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Abstract

In a previous work, the instability of a liquid film deposited on the inner walls of a capillary under the presence of insol-
uble surfactant was analyzed; for that purpose the surface tension was related to the interfacial concentration of surfactant
by a linear equation. In general, that assumption is valid when just trace amounts of surfactant are present. The present
work extends previous analysis by considering a non-linear surface equation of state derived from the Frumkin adsorption
isotherm. This equation of state account not only for the existing quantities of surfactant but also for non-ideal interac-
tions between adsorbed molecules. Except for the equation of state, both the model and the numerical technique employed
do not differ from those used in the preceding work. The new predictions here presented show that a linear surface equa-
tion of state gives reasonable results for strong surfactants. However, the action of weaker surfactants strongly depends on
other parameters: the initial concentration and the type and strength of interaction between adsorbed molecules. Thus, the
use of a linear equation of state in these circumstances might give erroneous results.
� 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

Annular liquid films deposited either on the inner or outer face of a capillary tube, are known to be unstable
to axially symmetric surface perturbations of wavelengths of the order of the interfacial perimeter. A uniform
film, wetting the inner face of a capillary tube, naturally evolves toward regularly spaced collars that eventu-
ally will break up into liquid lenses if the initial film is thick enough. On the other hand, if the film is deposited
on a filament (or on the outer face of a capillary), the instability will form regularly spaced drops or pearls.
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Following the lines of Rayleigh’s pioneer work (Rayleigh, 1879), earlier studies performed linear stability anal-
ysis; among them we might mention those of Weber (1931), Tomotika (1935), and particularly Goren (1962)
who determined the unstable modes with the largest growth rate when the Reynolds number is equal to zero
and infinity, respectively.

Since this phenomenon has close connections with several industrial and biological processes, particularly
with a disease known as Respiratory Distress Syndrome (RDS) that commonly occurs in premature neonates,
it has received renewed attention since the 1980s. At that point the objective pursued was to establish the min-
imum film thickness needed to produce the lenses that occlude the capillary passage, and the time needed to do
it—i.e. the so-called ‘‘closure time’’. Employing interfacial evolution equations, which were derived on the
assumption that lubrication approximation applies, these results were obtained first for pure liquids (Ham-
mond, 1983; Gauglitz and Radke, 1988) and then for liquids with insoluble surfactants (Otis et al., 1993; Halp-
ern and Grotberg, 1993).

The effects produced by surfactants on film instability might be crucial; in that regard, we recall that a sur-
factant deficiency is precisely the factor that triggers RDS. Thus, a more elaborate two-dimensional model was
employed to assess the quality of the predictions based on the lubrication approximation (Campana et al.,
2004). The results showed that interfacial evolution equations underestimate closure times, being this under-
estimation much more significant when surfactants are present; i.e. when flow equations become coupled with
mass transport equations and the interfacial tension changes locally giving rise to Marangoni effect. The con-
clusion was that predictions of simple one-dimensional models become more unreliable as the system to be
modeled shows more non-linear contributions.

The analysis for insoluble surfactant performed by Campana et al. (2004) was extended to take into account
for soluble ones (Campana and Saita, 2006); however, in both cases just a linear relation between surface ten-
sion and interfacial concentration of surfactant (equation of state) was considered. Though this approach is
valid just for very dilute concentrations, or for small departures from equilibrium, it has been widely employed
by several authors (Halpern and Grotberg, 1993; Jensen and Grotberg, 1993; Kwak and Pozrikidis, 2001; Otis
et al., 1993).

The present work aims at establishing how the Rayleigh instability is affected when there is interaction
between molecules of adsorbed solute, and when the concentration of surfactant is far from dilute. For that
purpose, we will employ non-linear equations of state stemming from Frumkin and Langmuir adsorption iso-
therms; and, in order to focus our attention in the non-ideal effects we will only consider situations where sur-
factants can be regarded as insoluble solutes.

The presentation is arranged in the following order: the next section presents the mathematical formulation
of the problem where the set of governing equations and appropriate boundary conditions are made explicit;
also, special attention is paid to the surface equation of state and brief reference is made to the numerical tech-
nique employed. Then, before presenting the predictions of the model, a short section is devoted to define the
reference system adopted and to compare the behavior of the non-linear equation of state with the linear one.
In the central section, computed predictions show how the concentration of surfactants and the non-ideal
behavior bear upon the liquid film instability in capillaries; finally, the last section summarizes the relevant
conclusions.

