
Multibody Syst Dyn
DOI 10.1007/s11044-007-9087-x

An automated method for type synthesis of planar
linkages based on a constrained subgraph isomorphism
detection

Martín Pucheta · Alberto Cardona

Received: 12 February 2007 / Accepted: 24 June 2007
© Springer Science+Business Media B.V. 2007

Abstract We present a method to enumerate and codify all non-isomorphic solutions, for
the problem of synthesizing the type of single-DOF linkage mechanisms that satisfy struc-
tural requirements for a given kinematic problem. The method is based on the construction
of an “initial graph” taking into account prescribed parts (such as fixations, moving bodies,
joints and their interconnections) and the kinematic constraints imposed on them. This initial
graph containing structural characteristics of the problem is used as a pattern to search in-
side a selected atlas of one-DOF mechanism also represented by graphs. A new graph-matrix
representation of mechanisms and a mechanism identifier based on the degree code concept
was developed to avoid isomorphic occurrences of the initial graph inside each mechanism
of the atlas. The same tools were used to enumerate various atlases specialized in a non-
isomorphic way from basic kinematic chains. This enumeration takes into account different
types of links (rigid, flexible) and joints (revolute, prismatic, flexible, clamped), and proper
restrictions were designed to avoid kinematically invalid topologies. The methodology is
illustrated with examples for several kinematic tasks.

Keywords Linkage mechanisms · Type synthesis · Combinatorial analysis · Graph theory ·
Sub-graph search · Graph isomorphism · Degree code

1 Introduction

The essence of the mechanism synthesis problem is to find the mechanism for a given motion
or task. The given motion could be exactly or approximately achieved by different types of
candidate mechanisms. The type could be linkage, gear, cam, belt, etc., or a combination
thereof. In this work, we focused our investigation on the linkage type, restricted to planar
mechanisms that utilize only lower-pair joints also called planar linkages.

Linkage synthesis methods are usually decomposed into two phases: (i) Type synthe-
sis, where the number, type and connectivity of links and joints are determined [1–3], and

M. Pucheta · A. Cardona (�)
Centro Internacional de Métodos Computacionales en Ingeniería, CIMEC-INTEC, Universidad
Nacional del Litoral-CONICET, Güemes 3450, S3000GLN, Santa Fe, Argentina
e-mail: acardona@intec.unl.edu.ar

M. Pucheta, A. Cardona

(ii) Dimensional synthesis, where the proper dimensions of parts (links lengths, their angles
at the starting position and pivots positions) are computed [4–8]. The latter task is also re-
lated to that of optimization of the mechanism where the fulfillment of more objectives and
restrictions could be taken into account (allowed space, masses, sections, inertias, weight,
materials, cost, etc.). The dimensional synthesis phase and all the subsequent stages of de-
tailed design are very costly, so it is essential to have good topology alternatives as output of
the type synthesis stage, in order to avoid repeated simulations, and also not to leave alterna-
tives without being explored. Specifically, the aim is to generate a list of all non-isomorphic
mechanism alternatives potentially suited to develop a required task.

The choice of a suitable mechanism for the desired purpose may be done by visual in-
spection on an atlas of linkages, but such a visual search is only based on the intuition of
a experienced designer; such a procedure may easily lead to neglecting possible solutions.
Graph theory can be conveniently applied to do this search automatically.

Since the mid-sixties, graph theory has been used for systematic enumeration and topo-
logical analysis of rigid linkages (see reviews of Olson [1] and Mruthyunjaya [9]). In the
nineties, flexibility was incorporated by Murphy, Midha and Howell [10, 11] for constructing
atlases of flexible linkages. Bar-linkages and other atlases for particular purposes (variable-
stroke engine mechanisms [12], planetary gear trains, parallel and robotic mechanisms [3,
13]), were structurally synthesized using a systematic strategy based on the Freudenstein
and Maki concept [12] of “separation” of kinematic structure (to generate alternatives) from
function (to evaluate the generated alternatives). In these cases, part of the functional con-
straints were dealt with after the enumeration process, and the generated alternatives were
post-analyzed by hand with the aids of combinatorics to validate the task matching. How-
ever, an automated method to generate alternatives satisfying those functional requirements
which have structural influence at the outset is less addressed in the literature. We can men-
tion recent computational methods of Chiou and Kota [14], and Moon and Kota [15], which
represent and decompose the input/output motion requirements using a matrix representa-
tion called Motion Transformation Matrix (MTM), and a properly defined algebra to find all
matchings between the MTM representation of the task or sequences of sub-tasks—and the
MTMs of stored “design building blocks”. While the search takes place, they evaluate func-
tional and operational constraints, thus designing concepts for the desired behavior. They
also store parametric values useful for later dimensional synthesis and simulation. Very re-
cently, Chen and Pai [14] presented a design methodology in the same line of research that
we have been working on. They parsed the design specification into functional requirements
(a), structural requirements (b), and design constraints (c). Using a, they construct the func-
tioning kinematic chains of a mechanism; from b, they search the admissible kinematic
structures in atlases of kinematic structures; from the analysis of a and b, they identify the
compatible kinematic chains which must also satisfy c. Finally, after labeling of joints in
the compatible kinematic structures they validate the remaining design constraints. Other
methods fall in the field of expert systems.

In this setting, we present a subgraph approach where the prescribed parts to move, and
the task desired for them, are modeled by an initial graph and incorporated into a generator
of alternatives (see Fig. 1 as an introductory example). In addition, we adopt an atlas of
kinematic chains (KC) with simple joints using a graph representation for each KC. Then,
we specialize each kinematic chain to form various atlases of mechanisms that could be
selected as in a finite exploration space. Because both the problem and the mechanisms have
graph representation, the generator of alternatives that we propose is an engine for subgraph
searching of all non-isomorphic occurrences of the initial graph inside each mechanism of
the selected atlas.

Automated Method for Type Synthesis of Planar Linkages

Fig. 1 Graph representation for a combined kinematic task

To avoid isomorphisms, we define a “type adjacency matrix” in conjunction with a new
mechanism identifier based on the degree code characterizing unequivocally an alternative
mechanism. These tools are used for atlases construction, subgraph occurrences detection,
and, if it is desired, pseudo-isomorphic mechanisms rejection (a mechanism which presents
an “idler loop” with some unloaded links, will be considered as pseudo-isomorphic mecha-
nism).

