete, the crossover process provides 
the new encoded solutions o1 and o2 as result. Each of these 
solutions represents a feasible sequential order to develop the 
e events one at a time. 

Fig. 4 shows in detail an example of the crossover process. 
In this example, the crossover process is applied on the 
encoded solutions p1 and p2, and then provides the encoded 
solutions o1 and o2. In this respect, the solutions p1 and p2 
correspond to the solutions presented in Fig 2 and Fig. 3, 
respectively, for the problem instance detailed in Fig. 1. 
Then, the positions c1 and c2 randomly selected by the 
process are equal to 3 and 4, respectively. Thus, to create o1, 
the events placed in positions [3, 4] of p1 (i.e., the events 5 
and 6) are copied to the positions [3, 4] of o1, in the same 
order. After that, the remaining events (i.e., the events 1, 2, 3 
and 4) are copied in the empty positions of o1 (i.e., the 
positions 1, 2, 5 and 6), following the relative order in which 
these events appear in p2 (i.e., the relative order is 1, 3, 2 and 
4). Similarly, to create o2, the events placed in positions [3, 
4] of p2 (i.e., the events 5 and 2) are copied to the positions 
[3, 4] of o2, in the same order. Subsequently, the remaining 
events (i.e., the events 1, 3, 4 and 6) are copied in the empty 
positions of o2 (i.e., the positions 1, 2, 5, and 6), following 
the relative order in which these events appear in p1 (i.e., the 
relative order is 3, 4, 6 and 1). Finally, for each position h (h 
= 1,…, 6) of o1 (o2), the event placed in this position is 
considered, and the current battery level cbls,sce(h) of each of 
the 3 smartphones (s = 1,…,3) in the scenario inherent to this 
event is calculated, as detailed in Section II, and considering 
the values tbls,sce(h-1) and ds,str(h-1) detailed in Fig. 1. 
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FIGURE 4. Example of the crossover process applied on encoded solutions for the problem instance shown in Fig. 1. 

 

5) MUTATION PROCESS 
The genetic algorithm applies a mutation process on each 
encoded solution provided by the crossover process, under a 
probability Pm, with the aim of incorporating diversity into 
the pool of newly created encoded solutions, and 
consequently, preserving the diversity of the population 
during the search process developed by the algorithm. In this 
respect, we designed a feasible mutation process for the 
solution encoding detailed in Section III.B.2. 

Given an encoded solution p1, the mutation process 
provides a new encoded solution o1. To do that, the mutation 
process comprises two stages. In the first stage, the process 
applies a known mutation operator named IM (Inversion 
Mutation operator) [3] on p1. The operator IM is utilized 
here since the sequential application of the operators LOX 
and IM has been successfully evaluated in the literature for 
exploring solutions encoded as permutations of n cities for 
TSP [3]. To apply IM on p1, the process performs the 
following steps. First, the process randomly chooses two 
positions c1 and c2 from the e positions of the solution p1 
(c1, c2  {1,…, e} and c1 < c2). Then, to generate the new 
encoded solution o1, the process copies the events placed in 
positions [c1, c2] of p1 to the positions [c1, c2] of the 
solution o1, in reverse order. To do this, the process develops 
n iterations (n = c2 – c1 + 1). In each iteration t (t = 0,…, n-
1), the process copies the event placed in position (c1 + t) of 
p1 to the position (c2 - t) of the solution o1. Finally, the 
process considers the events that have not been included in 
the solution o1 yet, and then copies these events to the 
solution o1, in the same positions that these events have in 

p1. In the second stage, the process goes through the e 
positions of the solution o1. For each position h of o1, the 
process considers the event placed in this position, and then 
calculates the current battery level cbls,sce(h) of each 
smartphone s in the scenario inherent to this event, as 
detailed in Section II. After the second stage is finished, the 
mutation process supplies the new encoded solution o1 as the 
result. This new solution represents a feasible sequential 
order to develop the e events one at a time. 

Fig. 5 shows an example of the mutation process. In this 
example, the process is applied on the encoded solution p1, 
and provides the encoded solution o1. Regarding this, the 
solution p1 corresponds to the solution presented in Fig. 2 for 
the problem instance detailed in Fig. 1. Then, the positions c1 
and c2 randomly selected by the process are equal to 2 and 4, 
respectively. Therefore, to create the solution o1, the events 
placed in positions [2, 4] of p1 (i.e., the events 4, 5 and 6) are 
copied to the positions [2, 4] of o1 in the reverse order (i.e., 
the reverse order is 6, 5 and 4). After that, the remaining 
events (i.e., the events 1, 2 and 3) are copied to the solution 
o1, in the same positions that these events have in p1. In this 
sense, the positions of the events 1, 2 and 3 in the solution p1 
are 5, 6 and 1, respectively. Thus, the events 1, 2 and 3 are 
copied to the positions 5, 6 and 1 of the solution o1. Finally, 
for each position h (h=1,…,6) of the solution o1, the event 
placed in this position is considered, and then the current 
battery level cbls,sce(h) of each one of the 3 smartphones (s = 
1,…,3) in the scenario inherent to this event is calculated, as 
detailed in Section II, and taking into account the values 
tbls,sce(h-1) and ds,str(h-1) detailed in Figure 1. 

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2024.3469641

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/



  Yannibelli et al.: Preparation of Papers for IEEE Access (February 2024) 

VOLUME XX, 2024 12 

 

 

FIGURE 5. Example of the mutation process applied on an encoded solution for the problem instance shown in Fig. 1. 

 
C. COMPLEXITY OF THE GENETIC ALGORITHM 
We analyze below the computing time complexity, and also 
the spatial complexity, of the proposed genetic algorithm.  
 
1) COMPUTING TIME COMPLEXITY 
As detailed in Algorithm 1, the genetic algorithm starts by 
applying sequentially the two processes indicated in lines 1-
2. Then, the algorithm develops a number of I iterations, as 
indicated in line 4. In each of these iterations, the algorithm 
applies sequentially the five processes indicated in lines 5-9. 
Finally, the algorithm applies the process indicated in line 12. 
Thus, to determine the computing time complexity of the 
algorithm, it is necessary first to determine the computing 
time complexity of each one of the processes applied by this 
algorithm, which is detailed below. 
 
Generate initial population: This process creates p encoded 
solutions that are recorded in pop. To create each one of 
these solutions, the process iterates on the e positions of an 
empty e-tuple. For each position h, the process decides the 
event to be placed in the position, and after that it calculates 
the current battery level cbls,sce(h) of each of the m 
smartphones in the scenario of this event. Thus, the 
computing time complexity of this process is O(p*e*m). 
 
Fitness evaluation: This process calculates the fitness value 
of each one of the p encoded solutions in pop. To calculate 
the fitness value of each solution, the process iterates on the e 
positions of the solution. For each of these e positions, the 
process considers the event located in this position, and then 
estimates the time required to develop this event, by applying 
the scenario preparation approach proposed in [1] on the 
scenario inherent to this event. As detailed in Section 3.B.II, 
this approach considers the m smartphones in the scenario, 
and the current and target battery levels of each smartphone, 
to determine the sequence of battery charge/discharge actions 
that should be applied on each smartphone. It is necessary to 
mention that the computing time complexity of this approach 
is as detailed in Eq. (7), where I’ refers to the number of 

iterations developed by the approach (i.e., 2000), and p’ is 
the number of solutions in the population used by the 
approach (i.e., 100). In this respect, given that each of these 
p’ solutions encodes a possible sequence of actions for each 
smartphone, the term a refers to the total number of actions 
encoded in each solution p’, and is defined as detailed in Eq. 
(8), where the term ⎪cbl(s) – tbl(s)⎪ refers to the number of 
actions in the sequence encoded for the smartphone s. 
Considering all the previously mentioned, the computing 
time complexity of the fitness evaluation process is as 
detailed in Eq. (9). 

( )aʹ*pʹ*IO  (7) 

∑
=

−=
m

s

)s(tbl)s(cbla
1

                                                        (8) 

( )aʹ*pʹ*I*e*pO  (9) 

 
Tournament selection: This process selects p solutions from 
pop to make up the mating pool. To select each one of these 
p solutions, the process randomly chooses k solutions from 
pop, and after that iterates on these k solutions, in order to 
choose the solution with the best fitness value. Thus, the 
computing time complexity of this process is O(p*k). 
 
Crossover: This process is applied on each of the p/2 pairs of 
encoded solutions in the mating pool, under a probability Pc. 
Thus, a number of (p/2)*Pc pairs of encoded solutions are 
crossed, and 2 new encoded solutions are obtained from each 
pair. As a result, a number of (p/2)*Pc*2 = p*Pc new 
solutions are created by applying this process. To create each 
of these new solutions from a given pair of solutions, the 
process follows two stages. In the first stage, the process 
applies the operator LOX on this pair of solutions. This 
operator iterates on the e positions of the solutions in the pair, 
to determine the event to be placed in each of the e positions 
of the new solution. In the second stage, the process iterates 
on the e positions of the new solution. For each position h, 
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the process considers the event placed in this position, and 
then calculates the current battery level cbls,sce(h) of each of 
the m smartphones in the scenario of this event. Thus, the 
computing time complexity of this process is O(p*Pc*e*m). 

It is necessary to mention that, as indicated in line 6 of 
Algorithm 1, the p*Pc new solutions created by applying the 
crossover process are recorded in offspring. In addition, the 
p*(1-Pc) solutions in the mating pool that were not crossed 
are also recorded in offspring. Thus, offspring contains (p*Pc 
+ p*(1-Pc)) = p solutions. 

 
Mutation: This process is applied on each of the p encoded 
solutions in offspring, under a probability Pm. Therefore, a 
number of p*Pm solutions in offspring are replaced with new 
solutions obtained by applying this process. To obtain each 
of these new solutions from a given solution, the process 
follows two stages. In the first stage, the process applies the 
operator IM on the given solution. This operator iterates on 
the e positions of this solution, to determine the event to be 
placed in each of the e positions of the new solution. In the 
second stage, the process iterates on the e positions of the 
new solution. For each position h, the process considers the 
event placed in this position, and then calculates the current 
battery level cbls,sce(h) of each of the m smartphones in the 
scenario of this event. Therefore, the computing time 
complexity of this mutation process is O(p*Pm*e*m). 
 