2. Mathematical formulation

2.1. The flow problem and the interfacial mass balance

The flow problem as well as the interfacial mass balance has already been clearly described by Campana
et al. (2004); therefore, just a summary of the governing equations and boundary conditions is given here.

Fig. 1 is a schematic representation of the problem showing a gas phase surrounded by a thin liquid film,
which is assumed Newtonian and incompressible of constant viscosity l and density q. An insoluble surfactant
is adsorbed at the gas–liquid interface; when the system is at rest the uniform interfacial concentration is C0

and the corresponding surface tension is r0. The unperturbed liquid film wets the inner walls of a capillary of
radius (a), and the gas liquid interface is located at a distance (b) from the capillary axis, thus the relative film
thickness F is (a � b)/a.



Fig. 1. Schematic representation of the flow domain. Variables and magnitudes are indicated in their dimensionless form, except for a and b.

D. Campana, F.A. Saita / International Journal of Multiphase Flow 33 (2007) 1153–1171 1155
The flow problem is governed by the equations of motion—continuity and momentum—that, according to
the moving mesh adopted for this problem and considering dimensionless variables, can be written as follows:
r � v ¼ 0 ð1Þ

Re
ov

ot

� �
x

þ ðv� _xÞ � rv

� �
¼ r � T

T ¼ �p=CaIþ ðrvþrvTÞ
ð2Þ
In the equations just shown, we have used the capillary radius (a) as the unit of measure for lengths, and the
quantities r0F3/l and r0/a as unit of measure for velocities and pressure, respectively (Hammond, 1983). The
components of the stress tensor T are measured in terms of r0F3/a and the time scale is al/r0F3. The modified
Reynolds number is Re = aqr0F3/l2, the Capillary number is Ca = F3, and the term ( _x � rv) considers the ra-
dial motion of the nodes (see Campana et al., 2004). The interface is parameterized by h, which is the distance
to the capillary wall scaled with the capillary radius (a). Since the interfacial shape h(z, t) is unknown, the equa-
tion set is completed with the so-called kinematics condition establishing that the gas–liquid interface is a
material surface
ðn � vÞjs ¼ n � _xs ð3Þ
where the subscript (s) indicates that the terms are evaluated at the interface.
The unstable motion sets off by perturbing the interfacial shape with a sinusoidal wave of amplitude e0 and

wave-number k
hðz; 0Þ ¼ F ½1þ e0 cosðkzÞ� ð4Þ

Since we impose a periodic perturbation, we use a problem domain that just extends half wavelength in the

z-direction; thus, we employed symmetry conditions at both ends of the domain, i.e.
w ¼ 0;
ou
oz
¼ 0 and

oh
oz
¼ 0 at z ¼ 0 and z ¼ p=k ð5Þ
On solid walls the usual non-slip condition is imposed (u = w = 0); finally, on the interface the stress balance in
dimensionless form is given by
n � T ¼ 1

Ca
½rjnþrsr� ð6Þ
where j is twice the mean interfacial curvature, $s is the interfacial gradient operator and r is the local surface
tension. Eq. (6) was obtained on the assumption that the gas phase is inviscid and its pressure is arbitrarily
defined as zero; additionally, interfacial viscous effects are neglected and the tangential stresses at the interface
are produced by surface tension gradients, exclusively.

The surface tension depends upon the local concentration of surfactant, and this is how the flow and mass
transport problems are coupled. In this work, we consider just insoluble surfactant (see Section 3.1); conse-
quently, the mass transfer problem reduces to the interfacial mass balance of solute given by the following
dimensionless equation (Edwards et al., 1991; Wong et al., 1996):
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oC
ot

� �����
xs

� _xs � rsC ¼ �CvðnÞðrs � nÞ � rs � ðCvsÞ þ
1

Pes
r2

s C ð7Þ
The first term in Eq. (7) stands for the time derivative of the concentration of solute at fixed surface coordi-
nates—which are moving with respect to a fixed frame (r,z). The third and four terms represent the transport
by normal and tangential convection, respectively, and the last term takes into account the transport by sur-
face diffusion. Pes = ar0F3/lDs is the interfacial Peclet number and Ds is the interfacial diffusion coefficient
which is assumed constant and isotropic. The dimensionless interfacial concentration C is scaled with the uni-
form initial interfacial concentration C0; therefore, the initial condition to be used in Eq. (7) is C(xs, t = 0) = 1.
At both extremes of the interface (s = 0 and s = sf which have the axial coordinates z = 0 and z = p/k, respec-
tively) we impose symmetry conditions
t � rsC ¼ dC=ds ¼ 0; at s ¼ 0 and s ¼ sf ð8Þ
This boundary condition together with the first boundary condition stated in (5), guarantees that there is no
transport of solute at both ends of the interface.