In Fig. 2, we describe the proposed method. The designer interacts in the preprocessing
and postprocessing stages, i.e. he enters data into a computer program in stage I, then runs
the solver II, and afterwards evaluates the solutions III. In this paper, we are focused mainly
on the theory applied in the solver.

The organization of the paper is as follows. A mechanism identifier is presented in
Sect. 2. The enumeration of mechanisms is reviewed in Sect. 2.4. The graph representa-
tion of kinematic problems is shown in Sect. 4. The proposed number synthesis algorithm
is developed in Sect. 5. The detection of pseudo-isomorphic mechanisms is explained in
Sect. 6. The methodology is illustrated with examples for several kinematic tasks.

2 A mechanism identifier

The graph G(V,E) of a kinematic chain is obtained by representing each link by a vertex vi

and each kinematic pair by an edge eij connecting the corresponding vertices {vi, vj }. From
now on, we will refer to “graph” indifferently, as the graph representing a kinematic chain.

We call n = |V |, the size of the set of vertices (links), and j = |E|, the size of the set
of edges (joints). The set of unlabeled vertices, V = {v0, v1, . . . , vn−1} is numbered in zero
base, i.e. V = {0,1, . . . , n−1}. To consider links with physical meaning, they are commonly
labeled either by the user or by the solver using integer identifiers (IDs). A function V(V)

labels each vertex of the set V with the integer identifiers lL = {l0, l1, . . . , ln−1}, so that
V(vi) = li . A function E(E) is also used to match physical joints with edges. A labeled
graph is obtained by labeling of their constitutive sets G(V(V),E(E)).

A graph has matrix representations. One representation is the vertex-to-vertex adjacency
matrix. The adjacency matrix A of a graph G is a n-by-n matrix in which entry aij is the

M. Pucheta, A. Cardona

Fig. 2 The proposed type synthesis method

number of edges in G with endpoints {vi, vj } and aii = 0. Note that permutations of labels
change the adjacency matrix A. In other words, it is label order dependent. Two graphs are
isomorphic if there is a one-to-one bijection from the vertex set of one graph to the other and
edges preserves incidence. Also, two graphs are isomorphic if they share the same adjacency
matrix. Many approaches for isomorphism testing were reviewed in Ref. [9]; in this work
we will employ the degree code and variations of it.

2.1 Degree code

In order to represent graphs and to detect isomorphisms of graphs, Tang and Liu [15] devel-
oped the so-called degree code. The code (C) of the adjacency matrix of a graph is defined

Automated Method for Type Synthesis of Planar Linkages

Fig. 3 Labeled kinematic graphs with their respective levels and degree codes for the atlas of one-DOF
kinematic chains with up to 3 independent loops, 8 links, 10 joints

as the decimal value computed by converting the binary string obtained by concatenating the
upper triangular elements of the adjacency matrix row by row, excluding diagonal elements.
The maximum integer that results from all possible relabellings among those vertices with
equal degree is called Degree Code (DC).

The degree code is unique (two graphs with the same DC are isomorphic: DC(G1) =
DC(G2) ⇔ G1

∼= G2) and decodable (given the DC, we may build the graph). The entire
atlas of one-DOF kinematic chain may be very efficiently stored as a sorted list of integers.
For each KC, an integer assigning a level in the atlas is used to map their respective degree
code (see Fig. 3).

To arrive to the degree code, we must compute several codes for the defined permutations.
For instance, a simple four bar kinematic chain labeled as we see at the top of Fig. 3, has an
adjacency matrix:

A =

⎡
⎢⎢⎣

0 1 1 0
1 0 0 1
1 0 0 1
0 1 1 0

⎤
⎥⎥⎦

and, therefore, can be characterized by the integer 51:

DC(A) = ([110][01][1])
2
= 1 × 20 + 1 × 21 + 1 × 24 + 1 × 25

= 1 + 2 + 16 + 32 = (51)10.

Note that any other permutation of A produces an equal or less code C. Graphs shown in
Fig. 3 display their respective degree code labels.

Tang and Liu presented the possibility to take into account colored edges. The only
change in the degree code algorithm is that the string must be codified in an adequate base,

M. Pucheta, A. Cardona

denoted with b, for the number system. The base is the number of different colors plus one.
In our mechanism case, each color represents a joint type, with the type represented by a
positive integer number. For example, if the joint is revolute, a color “one” is assigned, while
a “two” is assigned for prismatics. Then, the base is the number of different joint types plus
one: b = 2 + 1.

The diagonal entries in the adjacency matrix A of a KC are null because no sling edges1

are allowed. Also, diagonal entries are permuted to diagonal entries under the same per-
mutation of rows and columns. These two facts allow to easily take into account colored
vertices, which may represent, e.g. link types. For instance, the “zero” color represents the
ground link, while the “one” color indicates a rigid link.

We extend the idea of Tang and Liu to define a diagonally extended degree code DCd
b in

base b. For example, let A′ be a matrix which represents a topology with different types of
links and joints. Its code may be computed as follows:

A′ =

⎡
⎢⎢⎣

0 1 1 0
1 1 0 1
1 0 1 2
0 1 2 1

⎤
⎥⎥⎦ =⇒ Cd

3 (A′) = ([0110][101][12][1])
3
= (9034)10.

Since all vertices have the same degree, in order to compute the degree code, we need
to explore 4! permutations of A′. Among them, DCd

3(A
′) is obtained for the permutation

p = {2,3,1,0}, with value

DCd
3(A

′) = Cd
3

(
p(A′)

) = Cd
3

⎛
⎜⎜⎝

⎡
⎢⎢⎣

1 2 1 0
2 1 0 1
1 0 1 1
0 1 1 0

⎤
⎥⎥⎦

⎞
⎟⎟⎠ = 35274.

One way of circumventing the computational difficulties that arise when representing a
big integer number is to define a more complex but useful identifier, which is formed by
the vector of n integers that result by concatenation of the upper triangular elements of the
matrix, row by row:

A′ =

⎡
⎢⎢⎣

0 1 1 0
1 1 0 1
1 0 1 2
0 1 2 1

⎤
⎥⎥⎦ =⇒ Cr

3(A
′) =

⎡
⎢⎢⎣

(0110)3

(101)3

(12)3

(1)3

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

12
10
5
1

⎤
⎥⎥⎦ .