Steady-state selection: This process selects p solutions from 
pop and offspring, in order to make up the population for the 
subsequent iteration. To achieve this, this process starts by 
ordering the p solutions in pop, according to the fitness 
values of these solutions, via the MergeSort method [21]. It is 
necessary to mention that the computing time complexity of 
this method is O(p*log(p)). After that, the process orders the 
p solutions in offspring, according to the fitness values of 
these solutions, via the mentioned method. Finally, the 
process considers the replacement percentage c, and replaces 
the p*(c/100) worst solutions in pop (i.e., solutions with the 
worst fitness values) by the p*(c/100) best solutions in 
offspring (i.e., solutions with the best fitness values). Thus, 
the computing time complexity of this process is 
O(p*log(p)). 
 
Best solution: This process iterates on the p solutions in pop, 
in order to choose the solution with the best fitness value. 
Thus, the computing time complexity of this process is O(p). 
 
Besides determining the computing time complexity of the 
processes applied by the genetic algorithm, it is necessary to 
determine the number of times that each of these processes is 
applied by this algorithm. In this respect, as detailed in 
Algorithm 1, the processes indicated in lines 5-9 are applied 
in each one of the I iterations developed by this algorithm.  

Thus, considering the previously detailed computing time 
complexity of the processes applied by the genetic algorithm, 

and also the number of times that each of these processes is 
applied by this algorithm, the computing time complexity TC 
of this algorithm is as detailed in Eq. (10). By the summation 
rule of the Big-Oh notation [21], and given that the 6th term 
on the right-side of Eq. (10) is the higher-complexity term, 
the computing time complexity TC of this algorithm can be 
simplified as detailed in Eq. (11). 

 

( )+= m*e*pOTC   

( )+aʹ*pʹ*I*e*pO   

( )+k*p*IO   

( )+m*e*P*p*IO c                                               

( )+m*e*P*p*IO m   

( )+aʹ*pʹ*I*e*p*IO   

( )( )+plog*p*IO   

( )pO                                                                       (10) 

which translates to: 

( )aʹ*pʹ*I*e*p*IOTC =

                                               
(11) 

 
2) SPATIAL COMPLEXITY 
To determine the spatial complexity of the genetic algorithm, 
it is necessary to determine the spatial complexity of the data 
structures and variables that are created and then allocated by 
this algorithm in memory. To do this, because this algorithm 
was implemented in Java 1.8, it is required to consider the 
typical memory requirements for primitive types (e.g., 
integer and double variables), arrays, objects, and references 
to objects, in Java implementations. These typical memory 
requirements are considered here as indicated in [22, 31]. 
 
Data structures pop, mating_pool, and offspring: Each of 
these data structures contains p solutions, and each of these p 
solutions contains e events. For this reason, each of these 
data structures was implemented as a two-dimensional p-by-e 
array of Event objects. Besides, each Event object includes: 
a) the identifier of the event, which is an integer variable on 
the range [1,…, e], and b) the current battery levels cbls,sce(h) 
defined for the m smartphones in the scenario of the event, 
which are integer variables on the range [0,…, 100]. 

In order to define the spatial complexity inherent to each 
one of these data structures, it is necessary to consider that 
the two-dimensional p-by-e array contains p*e references to 
Event objects, and each one of these references uses 8 bytes. 
Moreover, each Event object uses 20 bytes plus (1 + m)*4 
bytes: 16 bytes of overhead plus 4 bytes of padding plus 4 
bytes for each of its (1 + m) integer variables. Therefore, the 
spatial complexity of the three data structures (in bytes) is 
3*(p*e*(8 + 20 + (1+m)*4)) = 96*p*e + 12*p*e*m. 
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In the algorithm, each one of the three data structures has 
associated an array of p double values, to record the fitness 
value of each one of the p solutions in the structure. This 
array uses 8 bytes for each of its p double values. Therefore, 
the spatial complexity of the fitness value arrays associated 
to the three data structures (in bytes) is 3*(p*8) = 24*p. 

 
Data structure solution: This data structure is used to record 
the best solution obtained by the genetic algorithm. This 
solution contains e events. For this reason, this data structure 
was implemented as an array of e Event objects. Thus, the 
spatial complexity of this data structure (in bytes) is equal to 
e*(8 + 20 + (1+m)*4) = 32*e + 4*e*m. 
 
Data structures inherent to the fitness evaluation process: 
Due to the fitness evaluation process of the genetic algorithm 
applies the scenario preparation approach proposed in [1], it 
is necessary to determine the spatial complexity of the data 
structures created and then used by this approach in memory. 
In this sense, as detailed in [1], this approach uses three main 
data structures. Each of these structures contains p’ solutions 
(i.e., 100), and each one of these solutions contains a actions, 
considering a as detailed in Eq. (8). Then, each one of these 
data structures was implemented as a two-dimensional p’-by-
a array of Action objects. In this respect, each Action object 
includes: a) the kind of action (a boolean variable), b) the 
initial battery level (an integer variable), c) the end battery 
level (an integer variable), d) CPU load (an integer variable), 
and e) screen state (a boolean variable).  

For defining the spatial complexity of each of these data 
structures, it is necessary to note that the two-dimensional p’-
by-a array contains p’*a references to Action objects, and 
each of these references uses 8 bytes. In addition, each Action 
object utilizes 34 bytes: 16 bytes of overhead plus 4 bytes of 
padding plus 4 bytes for each of its 3 integer variables plus 1 
byte for one each of its 2 boolean variables. Thus, the spatial 
complexity of the three data structures (in bytes) is equal to 
3*(p’*a*(8 + 34)) = 126*p’*a. Moreover, each of these data 
structures has associated an array of p’ double values, which 
allows to record the fitness value of each of the p’ solutions 
in the structure. Thus, the spatial complexity of the arrays 
associated to the three data structures (in bytes) is 3*(p’*8) = 
24*p’. 

 
Therefore, considering the previously mentioned spatial 

complexity of the data structures created and then used by the 
genetic algorithm, and also the spatial complexity of the data 
structures created and then used by the approach proposed in 
[1], the spatial complexity SC of this algorithm (in bytes) is 
as detailed in Eq. (12). 
 
 
 
 

++= m*e*p*e*p*SC 1296   

+p*24                                                              

++ m*e*e* 432   

+aʹ*p*126   

ṕ*24                                                                 (12) 

 
IV. COMPUTATIONAL EXPERIMENTS 
As mentioned in Section III, BAGESS uses the previously 
presented genetic algorithm to determine the sequential order 
in which a given number of e scenario preparation events 
should be developed, in such a way that the time required to 
develop these e events one at a time is minimized. Thus, 
computational experiments were developed with the aim of 
evaluating the genetic algorithm’s performance on different 
instances of the addressed scenario preparation event 
sequencing problem. 

In Section IV.A, the instance sets used to carry out these 
experiments are presented. In Section IV.B, the experimental 
setting considered for these experiments is detailed. In 
Section IV.C, the two alternative methods for the problem 
are described, for comparison purposes. Finally, in Section 
IV.D, the results obtained by these experiments are both 
presented and analyzed in detail. 

A. INSTANCE SETS 
In order to utilize different representative and realistic 
experimental instances of the addressed problem, 54 sets of 
instances of this problem were defined. Each one of these 
instance sets contains 10 different instances, where each 
instance includes a number of scenario preparation events. 
The 54 instance sets differ in terms of the category of their 
instances with respect to the five components that are 
described below. 

Component R: The number r of scenarios considered in 
the instance, where r ∈ {10, 15, 20}. Thus, 3 different 
categories of instances are considered in respect of the 
number of scenarios, namely R10, R15 and R20. 

Component G: The number g of load-balancing strategies 
taken into account in the instance, where g ∈ {2, 4, 6}. 
Therefore, 3 different categories of instances are considered 
regarding the number of strategies, namely G2, G4 and G6. 

Component M: The number m of smartphones that 
compose the r scenarios of the instance. Given that m ∈ {4, 
8, 16}, 3 different categories of instances are considered with 
respect to the number of smartphones, namely M4, M8 and 
M16. It is necessary to mention that each one of the r 
scenarios includes target battery levels predetermined for the 
m smartphones. Besides, these r scenarios differ in terms of 
the target battery levels of the m smartphones. 

Component D: The estimated battery percentage 
decreases that can be suffered by the m smartphones 
composing the scenarios considered in the instance, if the 
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strategy considered in the instance is evaluated on the set of 
m smartphones. These decreases are integer values on the 
range [0, 20]%. This value range has been divided into two 
disjoint subranges, with the aim of considering two different 
categories of instances regarding D. Specifically, this range 
has been divided into the next two subranges: [0, 10]% and 
(10, 20]%, in order to determine the categories Low D (LD) 
and High D (HD) with the same width, respectively. 

Component E: The number e = r * g of events considered 
in the instance. Given that r ∈ {10, 15, 20}, and g ∈ {2, 4, 
6}, the number e ∈ {20, 30, 40, 60, 80, 90, 120}. Therefore, 
seven different categories of instances are considered in 
relation to the component E. 

Tables I, II and III describe in detail the 54 defined 
instance sets, regarding the five components above-
mentioned. In these tables, column 1 presents the name of 
each instance set, considering that this name is composed by 
the category of the instances with respect to the components 
R, G, M, and D. Then,  columns 2, 3 and 4 indicate the value 
of the instances of each set in relation to the components R, 
G and M, respectively. After that,  column 5 indicates the 
value range of the instances of each set in relation to the 
component D. Subsequently,  column 6 indicates the value of 
the instances of each set in relation to the component E. Last, 
column 7 details the number of instances that compose each 
set. 

 
 

TABLE I 
CHARACTERISTICS OF THE DEFINED INSTANCE SETS WHERE G = 2.