2.2. Equation of state

The Gibbs thermodynamics relation is used to find the equation of state that connects surface tension with
the interfacial concentration of surfactant, that relation is given in Eq. (9) where the asterisks indicate dimen-
sional quantities.
dr� ¼ �RgTC� d½ln C�s � ¼ �RgTC�
1

C�s
dC�s ð9Þ
In Eq. (9) Rg is the universal gas constant, T is the absolute temperature and C�s is the bulk concentration of
surfactant just at the interface. On the assumption that an instantaneous local equilibrium between C�s and C*

exists, an adsorption isotherm can be employed to substitute one of these variables. In this work, we use the
Frumkin isotherm (see, Edwards et al., 1991) that has the following expression:
KFC�s ¼
C�

C1 � C�
e�AC�=C1 ð10Þ
where KF = ka/(kdC1), being ka and kd the kinetic constants of adsorption and de-sorption, respectively, and
C1 is the maximum attainable interfacial concentration of solute. The parameter A measures the non-ideal
behavior of the adsorbed solute; if A > 0 the adsorbed molecules of surfactant interact in a cohesive manner,
while they do in a repulsive way if A < 0.

When Eq. (10) is introduced into Eq. (9) and the resulting expression is integrated between a reference state
(rref,Cref) and some arbitrary state (r*,C*), the equation of state for the Frumkin isotherm is obtained.
r� ¼ rref þ RgTC1 ln
C1 � C�

C1 � Cref

� �
þ A

2C2
1

C�2 � C2
ref

� �� �
ð11Þ
If the initial state (r0,C0) is chosen as the reference state, the dimensionless form of Eq. (11) is
r ¼ 1þ beC1 ln
eC1 � CeC1 � 1

 !
þ A

2eC2
1

C2 � 1
� �" #

ð12Þ
being b = RgTC0/r0.
Linearization of Eq. (12) about C = 1 gives
r ¼ 1� EðC� 1Þ; E ¼ � or
oC

� �
C¼1

¼ beC1 1eC1 � 1
� AeC2

1

" #
ð13Þ
E is the dimensionless elastic parameter, which is equal to E0/r0, where E0 is the Gibbs elasticity (see Edwards
et al., 1991). It must be noticed that for very dilute concentrations (i.e. eC1 ! 1Þ we recover the equation
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r = 1 � b(C � 1) employed in previous papers (Campana et al., 2004; Campana and Saita, 2006). In the
remaining of this work, we will refer to results obtained with this equation as the results of the linear equation
of state.

The system of equations (Eqs. (1), (2), (3), (7) and (12)) with appropriate initial (Eq. (4)) and boundary con-
ditions was transformed into an algebraic non-linear analogue with the aid of the finite element technique; a
finite difference scheme coupled with a second order predictor-corrector procedure was used to march in time.
We employed mixed interpolation, i.e. polynomials of different degrees were used to approximate velocities
and pressures; we chose biquadratic basis functions for velocities and bilinear basis functions for pressure.
Newton iteration was used at each time step to determine all variables simultaneously, including those used
to locate the free surface. The numerical procedures, as well as the results validating the computational code
employed, were wholly described elsewhere (Campana et al., 2004); thus, we will not give more details about
these topics here.

The non-linear equation of state (Eq. (12)) allows us to determine how the concentration of surfactant (eC1Þ
and the non-ideal interfacial behavior represented by a non-zero value of A, act upon the speed of the insta-
bility. The results of the linear model (r = 1 � b(C � 1)) are used as a baseline to quantify the errors commit-
ted when conditions of dilute concentrations and small departures from equilibrium are assumed. This
analysis is undertaken in the following sections.