Codes comparisons to obtain the degree code are made in lexicographical order: given C =
{a0, a1, . . . , an−1} and C ′ = {b0, b1, . . . , bn−1}, C ′ > (<)C if bk > (<)ak , where k is the first
index in {0,1, . . . , n − 1} for which ak �= bk . The degree code by rows is obtained for the
same permutation of A′ with p = {2,3,1,0}:

DCr
3(A

′) = Cr
3

(
p(A′)

) =

⎡
⎢⎢⎣

48
10
4
0

⎤
⎥⎥⎦ .

In the example, only one comparison is needed (48 > 12) to validate that DCr
3(A

′) > Cr
3(A

′).

1A sling or self-loop is an edge that connects a vertex to itself.

Automated Method for Type Synthesis of Planar Linkages

2.2 Type Adjacency Matrix

Following Murphy, Midha and Howell [10, 11] or Yan [16], we process link types and
joint types together in an unique matrix. They respectively defined the Compliant Matrix
CM , and the Topology Matrix MT . Murphy et al. proposed the use of the characteristic
polynomial CP(CM, x) = |xI − CM| to detect isomorphic mechanisms. However, it has
been shown that this mapping is not one-to-one, so we did not use it.

In order to use the diagonally extended degree code, we have modified the definition of
the entries from that of Murphy et al. to have only positive integer entries, so that we are
compatible with the codability property of DCr

b . The Type Adjacency matrix T is defined as
follows:

Tii(vi) =

⎧⎪⎨
⎪⎩

0 if vi is the ground,

1 if vi is a rigid link,

2 if vi is a flexible link,

Tij (eij) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

0 no connection,

1 if eij is a revolute joint,

2 if eij is a prismatic joint,

3 if eij is a flexible joint,

4 if eij is a clamped joint.

Note that this definition could be easily extended to more link and joint types.
We also define two integer mappings,

1. the link types map TL : V(V) → tL, which maps the labeled vertex set V(V) to a link-
types vector tL. For example, let the vertex set be V = {0,1,2,3}, and their labeled vertex
set V(V) = {0,10,5,12} with corresponding link types tL = [0,1,1,2]. Then, the map
of link types is

TL

(
V(V)

) = {0 → 0,10 → 1,5 → 1,12 → 2}.
This means that the link with ID 0 is the ground, then links 10 and 5 are rigid, and link
12 is flexible.

2. the joint types map TJ : V(V) × V(V) → tJ , which maps pairs of labeled connected
vertices V(V) × V(V) to a joint-types vector tJ . For example, a possible joint type map
for a given tJ = [1,2,4,1] could be:

TJ

(
V(V) × V(V)

) = {
(0,10) → 1, (0,5) → 2, (10,12) → 4, (5,12) → 1

}
,

meaning that the joint between links 0 (ground) and 10 is a revolute joint (type 1), etc.

The resulting type adjacency matrix of the example considered in Fig. 4 is:

T =

⎡
⎢⎢⎣

0 1 2 0
1 1 0 4
2 0 1 1
0 4 1 2

⎤
⎥⎥⎦ .

Note that it can be represented by using the adjacency matrix, formed by zeroes and ones
entries, together with the vertex labels V(V), and the maps TL and TJ .

M. Pucheta, A. Cardona

Fig. 4 Mathematical models for a four-bar mechanism: a FEM representation; b Graph labeled with user’s
IDs; c Graph with link and joint types colors (colored labeled graph)

This form of representation simplifies certain operations. For instance, in order to per-
mute T , we permute the adjacency matrix by means of permuting the vertex labels V(V),
but both maps TL and TJ remains unchanged. In this way, the definition of these two maps
make the identifier computing more efficient, which is extensively used.

2.3 Synthesis adjacency matrix

We will explore the occurrences of the initial graph, denoted as Gini(Vini,Eini), inside a given
graph taken from an atlas of mechanisms, denoted as GA(VA,EA). The subgraph occurrence
Gini ⊆ GA and the matching of the link and joint types of each vertex and edge, respectively,
means that GA is a structurally feasible mechanism alternative. However, for a given GA,
there could be many isomorphic occurrences of Gini.

To explore systematically the occurrences Gini ⊆ GA, we exhaustively compare the ver-
tices of Gini with the subgraph constituted by the first nini vertices of a (nini −1)-permutation
of the nA vertices of GA, and then we make the comparisons related to edges. We denote
as G

p

A(V
p

A ,E
p

A) to each permuted graph. By definition, the degree code of T (G
p

A) is unique
for any permutation p.

We need to make some modification in the T (G
p

A) matrix in a way to identify all non-
isomorphic locations of the subgraph Gini. For this purpose, we construct the synthesis adja-
cency matrix (S). It has the same definition given to the type adjacency matrix T of G

p

A for
synthesized parts and joints, but differs for entries of prescribed parts, i.e. links represented
by vertices vi ∈ V

p

A
∼= Vini. So, we assign different integers to diagonal entries corresponding

to each prescribed vertex without regard of its link type. Thus, we consider each prescribed
part as functionally different:

Sii(vi) =
{

Tii if vi is a synthesized vertex,

k if vi is a prescribed vertex,

Sij (eij) = Tij ∀ eij

where k = b + j ; j = 0,1, . . . , nini − 1, with nini = |Vini| the cardinality of the prescribed
vertices set and b the number of colors in T (GA). The number of colors to codify S is the
number of prescribed links plus the number of colors of the graphs taken from the atlas, i.e.,
nini + b.

2.4 Enumeration of one-DOF kinematic chains

A linkage with n links connected by j simple joints is denoted as a (n, j)-linkage. For a
simple-jointed linkage with one degree of freedom F = 1, the Grübler movability criterion

Automated Method for Type Synthesis of Planar Linkages

Table 1 Number of enumerated
non-isomorphic one-DOF
kinematic chains

n j L #KC

4 4 1 1

6 7 2 2

8 10 3 16

10 13 4 230

12 16 5 6856

14 19 6 318126

Total: 325231

asks that F = 3(n − 1) − 2j = 1. From graph theory, the number of independent loops L

could be computed as L = j − n + 1.
Methods given by Hwang [17], Hsieh [18], Tsai [3], and Tuttle [19] among others (see

Ref. [9]), have allowed to enumerate 325, 231 non-isomorphic one-DOF kinematic chains,
see Table 1.