  
Instance set R G M D E No. of instances 

G2_R10_M4_HD 10 2 4 (10, 20] 20 10 
G2_R10_M4_LD 10 2 4 [0, 10] 20 10 
G2_R10_M8_HD 10 2 8 (10, 20] 20 10 
G2_R10_M8_LD 10 2 8 [0, 10] 20 10 
G2_R10_M16_HD 10 2 16 (10, 20] 20 10 
G2_R10_M16_LD 10 2 16 [0, 10] 20 10 
G2_R15_M4_HD 15 2 4 (10, 20] 30 10 
G2_R15_M4_LD 15 2 4 [0, 10] 30 10 
G2_R15_M8_HD 15 2 8 (10, 20] 30 10 
G2_R15_M8_LD 15 2 8 [0, 10] 30 10 
G2_R15_M16_HD 15 2 16 (10, 20] 30 10 
G2_R15_M16_LD 15 2 16 [0, 10] 30 10 
G2_R20_M4_HD 20 2 4 (10, 20] 40 10 
G2_R20_M4_LD 20 2 4 [0, 10] 40 10 
G2_R20_M8_HD 20 2 8 (10, 20] 40 10 
G2_R20_M8_LD 20 2 8 [0, 10] 40 10 
G2_R20_M16_HD 20 2 16 (10, 20] 40 10 
G2_R20_M16_LD 20 2 16 [0, 10] 40 10 

 
 

 
 

TABLE II 
CHARACTERISTICS OF THE DEFINED INSTANCE SETS WHERE G = 4. 

 
Instance set R G M D E No. of instances 

G4_R10_M4_HD 10 4 4 (10, 20] 40 10 
G4_R10_M4_LD 10 4 4 [0, 10] 40 10 
G4_R10_M8_HD 10 4 8 (10, 20] 40 10 
G4_R10_M8_LD 10 4 8 [0, 10] 40 10 
G4_R10_M16_HD 10 4 16 (10, 20] 40 10 
G4_R10_M16_LD 10 4 16 [0, 10] 40 10 
G4_R15_M4_HD 15 4 4 (10, 20] 60 10 
G4_R15_M4_LD 15 4 4 [0, 10] 60 10 
G4_R15_M8_HD 15 4 8 (10, 20] 60 10 
G4_R15_M8_LD 15 4 8 [0, 10] 60 10 
G4_R15_M16_HD 15 4 16 (10, 20] 60 10 
G4_R15_M16_LD 15 4 16 [0, 10] 60 10 
G4_R20_M4_HD 20 4 4 (10, 20] 80 10 
G4_R20_M4_LD 20 4 4 [0, 10] 80 10 
G4_R20_M8_HD 20 4 8 (10, 20] 80 10 
G4_R20_M8_LD 20 4 8 [0, 10] 80 10 
G4_R20_M16_HD 20 4 16 (10, 20] 80 10 
G4_R20_M16_LD 20 4 16 [0, 10] 80 10 
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TABLE III 

CHARACTERISTICS OF THE DEFINED INSTANCE SETS WHERE G = 6. 
 

Instance set R G M D E No. of instances 
G6_R10_M4_HD 10 6 4 (10, 20] 60 10 
G6_R10_M4_LD 10 6 4 [0, 10] 60 10 
G6_R10_M8_HD 10 6 8 (10, 20] 60 10 
G6_R10_M8_LD 10 6 8 [0, 10] 60 10 
G6_R10_M16_HD 10 6 16 (10, 20] 60 10 
G6_R10_M16_LD 10 6 16 [0, 10] 60 10 
G6_R15_M4_HD 15 6 4 (10, 20] 90 10 
G6_R15_M4_LD 15 6 4 [0, 10] 90 10 
G6_R15_M8_HD 15 6 8 (10, 20] 90 10 
G6_R15_M8_LD 15 6 8 [0, 10] 90 10 
G6_R15_M16_HD 15 6 16 (10, 20] 90 10 
G6_R15_M16_LD 15 6 16 [0, 10] 90 10 
G6_R20_M4_HD 20 6 4 (10, 20] 120 10 
G6_R20_M4_LD 20 6 4 [0, 10] 120 10 
G6_R20_M8_HD 20 6 8 (10, 20] 120 10 
G6_R20_M8_LD 20 6 8 [0, 10] 120 10 
G6_R20_M16_HD 20 6 16 (10, 20] 120 10 
G6_R20_M16_LD 20 6 16 [0, 10] 120 10 

 

B. EXPERIMENTAL SETTING 
The genetic algorithm was run on each of the 10 instances of 
each of the 54 instance sets detailed in Section IV.A. Given 
that the genetic algorithms are not deterministic algorithms 
[3], this genetic algorithm was run several times on each 
instance (i.e., 30 runs), with the aim of achieving reliable 
statistical results. For each one of the runs, the solution 
reached by the genetic algorithm for the instance was 
recorded. The fitness value of this solution (i.e., the time (in 
minutes) required to develop the e events considered in the 
instance one at a time, according to the sequential order 
indicated by the solution) was also recorded. Besides, the 
runtime required by the genetic algorithm to obtain this 
solution for the instance was recorded. 

To develop the runs of the genetic algorithm, the 
parameter setting indicated in Table IV was used. It is 
necessary to mention that preliminary experiments were 
developed in order to select this parameter setting. In such 
experiments, diverse parameter settings typically 
recommended in the literature on genetic algorithms [3, 9] 
were considered, which are detailed in Table V. For each one 
of these parameter settings, the genetic algorithm was run 
several times (i.e., 30 runs) on each instance, and then the 
average fitness value of the 30 solutions achieved for each 
instance was calculated. According to these experiments, the 
parameter setting indicated in Table IV provided the best 
average fitness values for the instances used. 

 
TABLE IV 

PARAMETER SETTING OF THE GENETIC ALGORITHM. 
 

Parameter Value 
Population size 50 
k (Tournament selection) 3 
Pc (Crossover) 1.0 
Pm (Mutation) 0.1 
c (Steady-state selection) 50% 
Number of generations or iterations 200 

 
 

 

TABLE V 
PARAMETER SETTINGS CONSIDERED IN THE PRELIMINARY EXPERIMENTS. 

 
Parameter Considered values  

Population size {50, 100} 
k (Tournament selection) {3, 4, 5} 
Pc (Crossover) {0.7, 0.8, 0.9, 1.0} 
Pm (Mutation) {0.05, 0.1} 
c (Steady-state selection) {25%, 50%} 
Number of generations or iterations {200, 400, 800, 1000} 
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C. CURRENT METHODS FOR SEQUENCING LOAD-
BALANCING SCENARIOS 

To comparatively evaluate the genetic algorithm’s 
performance, the two methods currently utilized for 
determining the sequential order to develop a given number e 
of scenario preparation events one at a time are considered. 
In this respect, one of these methods is named Sequential 
Order by Scenario (SO-S), and the other method is named 
Sequential Order by Load-Balancing Strategy (SO-LBS). 
These two methods are described below in detail. 
 
1) SEQUENTIAL ORDER BY SCENARIO (SO-S) 
Given a number e = r * g of scenario preparation events, this 
method sequentially orders the e events according to the 
scenario included in these events. Specifically, the method 
considers the number r of scenarios, and then develops a 
number r of iterations. In each iteration i (i = 1,…, r), the 
method considers the g events that include the scenario i, and 
differ in terms of the considered strategy. Then, the method 
adds these g events to the end of the sequential order (i.e., 
places these events in the positions [(g * (i - 1)) + 1, …, (g * 
(i - 1)) + g] of the sequential order). Once the e events have 
been added to the sequential order, the method goes through 
the e positions of this sequential order. For each position h (h 
= 1,…, e), the method considers the event placed in this 
position, and calculates the current battery level cbls,sce(h) of 
each smartphone s in the scenario inherent to this event, as 
detailed in Section II. Thus, SO-S obtains and provides a 
feasible order to develop the e events one at a time. 

Fig. 6.a shows the sequential order provided by SO-S to 
develop the 6 events detailed in the problem instance shown 
in Fig. 1, and then Fig. 6.b indicates the scenario sce(h) of the 
event placed in each position h of this order. In this case, the 

events that include scenario 1 (i.e, events 1 and 2) have been 
placed in positions [1, 2] of the sequential order. After that, 
the events that include scenario 2 (i.e, events 3 and 4) have 
been placed in positions [3, 4] of the sequential order. Last, 
the events that include scenario 3 (i.e, events 5 and 6) have 
been placed in positions [5, 6] of the sequential order. Fig. 
6.c presents the current battery level cbls,sce(h) defined for each 
one of the 3 smartphones (s = 1,…,3) in the scenario sce(h) 
of the event placed in each position h of this sequential order. 

Regarding the computing time complexity of this method, 
it is necessary to note that this method follows two stages. In 
the first stage, this method iterates on the r scenarios. For 
each scenario, this method iterates on the e events, to identify 
the events that include the scenario, and add these events to 
the end of the sequential order. Thus, the computing time 
complexity of this first stage is O(r*e). In the second stage, 
this method iterates on the e events in the sequential order. 
For each event, this method calculates the current battery 
levels cbls,sce(h) of the m smartphones in the scenario inherent 
to the event. Thus, the computing time complexity of this 
second stage is equal to O(e*m). Considering the computing 
time complexity of the two mentioned stages, and by the 
summation rule of the Big-Oh notation [21], the computing 
time complexity of this method is max(O(r*e), O(e*m)). 

In relation to the spatial complexity of this method, it is 
necessary to mention that this method creates and then uses 
one data structure to contain the e events in the sequential 
order defined for them. This structure was implemented as an 
array of e Event objects. Therefore, the spatial complexity of 
this method (in bytes) is equal to e*(8 + 20 + (1+m)*4) = 
32*e + 4*e*m. 

 

FIGURE 6. Solution provided by the method SO-S for the problem instance shown in Fig. 1. 

 

2) SEQUENTIAL ORDER BY LOAD-BALANCING 
STRATEGY (SO-LBS) 
Considering a given number e = r * g of scenario preparation 
events, this method sequentially orders the e events 
according to the strategy considered in these events. In 

particular, the method considers the number g of strategies, 
and develops a number g of iterations. In each iteration j (j = 
1,…, g), the method considers the r events that include the 
strategy j, and are different with respect to the considered 
scenario. Next, these r events are added to the end of the 
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sequential order (i.e., these events are placed in the positions 
[(r * (j - 1)) + 1,…, (r * (j - 1)) + r] of the sequential order). 
After the e events have been incorporated to the sequential 
order, the method goes through the e positions of this 
sequential order. For each one of the positions h (h = 1,…, e), 
the method considers the event placed in this position, and 
then calculates the current battery level cbls,sce(h) of each 
smartphone s in the scenario inherent to this event, as 
detailed in Section II. In this way, this method SO-LBS 
obtains and provides a feasible order to develop the e events 
one at a time. 