3. Preliminaries

3.1. Reference system

In order to start the analysis we must define a reference system by assuming appropriate values for the
dimensionless parameters appearing in the governing equations. Then, the concentration of surfactant and
the value of A, will be varied about those used in the base case to analyze the effects they produce on the speed
of the instability. We must also adopt values for several other physical parameters like maximum interfacial
concentration of solute (C1), reference surface tension (r0), etc. Table 1 summarizes for each one of these
parameters, their usual range and the value adopted in this work; the data were taken from several sources
and an important one was the work of Chang and Franses (1995). Table 2 shows the values chosen for the
relevant dimensionless parameters of the problem.
Table 1
Values of the physical magnitudes: usual range and value adopted

Physical magnitude Range of values Selected value

C1 [mol/m2] 10�6 –10�5 5 · 10�6

C0 [mol/m2] – 2 · 10�6

A �2 to 2 0
Ds [m2/s] 10�10–10�8 10�9

rref [N/m] [15–75] · 10�3 40 · 10�3

l [Pa s] 10�3–0, 1 10�2

a [m] 10�4–10�3 5 · 10�4

q [kg/m3] 800–1400 1100
T [K] — 300

Table 2
Value of the dimensionless parameters

F = (a � b)/a 0.18
Re = qrrefaF3/l2 1,28 � 1
Ca = F3 5.8 · 10�3eC1 ¼ C1=C0 2.5
Pes = rrefaF3/(lDs) 11664 � 104

b = RgTC0/rref 0.15 � 0.1
kmax = 2pa/k 0.8537 (Goren, 1962)
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Since this paper focuses on how the instability process is affected by non-ideal surfactants acting at inter-
facial concentrations far from dilute, for the sake of simplicity we will consider situations where surfactants
can be regarded as insoluble. Campana and Saita (2006) showed that if the relative amount of surfactant pres-
ent in the bulk is low—situation characterized by the dimensionless parameter K = C0/(aC0)� 1—the system
rapidly approaches the results obtained for a totally insoluble surfactant (K!1), provided that the bulk Pec-
let number (Pe = F3r0a/(Dl)) is large enough, so that the product (KPe) is larger than one. Predictions already
presented by Campana and Saita (2006) showed that for the values of the parameters employed in the present
work, that condition is attained when K P 10.

We are going to evaluate the effects produced by both eC1 and A on the speed of the instability by measur-
ing the values of closure time. The closure time is the time elapsed between the instant at which the annular
film is perturbed, and the instant at which the growing liquid collars reach the capillary axis producing liquid
lenses that disconnect the gas phase. The experimental work of Chang and Franses (1995) reported values for
the parameter A varying between 0 and 2; positive values of A indicate that the adsorbed molecules of surfac-
tant interact in a cohesive manner. In this analysis, we also use a negative value of A to include the case of
repulsive interactions; therefore, we will show predictions for values of A equal to 2, �2 and 0 to consider
the three possible cases: cohesive, repulsive and non-existing interactions, respectively. For that purpose, it

is convenient to observe first how the equation of state behaves when the values of eC1 and A are changed.
3.2. Effect of eC1 and A on the equation of state

The equation of state chosen (Eq. (12)) can be written as
r ¼ 1þ bIðeC1;A;CÞ ð14Þ
with
IðeC1;A;CÞ ¼ eC1 ln
eC1 � CeC1 � 1

 !
þ A

2eC2
1

C2 � 1
� �" #

ð15Þ
When (1 � C) is subtracted from Eq. (15), the resulting function can be thought of as the deviation from the
ideal case since for highly dilute systems (i.e. eC1 ! 1Þ and regardless of the value of A, IðeC1;A;CÞ tends to
(1 � C).

Fig. 2 illustrates the behavior of IðeC1;A;CÞ for the three values of A just indicated and also for three val-
ues of eC1; they are 1.3, 2.5 and 25 corresponding to high, intermediate and low concentration of solute,
respectively. In addition, the linear behavior, that is attained when eC1 ! 1, is portrayed.

Fig. 2(a) shows the results for the lowest concentration of solute here considered (eC1 ¼ 25Þ; in this condi-
tion, the system behaves rather similarly for the three values of A. In all cases, none of the curves departs too
much from the straight line (1 � C) suggesting that the linear approximation employed in previous works is a
good choice for dilute systems. However, when a tenfold increase in the concentration of solute is assumed
(eC1 ¼ 2:5Þ, results depicted in Fig. 2(b) indicate that important departures from the linear case are occurring;
this trend heightens as the concentration of solute approaches the maximum feasible concentration (see
Fig. 2(c)). Fig. 2 also evidence that a repulsive interaction between molecules of adsorbed surfactants results
into a system with stronger elastic effects; clearly, the value of E given by �bðoI=oCÞC¼1 increases as A