We followed the method found in Ref. [3], to enumerate the first 19 kinematic chains
using the degree code as mechanism identifier (see Fig. 3). These kinematic chains were
found using graph theory where the feasible graphs have the following characteristics: (i)
the minimal vertex degree is 2 (d(vi) ≥ 2), i.e. edges are simple, each edge connects only
two vertices; (ii) all graphs have no articulation points or bridges; and (iii) partially locked
chains/subchains and non-planar graphs were excluded.

3 Generation of atlases of mechanisms

In the proposed method, we can compute the number synthesis in one step since atlases are
already computed and stored on disk (see Fig. 2(II)). The user can select an atlas of mech-
anisms with the desired characteristics for their solutions. Also, the constraints imposed by
the prescribed parts—existing joints and links—must be compatible with the selected atlas.

In this section, we will give an alternative methodology to that presented by Murphy et
al. [10] for obtaining atlases of mechanisms by assigning link types and joint types on a
four-bars kinematic chain. This process is also known as specialization of mechanisms [2].
In this paper, we specialize each kinematic chain of the atlas of Fig. 3 in all non-isomorphic
ways. The previously defined tools, the type adjacency matrix and the diagonally extended
degree code computed by rows, are extensively used for identifying and codifying the mech-
anisms. The more different joint/link types are incorporated in the atlas, the more different
constraints, and therefore problems, the method will support.

From the list of stored kinematic chains (KCs), we take a degree code and then we re-
trieve its adjacency matrix A, obtaining a n-vertices and j -edges graph with degree code
labeling. The link types are arranged in link-types vectors tL with n entries. Joint types are
arranged in joint-type vectors with j entries. Then, we specialize the KC in two steps:

Link specialization: specialize all the link-types vectors tL with a given alphabet (e.g.
{0 = ground,1 = rigid}) and satisfy properly designed link constraints; attach sequen-
tially each tL on the diagonal entries of the adjacency matrix A constructing the matrix
T ′, compute its DCr

b and save those which are different. This procedure may result in
many non-isomorphic T ′s. Each of them are used in the second step.

M. Pucheta, A. Cardona

Joint specialization: specialize all joint-types vectors tJ for the given alphabet (e.g.
{1 = revolute,2 = prismatic}); attach each tJ on the corresponding non-null off-
diagonal elements of a sequentially selected T ′ configuring the matrix T , check the
joint constraints and, if they are satisfied compute its DCr

b; if it is not yet stored it will
be a mechanism of the atlas.

An instance of the first step for a four-bar KC could be:
⎛
⎜⎜⎝tL = [0,1,1,2] ∧ A =

⎡
⎢⎢⎣

0 1 1 0
1 0 0 1
1 0 0 1
0 1 1 0

⎤
⎥⎥⎦

⎞
⎟⎟⎠ −→ T ′ =

⎡
⎢⎢⎣

0 1 1 0
1 1 0 1
1 0 1 1
0 1 1 2

⎤
⎥⎥⎦ −→ DCr

5(T
′),

where the symbol “∧” means the operation of attaching the link types to the adjacency
matrix. Then, for the computed matrix T ′ the second step is:

⎛
⎜⎜⎝tJ = [1,2,4,1] ∧ T ′ =

⎡
⎢⎢⎣

0 1 1 0
1 1 0 1
1 0 1 1
0 1 1 2

⎤
⎥⎥⎦

⎞
⎟⎟⎠ −→ T =

⎡
⎢⎢⎣

0 1 2 0
1 1 0 4
2 0 1 1
0 4 1 2

⎤
⎥⎥⎦

−→ DCr
5(T) =

⎡
⎢⎢⎣

355
26
7
0

⎤
⎥⎥⎦ .

Note that in both steps, after computing DCr
b(T), we check isomorphisms by comparing

such codes. For instance, in the second step of the example above, the joint type vector
tJ = [2,1,1,4] produces the same DCr

5(T) than vector tJ = [1,2,4,1], so both solutions
are isomorphic.

Finally, in case the entry T11 be distinct from zero, indeed store T , we save a permutation
of it, p(T) in such a way the first vertex on it has link type zero, i.e. coincident with the
ground. This additional restriction allows to reduce the number of permutations needed in
the subgraph search.

3.1 Atlas of 1-DOF rigid linkage mechanisms: linkage inversions

The kinematic chains shown in Fig. 3 could be considered mechanisms if the vertex labeled
with zero is taken as ground. However, any other link of the KC could have been taken as
ground, thus obtaining a mechanism with an eventually new kinematic behavior. Each case
for which a new behavior is obtained is known as linkage inversion.

The atlas of 1-DOF rigid linkage mechanisms is derived using only link types specializa-
tion, since we assumed all joints are of the revolute type (type 1). Therefore, only the first
step of specialization is needed here: we need to generate all link-types vectors tL for an
alphabet of two numbers {0 = ground,1 = rigid}, constrained by a single vertex labeled as
zero to be the ground.

For each n-bars KC, each vector of link types tL = [t0, t1, . . . , tn−1] is attached to the
diagonal elements of A and the isomorphism with previously generated T ’s is checked.

Starting from the atlas of KCs shown in Fig. 3, we can obtain 77 non-isomorphic mech-
anisms by linkage inversion (see the first row in Table 2). These results coincide with those
presented by Tuttle [19], who also obtained 4,351,450 inversions from the 325,231 enumer-
ated one-DOF KCs.

Automated Method for Type Synthesis of Planar Linkages

Table 2 Rigid one-DOF linkage atlases (RigidOneDof)

Suffix BKC Level

0 1 2 3 4 5 6 7 8 9

R 1 2 3 2 4 2 5 4 6 2

RP 10 200 232 2,048 2,464 736 4,160 4,096 4,224 1,072

RPrules 7 91 112 564 749 263 1,170 1,192 1,332 381

ROneP 3 13 17 22 34 12 47 44 50 13

BKC Level Total

10 11 12 13 14 15 16 17 18

2 8 5 8 7 4 7 3 2 77

1,152 8,192 4,128 8,192 4,864 1,460 4,864 1,312 816 54,222

352 2464 1,180 2,328 1,532 491 1,508 428 247 16,391

16 88 45 88 65 24 65 20 13 679

3.2 Atlas of 1-DOF rigid linkage mechanisms with prismatic joints

In the previous atlas, we assumed all joints are of the revolute type. In order to add prismatic
joints, the links specialization is achieved identically as before (it results in 77 alternatives),
but for joints specialization we extend the joints alphabet to {1 = revolute,2 = prismatic}.