Fig. 7.a shows the sequential order provided by SO-LBS 
to develop the 6 events detailed in the problem instance 
shown in Fig. 1, and next Fig. 7.b indicates the strategy str(h) 
considered by the event placed in each position h of this 
sequential order. In this sequential order, the events that 
consider strategy 1 (i.e, events 1, 3 and 5) have been placed 
in positions [1, 3]. Subsequently, the events that consider 
strategy 2 (i.e, the events 2, 4 and 6) have been placed in 
positions [4, 6]. Fig. 7.c presents the current battery level 
cbls,sce(h) defined for each one of the 3 smartphones (s = 
1,…,3) in the scenario sce(h) of the event placed in each 
position h of this sequential order.  

With respect to the computing time complexity of this 
method, this method follows two stages. In the first of these 
stages, this method iterates on the g strategies. For each 
strategy, it iterates on the e events, to identify the events that 
include the strategy, and add these events to the end of the 
sequential order. Therefore, the computing time complexity 
of this first stage is O(g*e). In the second of these stages, this 
method iterates on the e events in the sequential order. For 
each event, this method calculates the current battery level 
cbls,sce(h) of each of the m smartphones in the scenario 

inherent to the event. Therefore, the computing time 
complexity of this second stage is equal to O(e*m). Taking 
into consideration the computing time complexity of the 
mentioned stages, and by the summation rule of the Big-Oh 
notation [21], it is possible to say that the computing time 
complexity of this method is equal to max(O(g*e), O(e*m)). 

Regarding the spatial complexity inherent to this method, 
it is necessary to consider that this method creates and next 
utilizes one data structure for containing the e events in the 
sequential order defined for them, and such structure was 
implemented as an array of e Event objects. Thus, the spatial 
complexity of this method (in bytes) is e*(8 + 20 + (1+m)*4) 
= 32*e + 4*e*m. 

 
3) EXPERIMENTAL EVALUATION OF THE METHODS 
The previously described methods SO-S and SO-LBS allow 
to quickly define a feasible sequential order to develop the e 
events one at a time. However, these methods do not 
consider the time required to develop the e events one at a 
time. Unlike this, the genetic algorithm used by BAGESS 
has been specially designed to minimize the time required to 
develop the e events one at a time. 

The methods SO-S and SO-LBS were applied on each of 
the ten instances of each instance set. For each one of the 
instances, the solution provided by SO-S, and also the 
solution provided by SO-LBS, were recorded. Then, the 
fitness values of these solutions were calculated as described 
in Section III.B.3, with the aim of comparing these fitness 
values with those of the 30 solutions provided by the genetic 
algorithm for the same instance. 

 

 

FIGURE 7. Solution provided by the method SO-LBS for the problem instance shown in Fig. 1. 

 
D. EXPERIMENTAL RESULTS 
In this section, we analyze the solutions obtained by the 
genetic algorithm, and the methods SO-S and SO-LBS, for 
the instance sets presented in Section IV.A. After that, we 
analyze the runtime required by the genetic algorithm, and 

also the mentioned methods, to provide the solutions for the 
instance sets. 
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1) ANALYSIS OF OBTAINED SOLUTIONS 
Tables VI-VIII present the main results obtained by the 
computational experiments developed. In these tables, 
Column 1 details the name of each instance set used in these 
experiments. Then, Columns 2-4 detail the average fitness 
value of the solutions obtained by the genetic algorithm, the 
method SO-S and the method SO-LBS for the instances of 
each set, respectively. Recall that the fitness value of a 
solution refers to the time required to develop the e events 
considered in the instance one at a time, according to the 
sequential order indicated by the solution. Next, Columns 5-7 
detail the minimum fitness value of the solutions obtained by 
the genetic algorithm, SO-S and SO-LBS for the instances of 
each set, respectively. Finally, Columns 8-10 present the 
maximum fitness value of the solutions obtained by the 
genetic algorithm, SO-S and SO-LBS for the instances of 
each set, respectively. 

The average fitness value of the solutions obtained by the 
genetic algorithm for each one of the instance sets is much 
lower than that of the solutions obtained by SO-S, and also 
considerably lower than that of the solutions obtained by SO-
LBS. Specifically, for all instance sets (i.e., 54 instance sets), 
the difference between the average fitness values reached by 
the genetic algorithm and SO-S is in the range of [339, 1334] 
minutes. Besides, for the instance sets where G=2, the 
difference between the average fitness values reached by the 
genetic algorithm and SO-LBS is in the range of [1331, 
4545] minutes. Then, for the instances sets where G=4, and 
the instances sets where G=6, the difference between the 
average fitness values obtained by the genetic algorithm and 
SO-LBS is on the range [3241, 11942] minutes, and on the 
range of [5380, 19474] minutes, respectively. 

These results obtained respecting the average fitness value 
are mainly due to the next reasons. For most instance sets 
(i.e., 50 of the 54 sets), the maximum fitness value reached 
by the genetic algorithm is lower than the minimum fitness 
value reached by SO-S, and for all instance sets (i.e., 54 
instance sets), the maximum fitness value reached by the 
genetic algorithm is lower than the minimum fitness value 
reached by SO-LBS. Moreover, for each of the 540 instances 
utilized in these experiments, the fitness values of the 30 
solutions reached by the genetic algorithm are significantly 
lower than the fitness value of the solution provided by SO-S 
and the fitness value of the solution provided by SO-LBS. 
The statistical significance of these results was validated by 
the Mann–Whitney U test [4], considering a confidence level 
of α = 0.001. 

Based on the previously mentioned results, the solutions 
given by the genetic algorithm reduce the time required for 
sequentially developing the e events considered in the 
instances used. Tables IX-XI detail the average, minimum 
and maximum RPD (Relative Percentage Difference) value 
of the solutions provided by the genetic algorithm, regarding 
the solutions provided by SO-S and SO-LBS, in terms of the 
time required to sequentially develop the e events of the 

instances. The metric RPD determines the percentage 
difference of the time required to sequentially develop the e 
events according to oEA (i.e., solution provided by the genetic 
algorithm), regarding the time required to sequentially 
develop the e events according to oSO-S (i.e., the solution 
provided by SO-S) / oSO-LBS (i.e., solution provided by SO-
LBS). This metric is calculated as detailed in Eqs. (13-14), 
where the terms T(oEA), T(oSO-S) and T(oSO-LBS) refer to the 
fitness value of the solutions oEA, oSO-S and oSO-LBS, 
respectively. Note that if the RPD value is a positive value, 
this means that oEA provides a saving regarding oSO-S / oSO-LBS, 
in terms of the time required to sequentially develop the e 
events one at a time. 

 

                   100×
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From the results detailed in Tables IX-XI, it can be 

mentioned that the solutions given by the genetic algorithm 
for the instances of each set provide a significant average 
saving (average RPD), in terms of the time (in minutes) 
required to sequentially develop the e events one at a time. 
Specifically, for all instance sets, the average saving of the 
solutions provided by the genetic algorithm regarding the 
solutions given by SO-S is on the range [12, 43]%. Besides, 
for the instance sets where G = 2, the average saving of the 
solutions given by the genetic algorithm in respect of the 
solutions given by SO-LBS is in the range [51, 69]%. Then, 
for the instance sets where G = 4 or G = 6, the average saving 
of the solutions provided by the genetic algorithm regarding 
the solutions given by SO-LBS is in the range [66, 85]%.  

Moreover, the solutions given by the genetic algorithm for 
the instances of each set also provide a very good minimal 
saving (minimal RPD). Specifically, for all instance sets, the 
minimal saving of the solutions reached by the genetic 
algorithm regarding the solutions reached by SO-S is in the 
range [8, 37]%. In addition, for the instance sets where G = 2, 
the minimal saving of the solutions given by the genetic 
algorithm with respect to the solutions given by SO-LBS is 
in the range [45, 65]%. Then, for the instance sets where G = 
4 or G = 6, the minimal saving of the solutions provided by 
the genetic algorithm respecting the solutions given by SO-
LBS is in the range [62, 85]%. These results obtained in 
relation to the minimal saving indicate that, for each of the 
540 instances utilized in the computational experiments, the 
30 solutions reached by the genetic algorithm give a saving 
in terms of the time (in minutes) required to sequentially 
develop the e events of the instance. 
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TABLE VI 

AVERAGE, MINIMUM AND MAXIMUM TIME REQUIRED FOR SEQUENTIALLY DEVELOPING THE e EVENTS ACCORDING TO THE SOLUTIONS PROVIDED BY THE 
GENETIC ALGORITHM (GA), THE METHOD SO-S AND THE METHOD SO-LBS, FOR EACH INSTANCE SET WHERE G = 2. 