becomes more negative.
4. Computed predictions

In a preceding paper (Campana and Saita, 2006), we pointed out that the successive interfacial shapes
adopted by an unstable liquid film of a given thickness and physical properties, do not depend on the presence
of surfactants. The action of surfactants is to delay the instability process and the extent of retardation will
depend upon the surfactant strength. Therefore, we can directly relate the interfacial configuration with the
progress of the instability, and to use the times required to reach a given configuration to make relative com-
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Fig. 2. Predictions of Eq. (15) for three values of A versus interfacial concentration of surfactant. (a) eC1 ¼ 25, (b) eC1 ¼ 2:5 and
(c) eC1 ¼ 1:3. The limit (1 � C) of Eq. (15) is also shown.
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parisons between different surfactants. This strategy will be used here to evaluate how the surfactant strength
depends upon its concentration and its non-ideal behavior.

Fig. 3 shows for five successive instants of time the shapes adopted by a liquid film whose relative initial
thickness (F) is 0.18; with the addition of the interfacial shape corresponding to closure, these are the inter-
facial configurations to be used throughout this work.

Fig. 4 depicts the dimensionless closure time versus A for a liquid film characterized by b = 0.01 and the
parameter values summarized in Table 2. The results are presented for four different concentrations; since
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the most diluted system contains just trace of surfactant (eC1 ! 1Þ, it follows a linear equation of state and
closure times do not depend on A.

We are going to examine the results of Fig. 4 in more detail; first, we will study the effects of solute con-
centration (eC1Þ considering an ideal system (A = 0) and then we will vary the values of A for a certain value
of eC1. To understand how these parameters change the closure times we will examine the behavior of the fol-
lowing variables: tangential interfacial velocities (Vs = vs Æ t), interfacial concentrations (C), and tangential or
Marangoni stresses (Tns). In addition, we will look at the different terms appearing in the interfacial mass bal-
ance equation (Eq. (7)).

4.1. Ideal system (A = 0)

Fig. 5 portrays for three values of the initial concentration of surfactant (eC1), how the tangential velocities
change along the interface for each one of the five interfacial configurations shown in Fig. 3. These results are
for system with an ideal interface, and the dimensionless times pertaining at each concentration are indicated
in the corresponding insets. Clearly, as the solute concentration increases (from top to bottom), the whole
instability process slows down as it is indicated by the corresponding sets of the dimensionless time; these
results are in agreement with the trend for the closure times already shown in Fig. 4.

The values of interfacial tangential velocities shown at the top of Fig. 5 (eC1 ¼ 25) are negative indicating—
according to the positive direction defined for the surface tangential vector in Fig. 1—that the liquid at the
interface, or close to it, is moving from right lo left, i.e. following the bulk motion. When the solute concen-
tration is augmented to 2.5, the tangential velocities are still mostly negative; however, their magnitudes are

smaller than before. For even larger concentrations of surfactant (eC1 ¼ 1:3Þ, the bottom of Fig. 5 shows that
the interfacial tangential velocities has changed direction and now is positive in the region where the liquid
collar is growing. It is evident that the interfacial velocity increasingly resists the bulk motion and delays
the instability, as the adsorbed surfactant becomes more concentrated.

The observed changes in the tangential velocities are directly related to the tangential stresses acting at the
interface. The tangential component of the traction vector (Eq. (6)) gives the tangential stress at the interface
Fig. 5.
with A
T ns ¼ n � T � t ¼ Ca�1ðrsr � tÞ ð16Þ
0 0.5 1 1.5 2 2.5 3 3.5
−0.03

−0.02

−0.01

0

0.01

V s (a) t=0
(b) t=60.00
(c) t=85.65
(d) t=102.67
(e) t=106.32

0 0.5 1 1.5 2 2.5 3 3.5
−0.03

−0.02

−0.01

0

−0.01

V s (a) t=0
(b) t=75.75
(c) t=106.32
(d) t=127.14
(e) t=131.73

0 0.5 1 1.5 2 2.5 3 3.5

0

5

10
x 10 −3

V s

z

(a) t=0
(b) t=98.00
(c) t=135.57
(d) t=160.28
(e) t=166.03

Profiles of interfacial tangential velocities for the five interfacial configurations shown in Fig. 3. The system is the reference case
= 0; from top to bottom the values of eC1 are 25, 2.5 and 1.3.