The resultant atlas have 54,222 mechanisms (see the second row in Table 2). However, it
is well known that in RP-mechanisms, prismatic joints behavior introduces singularities de-
pending on the number and orientation of prismatic joints over a link/circuit. Some topolo-
gies can be discarded while the enumeration takes place. This avoids working with an “a
priori identifiable” unfeasible topology.

In order to avoid singularities, Sardain [7] used a rule developed by Freudenstein and
Maki [12] for P-joints assignment, “F&M: The maximum number of prismatic joints should
be equal to one per link, except at the ground and the effector level”. Nieto [20] listed three
restrictions: “N1: No link of a chain can contain only P pairs which directions are parallel”;
“N2: Binary links of a chain with only P-pairs cannot be connected directly”; “N3: No
closed circuit of a chain can have less than two R pairs”. These rules are heuristic, and not
fully compatible. In fact, because of the application for which the rules where designed,
rule F&M is more restrictive than N1, N2, and N3. Further, rule N1 can be computed only
after the dimensional synthesis stage since it is metric dependent. Inspired on these rules,
we propose the following ones:

R1: No closed circuit of a chain can have less than two non-prismatic pairs. By “non-
prismatic pair”, we mean other one-DOF connection, either revolute (rigid) or revolute
or clamped (both in the flexible sense).

R2: No closed circuit of a chain can have three consecutive P pairs.

Applying these restrictions in the second step of specialization of the mentioned 19 KCs,
we get a total of 16,391 non-isomorphic mechanisms.

Often, the degree of freedom of the mechanism is obtained by the actuation of one pris-
matic joint as driver (for instance, by means of a hydraulic or pneumatic cylinder). So,
another atlas was developed for only one prismatic joint. As is shown in the last row of
Table 2, the assignment results in 679 non-isomorphic mechanisms.

M. Pucheta, A. Cardona

Table 3 Compliant one-DOF linkage atlases (CompliantOneDof)

Suffix BKC Level

0 (Four-bars) 1 (Watt) 2 (Stephenson) Total

R 211 50,267 52,507 102,985

RP 731 448,673 459,482 908,886

RPrules 683 385,218 396,328 782,229

ROneP 506 178,845 183,623 362,974

3.3 Atlas of 1-DOF compliant linkage mechanisms

Here, the link alphabet is {0 = ground,1 = rigid,2 = flexible}, and the joint alphabet is
{1 = revolute,2 = prismatic,3 = flexible_hinge,4 = clamped}.

We have applied two rules defined by Murphy [10].

M1: At least one rigid segment must be present (the ground).
M2: Two or more rigid links (including the ground) cannot be connected by a clamped

connection.

We can see in Table 3 that the number of solutions grows considerably (as a consequence
of the so-called combinatorial explosion). The results for the four and six-bar mechanisms
without prismatic joints are shown in the first row. Results in the second row, allowed the use
of prismatic joints without any restriction. In the third row, the mentioned rules for prismatic
pairs were considered. Finally, the last row displays the number of solutions obtained when
only one prismatic joint per mechanism was permitted.

We validated part of our atlases with that presented by Howell in Appendix G of his
book [11]. Note, however, that he displayed only 209 solutions for the four-bars compli-
ant enumeration instead of 211. We have detected that he missed two solutions with CP’s
x4 − 11x2 + 9 and x4 − 8x2 + 2, respectively (represented here using his notation). The
corresponding matrices (using again Howell’s notation) are:

⎡
⎢⎢⎣

−1 1 2 0
1 0 0 2
2 0 0 1
0 2 1 1

⎤
⎥⎥⎦ , and

⎡
⎢⎢⎣

−1 1 2 0
1 0 0 1
2 0 1 1
0 1 1 0

⎤
⎥⎥⎦ .

3.3.1 Some comments about efficiency

The presented method for specialization of kinematic chains is easy to program and also,
well adapted to the presented identifier. In contrast, it is not the most appropriate from the
point of view of computational efficiency. This method requires to explore a large num-
ber of unfeasible mechanisms, and the cost grows considerably with the number of links.
For instance, in the specialization of the compliant four-bars KC without prismatic joints,
there were 6 solutions in the first step and 81 in the second one, so that, 6 × 81 = 486 al-
ternatives were explored from which 211 were non-isomorphic. In the Watt six-bars KC,
there were 50,267 non-isomorphic mechanisms from the 52 × 2,187 = 113,724 gener-
ated ones. In the Stephenson six-bars KC, there were 52,507 non-isomorphic ones from
the 68 × 2,187 = 148,716 generated alternatives. Finally, 256 × 59,049 = 15,116,544
alternatives were generated for the first 8-bars KCs (not shown in Table 3).

Automated Method for Type Synthesis of Planar Linkages

The method presented by Yan [2] based on group theory, generates non-isomorphic
mechanisms directly from the feasible space and could lead to more efficient ways of gen-
erating atlases. Nevertheless, we should remark that this cost does not affect the speed of
computations of the synthesis process, since the atlases generation is performed only once,
and the results are stored for exploration during the synthesis of the intended mechanism,
which is, in fact, the purpose of our work.

4 Graph representation of kinematic problems

Starting from functional requirements, the designer selects the structural characteristics to
draw the existing parts like a skeleton diagram.

A mechanism is represented internally in a multiple-set of data M = {N ,F ,E}, consist-
ing of nodes, fixations and elements with attributes like positions, type of elements, connec-
tivities, etc. [21]. In a synthesis problem, the skeleton diagram results in only some parts that
are imposed to exist in the final synthesized mechanism. In addition, on the imposed parts
the user specifies requirements for the synthesis task: motion constraints, allowed space,
minimum and maximum transmission angle, etc.

In planar problems, we can impose three motion constraints per rigid body or link: two
translations and one rotation on the axis perpendicular to the work plane. The motion con-
straints may be defined on nodes, links or joints (as motorization or input of motion). Thus,
the motion constraints could be: sets of node displacements D, sets of link rotations L, and
sets of joint parameters J , e.g. rotations for revolute joints and displacements over the joint
axis for the prismatic ones.