 
 Time required to develop the e events (minutes) 

Instance set Average Minimum Maximum 
 GA SO-S SO-LBS GA SO-S SO-LBS GA SO-S SO-LBS 

G2_R10_M4_HD 930.30 1329.65 2261.31 796.03 1102.49 1833.84 **1098.90 1534.53 2612.05 
G2_R10_M4_LD 866.46 1435.22 2700.51 755.68 1206.33 2289.56 **1008.46 1699.68 3163.44 
G2_R10_M8_HD 1325.82 1717.52 2927.99 1266.61 1627.39 2745.22 **1444.24 1848.01 3139.36 
G2_R10_M8_LD 1263.33 1809.38 3415.68 1182.40 1411.95 2562.66 **1332.85 1989.64 3830.77 
G2_R10_M16_HD 1702.90 2089.49 3557.81 1645.36 1964.14 3380.16 **1852.48 2217.80 3766.01 
G2_R10_M16_LD 1695.96 2167.05 4102.89 1566.73 2042.91 3910.85 **1849.59 2252.59 4266.75 
G2_R15_M4_HD 1268.73 2072.13 3525.80 1143.22 1888.53 3058.40 **1451.04 2355.23 4118.53 
G2_R15_M4_LD 1195.15 2076.57 3949.93 1043.81 1809.47 3410.70 **1310.15 2392.38 4600.78 
G2_R15_M8_HD 1765.82 2551.90 4336.78 1567.10 2075.85 3602.75 **1983.05 2945.04 5047.98 
G2_R15_M8_LD 1870.44 2631.78 4990.14 1777.24 2362.28 4574.16 **1991.24 2787.48 5300.03 
G2_R15_M16_HD 2454.28 3016.26 5092.13 2294.29 2834.14 4728.41 **2659.66 3195.48 5421.08 
G2_R15_M16_LD 2497.60 3241.30 6029.99 2397.73 3157.87 5793.18 **2583.15 3506.28 6405.28 
G2_R20_M4_HD 1709.05 2696.33 4527.65 1513.28 2499.71 4174.86 **1863.01 2939.42 5064.79 
G2_R20_M4_LD 1569.01 2775.66 5230.19 1209.62 2427.03 4608.40 **1804.25 3091.53 5754.86 
G2_R20_M8_HD 2577.52 3368.57 5711.80 2380.10 3000.95 5095.59 **2753.04 3620.62 6081.51 
G2_R20_M8_LD 2529.35 3699.94 6941.82 2310.23 3481.21 6551.10 **2784.65 4025.86 7652.56 
G2_R20_M16_HD 3312.70 4063.24 6877.36 3170.70 3921.88 6629.93 **3395.38 4228.44 7223.67 
G2_R20_M16_LD 3390.14 4249.21 7935.31 3331.07 3946.24 7422.69 **3495.45 4632.10 8581.98 
Bold values indicate better average times. 
Symbol ** indicates that the maximum time reached by GA is lower than the minimum times reached by SO-S and SO-LBS. 

 
 
 
 

TABLE VII 
AVERAGE, MINIMUM AND MAXIMUM TIME REQUIRED FOR SEQUENTIALLY DEVELOPING THE e EVENTS ACCORDING TO THE SOLUTIONS PROVIDED BY THE 

GENETIC ALGORITHM (GA), THE METHOD SO-S AND THE METHOD SO-LBS, FOR EACH INSTANCE SET WHERE G = 4. 
 

 Time required to develop the e events (minutes) 
Instance set Average Minimum Maximum 

 GA SO-S SO-LBS GA SO-S SO-LBS GA SO-S SO-LBS 
G4_R10_M4_HD 1335.13 1802.43 4577.00 1131.78 1544.78 3489.43 **1487.28 2133.59 5792.30 
G4_R10_M4_LD 1002.63 1521.47 5083.38 761.69 1170.58 3942.30 *1217.25 1879.69 6639.34 
G4_R10_M8_HD 1758.28 2119.33 5248.99 1532.11 1748.37 4162.49 *1939.83 2445.27 6168.78 
G4_R10_M8_LD 1582.58 2012.54 6727.38 1469.21 1717.36 5566.47 *1731.83 2334.23 7582.57 
G4_R10_M16_HD 2251.47 2704.29 7136.86 2143.32 2575.72 6685.55 **2302.95 2894.39 7768.29 
G4_R10_M16_LD 1891.84 2348.27 7765.47 1651.49 2258.79 7454.27 **2013.20 2468.19 8203.43 
G4_R15_M4_HD 1872.46 2518.63 6582.86 1652.39 2237.48 5699.96 **2134.76 2855.27 7911.61 
G4_R15_M4_LD 1485.02 2319.76 7889.95 1257.44 2050.05 7085.94 **1617.95 2629.10 9376.58 
G4_R15_M8_HD 2763.21 3538.04 9236.26 2572.64 3374.29 8370.11 **2902.65 3752.57 10326.97 
G4_R15_M8_LD 2264.68 2938.40 9716.87 1990.72 2631.39 8371.27 **2475.78 3305.70 11094.18 
G4_R15_M16_HD 3389.09 3939.84 10353.63 3304.74 3794.76 9951.33 **3704.15 4139.02 10763.10 
G4_R15_M16_LD 2975.24 3560.77 11586.58 2807.28 3383.88 11077.08 **3174.08 3723.57 12381.66 
G4_R20_M4_HD 2413.02 3613.63 9990.10 2113.15 3400.56 8946.00 **2858.97 3987.14 10765.49 
G4_R20_M4_LD 1986.86 3320.52 11204.89 1848.64 3148.04 10600.76 **2061.31 3470.48 12085.19 
G4_R20_M8_HD 3494.24 4574.84 12137.34 3283.86 4203.82 10986.94 **3561.04 4845.18 13128.52 
G4_R20_M8_LD 2865.20 3960.11 13243.04 2566.86 3640.93 12281.18 **3245.16 4180.42 14083.94 
G4_R20_M16_HD 4397.33 5169.37 13688.41 4209.70 4867.43 12424.00 **4513.92 5377.51 14715.77 
G4_R20_M16_LD 3982.95 4799.84 15925.89 3912.36 4611.14 15279.66 **4116.48 4944.71 16890.74 
Bold values indicate better average times. 
Symbol ** indicates that the maximum time reached by GA is lower than the minimum times reached by SO-S and SO-LBS. 
Symbol * indicates that the maximum time achieved by GA is lower than the minimum time reached by SO-LBS. 

 
 
 

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2024.3469641

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/



  Yannibelli et al.: Preparation of Papers for IEEE Access (February 2024) 

VOLUME XX, 2024 21 

 
TABLE VIII 

AVERAGE, MINIMUM AND MAXIMUM TIME REQUIRED FOR SEQUENTIALLY DEVELOPING THE e EVENTS ACCORDING TO THE SOLUTIONS PROVIDED BY THE 
GENETIC ALGORITHM (GA), THE METHOD SO-S AND THE METHOD SO-LBS, FOR EACH INSTANCE SET WHERE G = 6. 

 
 Time required to develop the e events (minutes) 

Instance set Average Minimum Maximum 
 GA SO-S SO-LBS GA SO-S SO-LBS GA SO-S SO-LBS 

G6_R10_M4_HD 1632.16 2054.47 7012.91 1540.69 1854.34 6470.43 **1777.68 2253.19 7762.28 
G6_R10_M4_LD 1175.89 1700.56 8075.41 1100.02 1511.84 6186.76 **1251.04 1957.49 9527.43 
G6_R10_M8_HD 2287.03 2723.32 8575.38 1892.85 2350.07 7892.42 *2563.28 2997.96 9355.02 
G6_R10_M8_LD 1750.18 2290.02 9903.45 1580.99 2078.08 8826.13 **1954.37 2600.26 11933.06 
G6_R10_M16_HD 2846.20 3247.44 10343.77 2602.81 2980.38 9724.17 *3032.71 3441.78 11510.40 
G6_R10_M16_LD 2239.64 2578.77 11406.47 2015.31 2284.69 10200.17 *2433.70 2788.39 12516.34 
G6_R15_M4_HD 2469.33 3377.21 10982.58 2221.06 3049.90 9621.01 **2661.59 3834.65 12770.11 
G6_R15_M4_LD 1737.55 2549.38 11817.92 1629.32 2239.82 9396.10 **1822.74 2870.16 13485.04 
G6_R15_M8_HD 3348.05 4121.49 13668.98 3227.14 3986.69 12608.51 **3452.35 4193.34 14622.95 
G6_R15_M8_LD 2469.10 3204.31 14645.48 2308.23 2900.31 13487.35 **2693.32 3725.55 17160.75 
G6_R15_M16_HD 4235.76 4829.86 15511.42 3962.95 4318.85 14388.85 *4560.01 5165.77 16380.50 
G6_R15_M16_LD 3320.85 4036.60 17582.00 3138.14 3785.56 16537.87 **3517.34 4337.99 19139.98 
G6_R20_M4_HD 3215.55 4305.68 14174.64 2843.97 3936.14 12277.75 **3472.56 4698.32 15975.80 
G6_R20_M4_LD 2198.87 3334.68 15423.72 1933.96 3013.68 13954.73 **2579.07 3851.99 17818.28 
G6_R20_M8_HD 4518.97 5454.61 17594.41 4029.12 4965.27 16335.39 **4797.40 5743.91 18328.64 
G6_R20_M8_LD 3349.98 4452.32 20443.13 3149.82 4130.60 19037.71 **3571.41 4640.35 21364.12 
G6_R20_M16_HD 5673.16 6589.09 21270.05 5416.38 6394.44 20092.72 **5898.53 6964.77 22342.04 
G6_R20_M16_LD 4212.40 5217.01 23686.65 4107.39 5012.78 23036.96 **4329.39 5604.92 25566.14 
Bold values indicate better average times.  
Symbol ** indicates that the maximum time reached by GA is lower than the minimum times reached by SO-S and SO-LBS. 
Symbol * indicates that the maximum time achieved by GA is lower than the minimum time reached by SO-LBS. 

 
 
 
 

TABLE IX 
AVERAGE, MINIMUM AND MAXIMUM RPD (%) VALUE REACHED BY THE GENETIC ALGORITHM REGARDING SO-S AND SO-LBS, FOR EACH INSTANCE SET 

WHERE G = 2. 
 

 RPD (%) 
Instance Set Average Minimum Maximum 

 SO-S SO-LBS SO-S SO-LBS SO-S SO-LBS 
G2_R10_M4_HD 28.95 58.17 13.98 48.69 48.13 69.52 
G2_R10_M4_LD 39.01 67.64 30.18 63.21 51.89 74.15 
G2_R10_M8_HD 22.63 54.63 15.06 51.12 31.46 58.62 
G2_R10_M8_LD 29.42 62.46 12.80 51.96 36.58 67.14 
G2_R10_M16_HD 18.26 51.99   7.83 45.29 25.81 56.31 
G2_R10_M16_LD 21.77 58.69 17.89 56.65 25.06 60.55 
G2_R15_M4_HD 38.25 63.52 23.17 52.56 50.13 71.48 
G2_R15_M4_LD 41.87 69.42 31.12 63.46 51.26 74.06 
G2_R15_M8_HD 30.32 58.91 23.52 52.37 37.64 63.90 
G2_R15_M8_LD 28.69 62.41 21.07 59.24 36.04 66.47 
G2_R15_M16_HD 18.52 51.69 12.55 47.66 28.20 57.68 
G2_R15_M16_LD 22.85 58.54 18.20 56.32 27.68 60.41 
G2_R20_M4_HD 36.34 62.01 26.69 55.50 46.11 68.72 
G2_R20_M4_LD 43.40 69.94 35.69 65.25 51.26 74.44 
G2_R20_M8_HD 23.26 54.72 13.76 48.24 28.37 57.49 
G2_R20_M8_LD 31.54 63.53 28.15 61.82 35.97 65.82 
G2_R20_M16_HD 18.44 51.79 15.44 48.79 22.49 54.63 
G2_R20_M16_LD 19.97 57.17 14.12 54.36 24.89 59.85 
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TABLE X 
AVERAGE, MINIMUM AND MAXIMUM RPD (%) VALUE REACHED BY THE GENETIC ALGORITHM REGARDING SO-S AND SO-LBS, FOR EACH INSTANCE SET 

WHERE G = 4. 
 