1162 D. Campana, F.A. Saita / International Journal of Multiphase Flow 33 (2007) 1153–1171
and, given the axial symmetry, Eq. (16) can be written as
T ns ¼ Ca�1 or
oC

� �
dC
ds

ð17Þ
Considering Eqs. (14) and (15), we obtain
or
oC

� �
¼ b

o IðeC1;A;CÞh i
oC

¼ �beC1 1eC1 � C
� ACeC2

1

" #
ð18Þ
when Eq. (18) is introduced into Eq. (17) we finally get
T ns ¼ �bCa�1
eC1eC1 � C

� ACeC1
" #

dC
ds

ð19Þ
Fig. 6 shows that the interfacial tangential stresses are positive and they increase with the concentration of
surfactant; ultimately, they produce the changes just observed in the interfacial velocities and they are respon-
sible for the lengthier evolution of the instability. Fig. 7 portrays the profiles of the interfacial concentration of
solute; it is interesting to notice that the term (�dC/ds) diminishes when the amount of adsorbed surfactant
increases; i.e. as we go from top to bottom in Fig. 7, the Marangoni stresses produce a solute distribution that
is closer to equilibrium and the interfacial concentration gradients are smoothed out. Therefore, according to
Eq. (19) the term between brackets must produce the growth of the tangential stresses.

In the analysis of a rather similar situation Wong et al. (1999) provided an alternative explanation. These
authors argued that the interfacial concentration of surfactant becomes uniform (see Fig. 7) when Marangoni
forces prevail (Ma = b/Ca!1); then, the interfacial mass balance directly prescribes the interfacial velocity
vs. In this way, if the normal convection tend to concentrate solute in the lobe, the mass balance dictates that
the tangential convection must extract surfactant out of this region and sets the direction of the interfacial
velocity away from the lobe.

The effect of the tangential stresses shown in Fig. 6 can be better quantified by computing the total force
they exert on the interface in the axial direction, i.e.
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Fig. 6. Profiles of interfacial tangential stresses (as in Fig. 5).
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F z ¼ 2p
Z sf

0

ðT nst � ezÞrs ds ð20Þ
Table 3 summarizes these values for the three cases just analyzed and for the five interfacial configurations
corresponding to each case; they confirm that Fz increases as the concentration of surfactant increases—that

is as eC1 diminishes.
Fig. 7 indicates that C changes significantly with eC1; however, even in the case where the interfacial veloc-

ity is positive (i.e. the liquid at the interface is moving from left to right), the concentration of surfactant at
z = 0 continuously increases with the instability. To disclose the mechanisms of mass transfer responsible
for this increase, we analyze the evolution in time of each one of the four terms contributing to the equation
of interfacial mass balance (Eq. (7)). This equation equates the time rate of change of the local concentration
of surfactant (or local time variation LTV), which is the term on the left of Eq. (7), to the added contribution
of the three terms appearing on the right; they correspond to the normal convection (NC), tangential convec-
tion (TC) and diffusion (D), respectively. For the system characterized by eC1 ¼ 25 and A = 0, Fig. 8 depicts
the values taken by these terms along the interface at each one of the five interfacial configurations already
defined; Figs. 9 and 10 play a similar role for the other two more concentrated systems: eC1 ¼ 2:5 andeC1 ¼ 1:3, respectively.
3
omponent of the interfacial tangential force obtained from the values of Tns shown in Fig. 6

cial shape FzeC1 ¼ 25 eC1 ¼ 2:5 eC1 ¼ 1:3

4.9 · 10�3 6.87 · 10�3 1.18 · 10�2

1.73 1.93 2.11
8.18 9.06 9.71
14.13 15.37 15.98
18.45 21.92 27.63
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The results presented in Figs. 8–10 give evidence that normal convection always increases the concentration
of surfactant in the zone where the liquid lobe develops; i.e. at, or close to z = 0. This occurs because the inter-
facial area shrinks as its radius becomes smaller and the adsorbed solute gets more concentrated; this mech-
anism is enhanced as the instability progresses. In addition, at the former steps of the process (configuration a)
the tangential convection also carries solute in that direction for the three systems considered. Actually, at that
time, this is the main mechanism by which the concentration of solute is augmented there. However, when
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Fig. 9. As in Fig. 8 for eC1 ¼ 2:5.
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configuration b is reached, the tangential convection for the most concentrated system (Fig. 10) has just
reversed direction and is now pulling solute out of the growing lobe. A similar phenomenon occurs for more
advanced stages of the instability when the initial concentration is smaller (see Figs. 8 and 9).