The subgraph search process is general and suits to a wide range of problems; neverthe-
less, we can distinguish three typical cases:

Path Following (PF). To define a trajectory, we give a set of node displacements

D = {
NID, j, (dx, dy)j ; . . .

}
,

where ID is the node identifier, j is the passing point number in the sequence of precise
positions, and (dx, dy)j are the passing point displacements expressed in relative coor-
dinates from the initial node position. For instance, in Fig. 5, if two displacements are
desired on node N4, we declare three triplets

D = {
N4,0, (0,0);N4,1,d1;N4,2,d2

}
.

Rigid-Body Guidance (RBG). Here, displacements and also orientations are defined for an
isolated node. For instance, we declare the displacements

D = {
N5,0, (0,0);N5,1,d1;N5,2,d2

}

on node N5, and the rotations for rigid-body E1 (Fig. 6) with the triplets

L = {E1,0,0;E1,1, α1;E1,2, α2}.
Function Generation (FG). Now, two (or more) sequences of displacements or orientations

are specified for two (or more) rigid-bodies. For instance, a law β = f (α) is given for
two bodies hinged to ground in Fig. 7, by defining the sets

J = {E1,0,0;E1,1, α1;E1,2, α2;E1,3, α3}

M. Pucheta, A. Cardona

Fig. 5 Path following

Fig. 6 Rigid-body guidance

and

J = {E2,0,0;E2,1, β1;E2,2, β2;E2,3, β3}.
Motorized prismatic joints can also be present in a mechanism, and in this case input

displacements may be given for them. For instance, in Fig. 1, a double function generation
problem is defined where the objective is to move both rigid bodies in a synchronized mode
using a prismatic actuator. The initial and last positions are prescribed for the prismatic
joint E3 in the form J = {E3,0, d0;E3,3, d3}. The intermediate inputs are unknown and
are computed by the dimensional synthesis program. Data is completed by imposing the
angular displacements at link E1: J = {E1,0,0;E1,1, β1;E1,2, β2;E1,3, β3} and at link
E2: J = {E2,0,0;E2,1, α1;E2,2, α2;E2,3, α3}.

In this way, the task desired for the synthesized mechanism is entered by specifying sets
D, J , and L. The problem of synthesis is then stated as that of finding a mechanism capable
of approximately satisfying the prescribed task, minimizing the error between the objective
and the generated movements.

Automated Method for Type Synthesis of Planar Linkages

Fig. 7 Function generation

4.1 Initial graph

The initial graph represents the initially imposed parts. From the starting parts definition
Mini, we build the associated graph Gini following these simple rules:

Vertices: Free bodies with imposed movements will be isolated vertices of the initial graph.
The remaining bodies, connected through joints, will be connected vertices of the graph.
Conventionally, the ground link will be the vertex zero. Depending on the number of
grounded bodies, this vertex may be binary, ternary, etc. The number of isolated fix-
ations (represented by fixed nodes in Mini) is used to prescribe the degree of vertex
zero (ground). For each isolated node with prescribed movement in Mini, we assign an
isolated vertex in the graph, although this node is not attached to any element.

Edges: Joints will be edges of the initial graph connecting two of the previously defined
vertices; all edges are assumed to be binary (isolated joints are not allowed).

After construction of the initial graph, a vector called minimum degree of vertices, degmin

is filled to be used later to accelerate the subgraph search.
Note that nodes which neither pertain to any joint nor have prescribed motion, are filtered

out (these nodes are shown as “circled” in Figs. 5–7). Although they do not participate in the
initial graph construction, they are stored to be used later in the dimensional synthesis stage.
They serve either as checking points of the task or to define the restricted area (or space),
where all links must hold for each precise position.

Tasks can be classified according to the number of graph components in the initial graph
associated with the problem (e.g. compare Figs. 1, 5, 6, and 7). For PF (Fig. 5) and RBG
(Fig. 6) tasks, the initial graph has two separated components. One component includes
the ground and the other component has one isolated vertex which is taken as objective
vertex.2 If after applying the rules for construction of the initial graph, we get more than two
components, the problem is subdivided into successive synthesis tasks, dealing with one

2Since the name “coupler or floating link” comes from studies on the traditional four-bar mechanism, in our
graph approach we rename it to “objective vertex”.

M. Pucheta, A. Cardona

objective at each time. For instance, a wing flap/tab coordination problem can be divided
into a “flap guidance” problem followed by a “tab guidance” problem [22].

Note that the representation of isolated vertices is not considered in the classical defin-
ition of the adjacency matrix A. We simply add them as a null row and column in such a
way that A allows the representation of non-connected graphs. Then, T is implicitly defined
taking the structure of A and the link and joint type integer mappings, TL and TJ .

For example, the adjacency matrix of the initial graph shown in Fig. 5 is:

Vini = {0 1 2 }, Eini =
{
(0,4)

}

V(Vini) = {0 4 6} , E(Eini) = {2}

Aini =
⎡
⎣

0 1 0
1 0 0
0 0 0

⎤
⎦ ,

TL

(
V(Vini)

) = {0 → 0,4 → 1,6 → 1},
TJ

(
V(Vini) × V(Vini)

) = {
(0,4) → 1

}
,

Tini =
⎡
⎣

0 1 0
1 1 0
0 0 1

⎤
⎦ .

This new definition of the adjacency matrix is the key aspect to deal with a general graph
and subgraph isomorphism problem.

4.1.1 Distance from the objective vertex

The objective vertex vobj in PF and RBG problems, i.e. the vertex containing the node which
develops the prescribed task, is chosen counting a given distance from the ground v0. This
distance d(vi, vj) is defined as the minimal number of vertices going through a path begin-
ning from the objective vertex to the ground: mind(v0, vobj). The minimum distance from
the objective vertex to the ground is set to 2, while the maximum is either fixed by the user
or taken to be equal to the number of passing points npp specified in the task minus one.

2 ≤ min
(
d(v0, vobj)

) ≤ npp − 1. (1)

For instance, if three passing points are specified for a PF task, the vertex is chosen at a
distance of two from the ground. Of course, depending on the topology, there can be more
than one option for the objective vertex that verifies this requirement (although some of them
can be isomorphic). The subgraph search proposed in the next section explores automatically
all possible ways of assigning the objective vertex that satisfies the distance constraint and
avoids isomorphisms.