 RPD (%) 
Instance Set Average Minimum Maximum 

 SO-S SO-LBS SO-S SO-LBS SO-S SO-LBS 
G4_R10_M4_HD 25.73 70.40 19.13 65.81 34.69 75.77 
G4_R10_M4_LD 33.99 80.17 29.26 78.61 42.12 81.69 
G4_R10_M8_HD 16.65 66.20 12.37 62.72 23.86 69.82 
G4_R10_M8_LD 20.91 76.31 14.35 73.61 28.57 79.40 
G4_R10_M16_HD 16.61 68.35 10.59 65.55 20.94 70.96 
G4_R10_M16_LD 19.42 75.63 12.06 73.26 26.89 77.98 
G4_R15_M4_HD 25.58 71.37 18.99 66.57 32.90 75.78 
G4_R15_M4_LD 35.96 81.13 33.50 78.96 39.39 83.00 
G4_R15_M8_HD 21.76 69.89 16.64 66.39 29.34 73.49 
G4_R15_M8_LD 22.57 76.46 13.04 72.67 31.11 80.32 
G4_R15_M16_HD 13.99 67.27 10.51 65.58 16.74 68.50 
G4_R15_M16_LD 16.41 74.29 12.10 71.99 21.29 75.41 
G4_R20_M4_HD 33.34 75.81 28.30 73.44 40.72 80.03 
G4_R20_M4_LD 40.13 82.24 37.21 80.89 44.01 83.65 
G4_R20_M8_HD 23.52 71.13 20.54 69.09 26.94 73.22 
G4_R20_M8_LD 27.53 78.30 19.16 75.92 36.51 81.77 
G4_R20_M16_HD 14.89 67.81 13.10 66.12 16.89 69.63 
G4_R20_M16_LD 16.98 74.96 14.01 74.05 20.38 76.69 

 
 
 

 
 

TABLE XI 
AVERAGE, MINIMUM AND MAXIMUM RPD (%) VALUE REACHED BY THE GENETIC ALGORITHM REGARDING SO-S AND SO-LBS, FOR EACH INSTANCE SET 

WHERE G = 6. 
 

 RPD (%) 
Instance Set Average Minimum Maximum 

 SO-S SO-LBS SO-S SO-LBS SO-S SO-LBS 
G6_R10_M4_HD 20.37 76.66 16.32 74.65 27.45 79.40 
G6_R10_M4_LD 30.37 85.15 17.25 79.78 39.15 87.50 
G6_R10_M8_HD 16.14 73.30 13.16 69.57 19.46 76.02 
G6_R10_M8_LD 23.25 82.17 17.28 80.52 32.54 85.30 
G6_R10_M16_HD 12.33 72.41   8.54 69.99 15.20 74.91 
G6_R10_M16_LD 13.06 80.32   9.82 78.68 17.30 81.58 
G6_R15_M4_HD 26.75 77.43 22.36 76.05 32.61 79.77 
G6_R15_M4_LD 31.41 85.07 20.62 81.08 37.59 86.75 
G6_R15_M8_HD 18.75 75.45 15.29 73.21 21.94 77.74 
G6_R15_M8_LD 22.68 83.09 17.95 81.77 28.01 84.41 
G6_R15_M16_HD 12.20 72.70   8.24 71.11 19.10 74.26 
G6_R15_M16_LD 17.72 81.11 16.05 80.48 19.18 81.68 
G6_R20_M4_HD 25.17 77.14 16.40 73.20 31.62 80.45 
G6_R20_M4_LD 34.12 85.75 29.77 85.00 39.28 86.80 
G6_R20_M8_HD 17.13 74.32 14.28 73.15 20.15 75.34 
G6_R20_M8_LD 24.71 83.58 20.91 82.40 28.08 84.84 
G6_R20_M16_HD 13.89 73.31 12.31 72.26 15.42 73.98 
G6_R20_M16_LD 19.15 82.20 15.20 81.40 24.19 83.38 

 
 
 

2) RUNTIME ANALYSIS 
Tables XII-XIV present the average runtime (in minutes) 
required by the genetic algorithm (GA), the method SO-S 
and the method SO-LBS, for each one of the 54 instance sets 
utilized in the computational experiments. The computational 
experiments were developed on a PC equipped with an AMD 

Ryzen 5 with six 2022 MHz cores, 16 GB of RAM, and 
SDD, running Manjaro. Moreover, the genetic algorithm, and 
the methods SO-S and SO-LBS, were implemented in Java 
1.8. 

From Tables XII-XIV, it is possible to mention that the 
runtime required by the genetic algorithm increases as both 
the number e of events considered in the instances, and the 

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2024.3469641

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/



  Yannibelli et al.: Preparation of Papers for IEEE Access (February 2024) 

VOLUME XX, 2024 23 

number m of smartphones that compose the scenarios of 
these events, increase (see values of E and M in Tables I-III). 
This is consistent with the fact that, as detailed in Section 
III.C.1, the computing time complexity of this algorithm, 
O(I*p*e*I’*p’*a), increases as both e and m increases (recall 
that a depends on m, as detailed in Eq. (8)). Regarding this, 
as detailed in Sections III.B and III.C.1, the genetic algorithm 
applies different processes (i.e., fitness evaluation process, 
crossover process, and mutation process) on solutions 
encoded as an e-tuple <o1, o2, …, oe>. Thus, the number e of 
events impacts the runtime of these processes, and as a result 
the runtime of the algorithm. Besides, given an encoded 
solution, the fitness evaluation process estimates the time 
required to develop each of the e events, by applying the 
scenario preparation approach proposed in [1] on the 
scenario of each event. Thus, the runtime of the fitness 
evaluation process is also impacted by the runtime required 
by the approach proposed in [1]. Respecting this, the runtime 
required by this approach depends on the number of 
smartphones that compose the scenario on which the 
approach is applied, as detailed in [1]. Therefore, the number 
m of smartphones that compose the scenarios of the e events 
impacts on the runtime of the mentioned approach, and as a 
result the runtime of the fitness evaluation process and the 
runtime of the algorithm. 

Tables XII-XIV also indicate that the runtimes required by 
the methods SO-S and SO-LBS are significantly lower than 
that required by the genetic algorithm, for each of the 54 
instance sets. These results coincide with the fact that the 
computing time complexities of SO-S and SO-LBS are 
considerably lower than the computing time complexity of 
the genetic algorithm. Recall that, the computing time 
complexity of SO-S is max(O(r*e), O(e*m)) (as detailed in 
Section IV.C.1), and the computing time complexity of SO-
LBS is max(O(g*e), O(e*m)) (as detailed in Section IV.C.2), 
whereas the computing time complexity of the genetic 
algorithm is O(I*p*e*I’*p’*a). Regarding this, as detailed in 
Section IV.C, the methods SO-S and SO-LBS determine a 
sequential order to develop the e events one at a time, based 
on a predefined ordering criterion. Specifically, SO-S 
sequentially orders the e events according to the scenario 
included in these events (i.e., order by scenario), whereas 
SO-LBS sequentially orders the e events according to the 
strategy included in these events (i.e., order by strategy). In 
addition, these ordering criteria do not consider or estimate 
the time required to develop the e events one at a time. 
Unlike these methods, as detailed in Section III.B, the genetic 

algorithm is aimed to determine the sequential order to 
develop the e events, in such a way that the time required for 
developing these e events one at a time is minimized. To 
achieve this aim, the algorithm works on a population of 
solutions encoded as the previously mentioned e-tuple, and 
iteratively applies the previously mentioned processes, as 
well as selection processes, on the encoded solutions that 
compose this population. Thus, the runtime of the genetic 
algorithm is impacted by the size of the population, the 
number of iterations, and also the runtimes of the mentioned 
processes. 

However, it is necessary mentioning that, for each one of 
the 54 instance sets, the runtime required by the genetic 
algorithm to obtain the solutions for the instances is a really 
small percentage (i.e., < 0.40%) of the time needed for 
sequentially developing the e events considered in these 
instances according to the order indicated in these solutions. 
For example, for the instance set named G6_R20_M16_HD, 
the runtime required by the genetic algorithm to obtain the 
solutions for the instances (i.e., 16.75 minutes) is 0.30% of 
the time needed for sequentially developing the events 
considered in the instances according to the order indicated 
in these solutions (i.e., 5673.16 minutes).  

Besides, it is necessary to note that, for each one of the 54 
instance sets, the runtime required by the genetic algorithm to 
obtain the solutions plus the time needed for developing the 
events considered in the instances according to these 
solutions is lower (i.e., [12, 43]% lower) than the time 
needed for developing these events according to the solutions 
provided by SO-S, and besides is lower (i.e., [51, 85]% 
lower) than the time needed for developing these events 
according to the solutions provided by SO-LBS. For 
example, for the instance set G6_R20_M16_HD mentioned, 
the runtime required by the genetic algorithm to obtain the 
solutions (i.e., 16.75 minutes) plus the time needed to 
develop the events considered in the instances according to 
these solutions (i.e., 5673.16 minutes) is 5689.91 minutes. 
This value is 13.76% lower than the time needed to develop 
such events according to the solutions provided by SO-S (i.e., 
6589.09 minutes), and is 73.25% lower than the time needed 
to develop such events according to the solutions provided by 
SO-LBS (i.e., 21270.05 minutes). 