The computed predictions presented above indicate that the effects of interfacial diffusion are almost neg-
ligible in all cases and at any stage of the process; therefore, for insoluble surfactants the time rate of change of
the local concentration of solute is approximately given by interfacial convection. As the concentration of sol-
ute is increased, the mass transport by tangential convection increasingly opposes to the bulk flow motion
retarding the unstable process; consequently, larger values of closure time are obtained.
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4.2. A non-ideal system (A 5 0)

Results shown in Fig. 4 indicate that at any value of the initial concentration of surfactant, closure times
increase as the interaction between the adsorbed molecules become more repulsive or, in other words, as the
value of A decreases. According to our previous observations for an ideal solute (A = 0), we should expect
larger closure times when the interfacial velocity presents a stronger opposition to the bulk flow motion. This
expectation is confirmed when we examine the interfacial velocity profiles shown in Fig. 11 for systems with
initial concentration of surfactant of 2.5 and values of A (from top to bottom) of 2, 0 and �2. It is clear that
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the tangential velocities carrying solute toward the lobe crest are larger for a solute with cohesive interactions
(A = 2) than for an ideal solute (A = 0); thus, cohesive interactions result in a faster evolution of the instability
as indicated by their respective dimensionless time. The opposite happens for a system containing solute with
repulsive interactions: the tangential velocities portrayed at the bottom of Fig. 11 produce a stronger oppo-
sition to the bulk motion than the velocities portrayed at the center, and the instability is decelerated.

We have already argued that changes in tangential velocities should be related to Marangoni stresses and to
the resulting tangential forces. In a similar way as we did in Table 3, in Table 4 we summarize the values of the
axial component of the tangential force exercised on the interface; they result from integrating the Tns profiles
shown in Fig. 12, according to Eq. (20). As it was expected, at any stage of the instability from (a) to (d), the
values increase from left to right; this is an indication that surfactants improve their stabilizing properties, and
closure is attained at longer times as the molecular interactions become repulsive. At stage (e) the trend just
described changes, and the largest force occurs for A = 2; this feature does not contradict the above conclusion
since at this point the process of closure has already been triggered and the unstable evolution is not longer
driven by capillary forces. In addition, the evolution becomes so fast that the crest of the lobe will reach the
capillary axis almost instantaneously; this means that for practical purposes the closure time is determined by
the previous stages (see Campana and Saita, 2006).

The results for closure times shown in this work present an interesting feature regarding the type of molec-
ular interaction; Fig. 4 shows that for values of A smaller than one, closure times monotonically increase with
the initial concentration of solute. However, for larger cohesive interactions, closure times not longer behave
Table 4
Axial component of the interfacial tangential force obtained from the values of Tns shown in Fig. 12

Interfacial shape Fz

A = 2 A = 0 A = � 2

(a) 4.2 · 10�3 6.87 · 10�3 8.8 · 10�2

(b) 1.62 1.93 2.04
(c) 7.94 9.06 9.42
(d) 14.48 15.37 15.62
(e) 23.04 21.92 22.25
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Fig. 12. Profiles of interfacial tangential stresses (as in Fig. 11).

Table 5
Axial component of the interfacial tangential force for different initial concentration of surfactant when A = 2

Interfacial shape FzeC1 ¼ 25 eC1 ¼ 2:5 eC1 ¼ 1:3

(a) 4.6 · 10�3 4.2 · 10�3 9.5 · 10�3

(b) 1.69 1.62 2.05
(c) 7.97 7.94 9.56
(d) 13.78 14.48 16.12
(e) 17.76 23.04 29.48
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in that way and they show a minimum for certain intermediate value of initial concentration; this trend is
clearly exhibited in Fig. 4 when A = 2. As we mentioned before, closure times must be related to interfacial
tangential stresses; thus, we resort again to the axial component of the tangential forces acting on the interface
(Fz) to confirm that they vary accordingly.

Table 5 summarizes the values of Fz at the five configurations indicated in Fig. 3. For stages a–c the values
indicate that the interfacial tangential forces slightly decrease when eC1 is changed from 25 to 2.5; i.e. when the
initial concentration of surfactant of a dilute system is increased. Since smaller tangential forces result in
shorter evolution times, and considering that the time needed to reach stage c approximately constitutes
80% of the total evolution time, the closure time reduction occurring when eC1 is changed from 25 to 2.5
and A = 2 (see Fig. 4), is explained.