5 Number synthesis by means of a subgraph searching

The initial graph represents the initial situation. In order to get a mechanism that matches
this initial situation, the initial graph should be a subgraph of any valid mechanism of the

Automated Method for Type Synthesis of Planar Linkages

selected atlas of mechanisms. The problem consists in looking for the simplest mechanism
in the atlas for which the initial graph is a subgraph:

Gini ⊆ GA (2)

with GA, a graph from the atlas. However, the following constraints have to be also satisfied:

• the equality constraint

T (Gini) = T (HA), Gini
∼= HA, HA ⊆ GA, (3)

i.e. the link and joint types in Gini should match exactly those of the corresponding sub-
graph, HA, in GA.

• the distance constraint given by (1),
• the isomorphism constraint, DCd

b(S(Gini,GA)) be different from all previous answers,
and

• the pseudo-isomorphism constraint, no solution has a previous one as subgraph (explained
later).

Let lini = {l0, l1, . . . , lnini−1} be the labels of the initial graph Gini, and Vini the func-
tion which applies the set lini to the set of unlabeled vertices Vini = {v0, v1, . . . , vnini−1} =
{0,1, . . . , nini − 1}, so that Vini(vi) = li . Also, let us consider the function Eini(eij) = mij for
labeling the edges of Gini. These labels were assigned by the user when the problem was
defined.

The search begins at the lowest level of complexity in the selected atlas. In this way, we
try to minimize the number of links in the solution and get the simplest possible mechanism.
The algorithm for selection of a suitable mechanism is the following:

S0. Initialize search level A = −1, and the number of alternatives a = −1.
S1. Increase level index A and take a graph GA from the atlas, with nA vertices. If nini ≤ nA,

continue to S2; otherwise, repeat S1.
S2. Do a (nini − 1)-permutation of the vertex set of GA, VA, excluding vertex v0 which is

always present in both Gini and GA. We call p′ this set of VA \ v0. A special permutation
vector p is formed by concatenating v0, the permutation p′, and the remaining vertices
of VA which are not in p′ sorted in ascending order, i.e.:

p = {
v0, v

p′
1 , . . . , v

p′
nini−1︸ ︷︷ ︸

V (HA)

, ..., vnA−1︸ ︷︷ ︸
vi<vi+1,v�p′

}
.

Do a permutation of GA using p. Take a subgraph HA of the permuted graph G
p

A in the
following way: the vertices of HA are composed by the first nini vertices of the permuted
list of vertices of G

p

A, and connect HA as in G
p

A. Label HA using Vini and Eini. There is a
number of

(
nA−1
nini−1

)
(nini − 1)! permutations p′ to be explored following the lexicographic

order of the unlabeled vertices. If all the (nini −1)-permutations have already been tested
in the explored level, return to S1.

S3. If edges of Gini are included in HA and also the link and joint types match, then Gini ⊆
G

p

A; else, return to S2 and choose a new subgraph HA in lexicographic order of p′
permutations.

S4. Relabel G
p

A using the labels functions Vini and Eini for vertices and edges homologous
to Gini in the previous step, and for vertices and edges which are not in Gini using new

M. Pucheta, A. Cardona

labels starting from

max(li ,mij) + 1, i, j = 0,1, . . . , nini,

we denote the new label functions as Va+1 and Ea+1.
If there is an objective vertex and the distance constraint is violated return to S2 and
choose a new subgraph HA in lexicographic order. Else, construct the matrices T =
{lL ∧ lJ ∧ G

p

A} and S from the labeled G
p

A and compute its DCd
b(S). If the code is not

already stored, set a ← a + 1 and save a new alternative, Ma ← [Cd
b (T),Va,Ea], then

return to S2. Else, return to S2 and choose a new subgraph HA in lexicographic order.

In this way, we performed the number synthesis and the specialization process, that is,
we determined the mechanism (degrees of freedom, number of links, number of joints and
their interconnections, and the type of links and joints) that could answer the requirements.
All this information is codified in the nA-vector Cd

b (T). In addition, the vertex and edge
labels Va and Ea are saved to retrieve the physical meaning of the links and joints.

At the end, the process results in a list of mechanisms with admissible topologies M0,
M1, M2, . . . , where the mechanism M0 with labeled and colored graph G0 is the simplest
admissible solution. These mechanisms inherit synthesis data definitions (D, J , L) from
Mini, which are useful to compute the missing data (i.e. vertices representing new links
have unknown node positions) at later dimensional synthesis stages [23].

Applications of the subgraph search algorithm are illustrated next with practical exam-
ples.

Example 1: Path following with prescribed timing

A subgraph search in an atlas of rigid mechanisms was executed for the problem shown in
Fig. 5.

From the available atlases of rigid mechanisms (see Table 2), we select the atlas Rigid-
OneDofR with 77 candidates to explore.

Because the problem has an objective vertex with 3 passing points, the allowed distance
from the objective vertex to ground was automatically set to take the value 2 by the constraint
defined in (1). This search lead to 489 non-isomorphic solutions of increasing complexity
for this problem. A second running in which pseudo-isomorphic mechanisms were rejected
(see Sect. 6), resulted in 214 solutions. The first 19 solutions found in the latter case are
shown in Fig. 8.

Figure 9 displays their corresponding sketches (they were generated automatically with
manual relocation of some nodes to avoid crossing edges). We can see that solutions result
in increasing order of complexity as they come out from the selected atlas. Alternative 0 is
a four-bars mechanism, 1 is a Watt-I mechanism; 2 and 3 are Watt-II mechanisms; 4, 5 and
6 are Stephenson-I mechanisms; 7 to 10 are Stephenson-II mechanisms; and 11 to 14 are
Stephenson-III mechanisms.

Example 2: Double function generation

The problem shown in Fig. 1 schematizes the prescribed coordination between the horizon-
tal movement of an hydraulic cylinder and the rotations of two flaps of a turbine engine
following a prescribed α vs. β law between them. The primary flap is displayed as body
8, body 10 is the secondary flap and the hydraulic cylinder is displayed as body 12 in the

Automated Method for Type Synthesis of Planar Linkages

Fig. 8 First 19 non-isomorphic occurrences of an initial graph

figure. Note that in this case there is not any objective vertex, so the distance constraint was
not imposed. The selected atlas was RigidOneDofROneP.