All in all, we can confirm that the runtime needed by the 
genetic algorithm to obtain the solutions for the instances 
used is appropriate in the context of the addressed problem. 
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TABLE XII 
AVERAGE RUNTIME (IN MINUTES) REQUIRED BY THE GENETIC ALGORITHM (GA), THE METHOD SO-S AND THE METHOD SO-LBS, FOR EACH INSTANCE SET 

WHERE G = 2. 
 

Instance set Average runtime (minutes) 
 GA SO-S SO-LBS 

G2_R10_M4_HD 0.51 1.0E-06 1.0E-06 
G2_R10_M4_LD 0.52 1.0E-06 1.0E-06 
G2_R10_M8_HD 0.77 1.0E-06 1.0E-06 
G2_R10_M8_LD 0.78 1.0E-06 1.0E-06 
G2_R10_M16_HD 1.34 1.0E-06 1.0E-06 
G2_R10_M16_LD 1.36 1.0E-06 1.0E-06 
G2_R15_M4_HD 1.15 1.0E-06 1.0E-06 
G2_R15_M4_LD 1.16 1.0E-06 1.0E-06 
G2_R15_M8_HD 1.72 1.0E-06 1.0E-06 
G2_R15_M8_LD 1.80 1.0E-06 1.0E-06 
G2_R15_M16_HD 2.97 1.0E-06 1.0E-06 
G2_R15_M16_LD 3.20 1.0E-06 1.0E-06 
G2_R20_M4_HD 2.07 1.0E-05 1.0E-05 
G2_R20_M4_LD 2.07 1.0E-05 1.0E-05 
G2_R20_M8_HD 3.13 1.0E-05 1.0E-05 
G2_R20_M8_LD 3.20 1.0E-05 1.0E-05 
G2_R20_M16_HD 5.45 1.0E-05 1.0E-05 
G2_R20_M16_LD 5.76 1.0E-05 1.0E-05 

 
 
 
 

 
 
 
 

TABLE XIII 
AVERAGE RUNTIME (IN MINUTES) REQUIRED BY THE GENETIC ALGORITHM (GA), THE METHOD SO-S AND THE METHOD SO-LBS, FOR EACH INSTANCE SET 

WHERE G = 4. 
 

Instance set Average runtime (minutes) 
 GA SO-S SO-LBS 

G4_R10_M4_HD 2.53 1.0E-05 1.0E-05 
G4_R10_M4_LD 2.55 1.0E-05 1.0E-05 
G4_R10_M8_HD 3.26 1.0E-05 1.0E-05 
G4_R10_M8_LD 3.36 1.0E-05 1.0E-05 
G4_R10_M16_HD 5.22 1.0E-05 1.0E-05 
G4_R10_M16_LD 5.07 1.0E-05 1.0E-05 
G4_R15_M4_HD 3.52 1.0E-04 1.0E-04 
G4_R15_M4_LD 3.54 1.0E-04 1.0E-04 
G4_R15_M8_HD 4.53 1.0E-04 1.0E-04 
G4_R15_M8_LD 4.67 1.0E-04 1.0E-04 
G4_R15_M16_HD 7.26 1.0E-04 1.0E-04 
G4_R15_M16_LD 7.05 1.0E-04 1.0E-04 
G4_R20_M4_HD 4.89 1.0E-03 1.0E-03 
G4_R20_M4_LD 4.93 1.0E-03 1.0E-03 
G4_R20_M8_HD 6.30 1.0E-03 1.0E-03 
G4_R20_M8_LD 6.49 1.0E-03 1.0E-03 
G4_R20_M16_HD 10.09 1.0E-03 1.0E-03 
G4_R20_M16_LD 9.80 1.0E-03 1.0E-03 
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TABLE XIV 

AVERAGE RUNTIME (IN MINUTES) REQUIRED BY THE GENETIC ALGORITHM (GA), THE METHOD SO-S AND THE METHOD SO-LBS, FOR EACH INSTANCE SET 
WHERE G = 6. 

 
Instance set Average runtime (minutes) 

 GA SO-S SO-LBS 
G6_R10_M4_HD 3.49 1.0E-04 1.0E-04 
G6_R10_M4_LD 3.54 1.0E-04 1.0E-04 
G6_R10_M8_HD 4.28 1.0E-04 1.0E-04 
G6_R10_M8_LD 4.34 1.0E-04 1.0E-04 
G6_R10_M16_HD 7.47 1.0E-04 1.0E-04 
G6_R10_M16_LD 7.11 1.0E-04 1.0E-04 
G6_R15_M4_HD 5.84 1.0E-03 1.0E-03 
G6_R15_M4_LD 5.89 1.0E-03 1.0E-03 
G6_R15_M8_HD 7.53 1.0E-03 1.0E-03 
G6_R15_M8_LD 7.76 1.0E-03 1.0E-03 
G6_R15_M16_HD 12.05 1.0E-03 1.0E-03 
G6_R15_M16_LD 11.71 1.0E-03 1.0E-03 
G6_R20_M4_HD 8.12 1.0E-02 1.0E-02 
G6_R20_M4_LD 8.18 1.0E-02 1.0E-02 
G6_R20_M8_HD 10.46 1.0E-02 1.0E-02 
G6_R20_M8_LD 10.78 1.0E-02 1.0E-02 
G6_R20_M16_HD 16.75 1.0E-02 1.0E-02 
G6_R20_M16_LD 16.27 1.0E-02 1.0E-02 

 
 

V. DISCUSSION 
In this section, the main contributions of BAGESS are 
discussed. After that, the validity of the results obtained by 
BAGESS is explained. 
 
1) CONTRIBUTIONS 
In lack of previous support to automate experiments 
involving battery-driven mobile devices, in this work, a new 
software component called BAGESS is proposed and then 
evaluated, in order to address the problem of sequentially 
ordering several load-balancing experimental scenarios, so 
that the time required to prepare these scenarios one at a time 
is minimized. It must be taken into account that, for 
preparing a single scenario composed of several battery-
driven devices, charging and discharging actions must be 
applied on each device to reach its target battery level pre-
configured in the scenario from its current battery level. The 
preparation of a single scenario was addressed by applying 
the approach proposed in [1]. However, in the duty of 
comparatively evaluating diverse load-balancing strategies, 
many scenarios that are composed of the same battery-driven 
devices, and vary regarding the target battery levels pre-
configured for these devices, need to be prepared. 

Commonly, after evaluating a load-balancing strategy on a 
single prepared scenario, the target battery level reached by 
each device via the scenario preparation suffers a decrease 
due to the work-load assigned by the strategy to the devices, 
which defines the current battery level of each device in the 
next scenario to be prepared. The problem addressed by 
BAGESS is determining the next scenario to be prepared, 
considering the closeness between the current and pre-
configured target battery levels of the devices in the scenario. 

More specifically, given a set of load-balancing scenarios, 
each one provided with target battery levels pre-configured 
for the devices, and given the load-balancing strategy to be 
considered in each scenario, detailing the estimated battery 
decreases that the devices can suffer once the strategy is 
evaluated on them, BAGESS provides a feasible sequential 
order to prepare the scenarios one at a time, minimizing the 
time required to prepare these scenarios. 

BAGESS effectiveness was evaluated on 540 different 
problem instances that vary in the amount of scenarios, 
amount of devices composing these scenarios, target battery 
levels pre-configured for these devices, and load-balancing 
strategies. Sequencing scenarios with BAGESS provides 
researchers an average saving of [12, 43]% and [51, 85]% 
regarding the methods SO-S and SO-LBS, respectively, in 
terms of the time required to sequentially prepare the 
scenarios one at a time. 

To use BAGESS for devices different from those provided 
in the public repository, the user must collect battery traces, a 
task that can be time consuming but is facilitated and can be 
achieved with the profiling platform explained in [15] and 
Motrol [8]. Collecting traces is not only required for applying 
BAGESS, but also for simulating the execution of a given 
load-balancing strategy in the context of  DewSim [18], 
which means that the benefit is twofold. A limitation of 
BAGESS is that the resulting sequential ordering of the 
scenarios does not consider devices battery’s thermal stress, 
which might affect them when exposing batteries to several 
charging/discharging cycles without resting time between 
scenarios preparation. Finally, with BAGESS, the 
capabilities of a generic testing platform are expanded; it 
aims at being an integral tool to facilitate experimental 
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reproducibility, and can be applied for evaluating and 
validating load balancing strategies for Edge/Dew 
Computing environments. 

 
2) RESULTS VALIDITY 
The accuracy of our results is explained by the accuracy of 
our experimental methodology, specifically the data source 
used for simulating discharging/charging events and the 
trace-based simulation approach that timely relates battery 
level drops/increments with mobile device components 
usage. All the data employed by this approach is profiled 
using a controlled procedure performed over real battery-
powered devices. Details of such a procedure along with 
validation tests, can be found in [18]. Thus, we refer as 
device profile to the data set composed by traces with 
information of battery level behavior for various discrete 
components usage. In the current work, we used four device 
profiles corresponding to the following smartphone models: 
Xiaomi Mi A2 lite, Xiaomi Redmi Note 7, Motorola Moto 
G6 and Samsung A30. Each device profile is composed of 
twenty full baseline battery behavior traces – from 2% to 
100% – that allow researchers to model a wide variety of 
charging/discharging scenarios considering steady CPU 
usages of 0, 30, 50, 75 and 100 percentage and on/off screen 
states. Despite being a time consuming task, once obtained, a 
device profile can be used as many times as needed to feed 
the simulation methodology [18] to faithfully simulate 
battery level drops and increments, i.e., -1% and +1% 
(dis)charging scenarios in a timeline. Moreover, this 
approach has been used to represent battery behavior in other 
works [28, 29] where different load balancing strategies for 
mobile distributed computing were studied. In this work, we 
use (dis)charging battery profiles as input for simulating the 
preparation time of mobile devices clusters running a 
sequence of load balancing tests scenarios. 