We should point out that the just shown non-monotonic behavior is originated in the non-linear nature of
the equation of state: if in Eq. (13) we differentiate E with respect to eC1, is easy to show that an extreme is
only possible when A is larger than one and that this extreme is a minimum. In agreement with the results
presented in Table 5, the minimum value of E for A = 2 occurs when eC1 ¼ 3:41.

4.3. Elastic parameter b

In order to determine how the elastic parameter affects the significance of the non-linear terms introduced
with the equation of state, we computed closure times when b is 10 times greater than the value employed for
the results shown in Fig. 4; the new results are depicted in Fig. 13.
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The curves of closure time in both figures look rather similar; i.e. the systems follow almost the same trend
when eC1 and A, are varied. However, it is evident that the relative changes produced either by eC1 or by A are
less significant when the value of b is larger. For example, if in Fig. 4 we compare closure times of the curve ofeC1 ¼ 2:5 with the constant closure time of the linear case, we observe relative differences ranging between
41.8% and –5.8% as we change A from �2 to 2. On the other hand, if we make a similar comparison with
the closure times reported for b = 0.1 (see Fig. 13), we observe relative differences varying between 3.7%
and –0.8%. We have also made the same comparison with closure times for b = 1 (not shown here) finding
that the relative difference between the values for eC1 ¼ 2:5 and the value pertaining to the linear case is less
than 1% for any value of A in the interval �2, 2.

These results agree with those previously reported by Campana et al. (2004). In fact, when they studied the
Rayleigh instability in capillaries under the presence of insoluble surfactants, they found that the curve of clo-
sure times versus b presents a rather steep S-shape connecting two plateau regions. The plateau region located
at b < 10�3 gives the minimum closure time, while the plateau region located at b > 1 gives the maximum clo-
sure time and also indicates that the elastic effects reach a saturation point near b = 1, i.e. they no longer
increase beyond that point. Actually, for b = 0.01 they found a closure time increase of 45% of the time length
separating both plateaus, while for b equal to 0.1 and 1 the increments were about 92% and 99%, respectively.
It is evident that in the last two cases the changes in closure time that either eC1 or A might produce are limited
to small percentages, as occurs in the cases presented in Fig. 13.
5. Concluding remarks

In this work, we extended our previous analysis about the effects of insoluble surfactants on the Rayleigh
instability in capillaries, by employing a more realistic surface equation of state that considers not only the
initial amount of surfactant but also the interaction between adsorbed molecules. To examine in detail how
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the interfacial variables and the mechanisms of interfacial transport of solute are affected, we changed param-
eters like initial concentrations, interaction between adsorbed molecules and surface elasticity.

We employed values of the elastic parameter (b) varying between 0.01 and 1; regardless of the value of b
chosen, we found that closure times always behave according to the following pattern: (i) Repulsive interac-
tions between adsorbed molecules produce larger closure times than ideal systems, while the opposite occurs
with solutes interacting cohesively. (ii) The relative changes induced by molecular interaction depend on solute
concentrations, being strong for intermediate concentrations and becoming less important for either dilutes or
concentrated systems. (iii) In general, closure times increase with solute concentrations; but, if there exists an
important cohesive interaction (A > 1), a non-monotonic behavior occurs and closure times first decrease and
then increase as the concentration of solute is augmented.

We pointed out that the pattern just described does not depend on the surfactant strength; however, for the
particular system analyzed in this work, the relative changes in closure time induced by molecular interactions
or by surfactant concentrations, do depend on surfactant effectiveness. The results presented show that a
strong insoluble surfactant produces a substantial reduction in the speed of the unstable process with a con-
sequent increase in closure times. In this case, closure times are almost independent of both solute concentra-
tion and the existence of any kind of molecular interaction; i.e. closure times depend almost exclusively on the
value of b and consequently, the employment of a linear surface equation of state should give results accurate
enough.

On the other hand, for weaker surfactants, closure times depend strongly on the initial concentration of
solute as well as on the type of molecular interactions. In this event, the use of an equation of state that con-
sider the effects of theses variables should be appropriate since the results provided by a linear one might be
rather questionable.

Though the foregoing conclusions are valid for the instability of thin films lining the inner walls of a cap-
illary, they might also be valid when insoluble surfactants act on other unstable systems; further analyses are
needed to confirm this presumption.
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