Our experiment design considers problem instances that 
are representative of load-balancing evaluation scenarios for 
mobile distributed computing, and sufficient because the 
particular configuration values used are realistic and 
practicable in in-vivo tests with the testing platform with 
which this work contributes. The variables considered in the 
problem instances include different cluster sizes (i.e., number 
of smartphones) – with random combinations of the 
smartphone models previously referred whose initial battery 
level is also randomly set –, number of load balancing 
strategies commonly used when performing in-lab 
comparisons, number of scenarios usually used to evaluate 
each load balancing strategy, estimated battery drops that the 
evaluation of each strategy produces on devices, and finally, 
the number of scenario preparation events which results from 
multiplying the number of evaluation scenarios times the 
number of load balancing strategies. In total 540 problem 
instances were run. Variables and values were explained in 
Section IV.A. 

Providing that constituent parts of genetic algorithms are 
subject to parameters fine tuning, which is done via 
exploratory tests to find the appropriate population size, 
number of solutions competing in tournament selection, 
crossover probability, mutation probability, among other 
parameters, we run preliminary tests on the problem 
instances. Moreover, given that randomness is present in 
solutions obtained with genetic algorithms, with the aim of 
reporting reliable results we have foreseen that solution 
quality comparisons of our proposal w.r.t other heuristics 
were done considering the average of 30 runs of the genetic 
algorithm for every problem instance. Besides, we run Man-
Witnney tests, in order to test statistical significance of such 
results. 

 
VI. RELATED WORKS 
Measuring and comparing the outcome of different load 
balancing techniques when scavenging computing resources 
using a set of real battery-powered nodes, such as 
smartphone clusters, requires a systematic procedure to 
restore experimental conditions between one measurement 
and another. When measurements are based on metrics 
derived directly or indirectly from nodes battery level, e.g., 
fairness, restoration implies to perform dis/charging events 
over several physical batteries until they reach pre-defined 
levels of charge configured in the scenario under evaluation. 
Indeed, it is a time-consuming task that takes even longer 
when it is performed without taking advantage of proximity 
between current and target battery levels, causing in turn 
unnecessary smartphone batteries over utilization. 

Studies evaluating load balancing techniques and their 
impact on battery usage in distributed mobile computing 
environments comprising real battery-powered nodes clusters 
are scarce. A common practice to measure such impact is 
through virtually modeled batteries [27]. For instance, Mattia 
& Beraldi [12] propose a load balancing technique for 
maximizing the lifespan of homogeneous SBCs (Single 
Board Computer) battery-driven clusters. Experiments were 
done with real SBC clusters, but battery charging and 
discharging behaviors are simulated using SBCs energy 
consumption profiles and real-time measurements of CPU 
usage in different states (idle, running). Aslanpour et al. [13] 
propose an energy-aware scheduling algorithm for operating 
a serverless Edge computing cluster powered with battery-
driven nodes. The algorithm prioritizes the execution and 
migration of functions replicas differentiating between well-
powered, low-powered, vulnerable and powerless nodes. 
Scheduling comparisons are performed with a real cluster of 
Raspberry Pis and using real traces of renewable energy to 
simulate different charging rates of a virtually modeled 
battery. In relation to model batteries virtually, it is important 
to characterize node performance and energy consumption. 
Aslanpour et al. [14] propose WattEdge, a fine-grained 
profiling framework to measure nine energy consumption 
factors in edge nodes including connectivity, memory, 
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storage, CPU, among others, through different stress tests. 
The framework is structured in separate software and 
hardware modules that run tests, monitor hardware usage and 
temperature, and log current, volts and wattage parameters. 
The framework also provides some stress tests for profiling 
battery charging and discharging behavior under variable 
conditions via PiJuice, a portable power platform specially 
designed for Raspberry Pi. Other work in this field [15] 
proposes a profiling and benchmarking tool targeting 
Android mobile devices to automate battery trace capturing 
under configurable resources usage. Tools like these help in 
automating data gathering that is used as input for modeling 
complex entities such as battery behavior. The methodology 
[18] in which we base the validation of BAGESS also relies 
on a custom Android application to data gathering (profile 
device building), though the purpose of our toolset is to 
realize full in-vivo experimentation with smartphone clusters. 

In [10, 11, 23], like in our work, performed experiments 
include smartphones as battery-powered nodes, however the 
impact of the load balancing proposals on batteries were not 
assessed. By contrast, the measurements were centered on 
metrics such as throughput, speedup, data transferring 
volume varying nodes quantity, nodes topology and tasks 
division schemes. Energy-related metric included in these 
works relates power consumption with resource utilization, 
which is obtained via a profiling procedure and a power 
monitor device. Works using residual battery capacity 
indicators over real batteries are [24, 25]. The indicator can 
be obtained through the battery management API available in 
mobile operating systems. The experiments show how the 
proposed load balancing approach impacts on the battery 
level of smartphones which have heterogeneous computing 
capabilities and battery capacities. It was not within the 
objectives of the experimental methodology employed in 
these works to provide a systematic approach for replicating 
experiments and/or testing under varying initial battery 
levels, features that would help to increase results robustness 
and statistical confidence. Our work aims at filling this gap. 

The necessity of performing tests on real batteries is 
specifically present in research attained to the improvement 
of battery management systems. In [26] a HIL (hardware in 
loop) set up and procedure was proposed to test and validate 
battery-fuel gauge algorithms. These algorithms track the 
battery state of charge that is informed to users as remaining 
battery percentage. The HIL includes customized aluminum 
casts where batteries are kept while being tested under 
varying operation conditions. The temperature inside the cast 
can be set and controlled within a range from -25 to +45 
Celsius. Another hardware plugged into this case is used to 
inject programmable loads and measure battery parameters 
like voltage, current and temperature. Like the module we 
have proposed, the described HIL and procedure aim at 
automating the preparation of tests to be run over real 
batteries. A fundamental difference between [26] and our 
testing platform is that in [26] several batteries are treated as 

different study subjects, while in our work, several batteries -
smartphones- are treated as a single study object (i.e. 
smartphone cluster). To the best of our knowledge, our work 
is the first proposing a software-based systematic approach 
for preparing a set of tests which, in conjunction with 
hardware of our own previously published, represent another 
step towards facilitating the empirical assessment of load 
balancing techniques over real battery-powered settings, and 
particularly smartphone clusters. 

 
VII. CONCLUSIONS AND FUTURE WORK 
In this paper, the problem of defining the sequential order to 
develop a given number of load-balancing scenario 
preparation events has been addressed, considering that the 
total time required to develop them should be minimized. 
This problem has been modeled as the well-known ATSP, 
and, therefore, is a NP-Hard problem.  

To solve the addressed problem, a novel software module 
named BAGESS has been proposed, which uses a genetic 
algorithm to determine the sequential order in which the 
given events should be developed, in such a way that the total 
time required to develop them is minimized. This genetic 
algorithm has been specially designed to: a) explore many 
different feasible sequential orders for developing the given 
events one at a time, and b) identify the sequential order that 
allows developing these events at the minimal possible time. 

Computational experiments have been developed with the 
aim of evaluating the performance of the genetic algorithm 
utilized by BAGESS on different representative and realistic 
experimental instances of the addressed problem. In this 
regard, the performance of this algorithm has been evaluated 
on 54 instance sets. Each of these instance sets contains 10 
different instances, where each instance includes a number of 
scenario preparation events. The 54 instance sets differ in 
terms of the category of their instances with respect to five 
well-defined components (i.e., number of events, number of 
scenarios, number of smartphones that compose the 
scenarios, number of load-balancing strategies, and estimated 
battery variation that the smartphones suffer once each 
strategy is evaluated). After that, the performance of this 
algorithm on each of the 54 instance sets has been compared 
with those of the two methods currently used for determining 
the sequential order to develop a given number of events one 
at a time, namely SO-S and SO-LBS. 

Based on the performance comparison developed, it is 
possible to conclude that the solutions given by the genetic 
algorithm for the instances of each set provide a significant 
average saving, in terms of the time (in minutes) required to 
sequentially develop the events one at a time. Specifically, 
for all instance sets, the average saving of the solutions given 
by the genetic algorithm regarding the solutions given by 
SO-S is on the range [12, 43]%, and regarding the solutions 
given by SO-LBS is on the range [51, 85]%. Therefore, the 
solutions given by the genetic algorithm significantly reduce 
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the time required for sequentially developing the events 
considered in the instances used. 

In future work, the incorporation of other optimization 
objectives in the addressed problem will be analyzed. The 
currently considered objective is minimizing the time 
required to sequentially develop the given events one at a 
time. As detailed in Section II, the development of each one 
of these events consists of applying sequences of battery 
charge/discharge actions on the smartphones considered in 
the scenario inherent to the event, in order to reach the target 
battery levels predefined for these smartphones, from the 
corresponding current battery levels. It is necessary to 
mention that the application of these sequences of battery 
charge/discharge actions on these smartphones can wear the 
smartphones’ batteries, when there is not adequate resting 
time for these batteries between the developments of the 
different events, which can reduce the lifespan of these 
batteries. Due to this, it is convenient to minimize the wear of 
the smartphones’ batteries during the development of the 
given events. A possible alternative to do that is including 
resting times for the smartphones’ batteries between the 
developments of the different given events. However, this 
alternative increases the total time required to sequentially 
develop the given events. Taking all this into account, an bi-
objective extension of the problem addressed in this work 
emerges, which implies defining the sequential order for 
developing a given number of events, in such a way that: a) 
the total time required to develop these events one at a time is 
minimized, and b) the wear suffered by the batteries of the 
smartphones considered in these events is minimized. This 
extension considers two objectives that are relevant and also 
conflictive in the context of sequentially developing the 
given scenario preparation events. 

This bi-objective extension of the addressed problem will 
be studied in detail, which includes analyzing alternatives to 
estimate the wear that can be suffered by the smartphones’ 
batteries, throughout the development of the given events. 
Besides, given that this bi-objective extension is an NP-Hard 
problem, the application of multi-objective meta-heuristic 
algorithms will be analyzed to solve this extension. Initially, 
the application of multi-objective genetic algorithms will be 
analyzed (e.g., the well-known NSGA-III [30]), considering 
the solution encoding, and also the crossover and mutation 
processes, utilized in the genetic algorithm proposed in this 
work. In addition, different alternatives for minimizing the 
runtime required by these multi-objective genetic algorithms 
will be studied, with the aim of these algorithms being able to 
provide solutions in an acceptable runtime to BAGESS. One 
of these alternatives involves parallelizing the search and 
optimization process carried out by these multi-objective 
algorithms [17].  
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