The first 10 solutions obtained are shown in Figs. 10 and 11. An automatic sketch is
drawn below each solution for clarity.

M. Pucheta, A. Cardona

Fig. 9 Physical sketches for a path following task

Automated Method for Type Synthesis of Planar Linkages

Fig. 10 First 10 non-isomorphic occurrences of an initial graph inside the atlas (continued)

Note that the first two synthesized mechanisms (Alternatives 0 and 1) shown in Fig. 2
were found inside the same level in the specialized atlas, i.e. from permutations of the same

M. Pucheta, A. Cardona

Fig. 11 First 10 non-isomorphic occurrences of an initial graph inside the atlas

Watt-I mechanism (with a prismatic joint between the ternary ground and one of their adja-
cent binary links). These subgraph occurrences are structurally isomorphic but functionally
different. These two valid alternatives have the following T , S matrices and degree codes

V
(
V

p0

A

) = {0 8 10 12 17 18 },

T
(
G

p0

A

) =

⎡
⎢⎢⎢⎢⎢⎢⎣

0 1 1 2 0 0
1 1 0 0 1 1
1 0 1 0 1 0
2 0 0 1 0 1
0 1 1 0 1 0
0 1 0 1 0 1

⎤
⎥⎥⎥⎥⎥⎥⎦

,

Automated Method for Type Synthesis of Planar Linkages

S0 =

⎡
⎢⎢⎢⎢⎢⎢⎣

3 1 1 2 0 0
1 4 0 0 1 1
1 0 5 0 1 0
2 0 0 6 0 1
0 1 1 0 1 0
0 1 0 1 0 1

⎤
⎥⎥⎥⎥⎥⎥⎦

−→ DCr
7

(
S0

) =

⎡
⎢⎢⎢⎢⎢⎢⎣

70021
7218
350
50
42
5

⎤
⎥⎥⎥⎥⎥⎥⎦

for the first alternative, and

V
(
V

p1

A

) = {0 10 8 12 17 18 },

T
(
G

p1

A

) =

⎡
⎢⎢⎢⎢⎢⎢⎣

0 1 1 2 0 0
1 1 0 0 1 1
1 0 1 0 1 0
2 0 0 1 0 1
0 1 1 0 1 0
0 1 0 1 0 1

⎤
⎥⎥⎥⎥⎥⎥⎦

,

S1 =

⎡
⎢⎢⎢⎢⎢⎢⎣

3 1 1 2 0 0
1 5 0 0 1 1
1 0 4 0 1 0
2 0 0 6 0 1
0 1 1 0 1 0
0 1 0 1 0 1

⎤
⎥⎥⎥⎥⎥⎥⎦

−→ DCr
7

(
S1

) =

⎡
⎢⎢⎢⎢⎢⎢⎣

86828
7218
350
50
42
4

⎤
⎥⎥⎥⎥⎥⎥⎦

for the second one. The degree code of the S matrices effectively determine if the resultant
occurrences leads to functionally different mechanisms.

6 Rejection of pseudo-isomorphic mechanisms

A mechanism has an idle loop if it contains a sub-chain with inactive links which carry no
loads. These links increase unnecessarily the complexity.3

The algorithm for idle loop detection is simply another subgraph search: In step S4,
before saving a candidate solution Ma , we do a new subgraph search checking to see if any
stored mechanism solution Ms is a subgraph of Ma , i.e. if there exists an occurrence of
Ms ⊂ Ma, s = 0, . . . , a − 1.

Note that, in the presented examples, no solution has a previous one as subgraph. This is
a consequence of the implemented second subgraph search.

For instance, in the path following example, although the second valid subgraph occur-
rence is that given in Fig. 12 as Alternative 1’, it has Alternative 0 as subgraph so it is
rejected. Note that the new grounded link 8 and the new link 9 do not carry any load for the
imposed input. By ignoring the parts selected by line A-A, the mechanism is identical to
that of Alternative 0. The following valid alternative (Alternative 1) is that shown in Fig. 9.

3In special cases, an idle loop could be desired to produce some particular kinematic or dynamic behavior,
e.g. to produce a locked end-position (with zero transmission angle), reinforce the planar stability, or for
balancing purposes.

M. Pucheta, A. Cardona

Fig. 12 First pseudo-isomorphic occurrence in the path following example

7 Conclusions

The main contribution of this work to linkage mechanisms design is to offer a systematic
procedure to obtain topological alternatives for a given kinematic problem. New algorithms
based on graph theory and combinatorial analysis were developed to search and codify the
solutions in a non-isomorphic way.

In this work, we incorporated structural characteristics in the alternatives generator by
using the initial graph concept. This eliminates the human effort for task matching and also
diminished considerably the computation time in the rest stages of synthesis. In the subse-
quent dimensional synthesis stage, the information of known nodes and type-synthesized
graph structure can be used either in a general absolute/natural coordinate formulation [24,
25] or in a complex number formulation based on the decomposition of the topology into
open chains [4, 22, 23, 26].

Other remarkable characteristics are:

• The F.E.M. description of the kinematic problem in conjunction with the rules given for
the initial graph construction is the key to adapt the problem into a graph problem one.
Note that this technique can be easily extended to three-dimensional space.

• The use of an specialized atlas assures that all candidate mechanisms satisfy the required
degree of freedom without containing rigid sub-chains, and reduce the time consumed for
specialization.

• The number of solutions is finite and the combinatorial explosion is manageable. The
method allows the user to look for all solutions for a given planar problem in a selected
atlas with a defined number of candidate mechanisms.

• The designed diagonally extended degree code allows coding and decoding of solutions
in an efficient and straightforward way.

• The CPU time consumption is quite small, and the examples shown were computed in
just a few seconds of CPU time on a modern PC.

• The method is being used as part of a complete system for type and dimensional synthesis
of rigid and flexible mechanisms implemented in the context of a finite elements program
[27–30].

The algorithms and the identifier are useful for dealing with more types of links and
joints in the mechanism, and even more complex tasks. However, adequate rules to reject
kinematically invalid solutions must be properly designed, as we have seen for prismatic
joints. Although it was not presented in the examples, the method is capable to deal with

Automated Method for Type Synthesis of Planar Linkages

compliant members. In future work, we will use the method for exploring the large number
of mechanisms available in the atlases of compliant mechanisms.

Acknowledgements This work has received financial support from Consejo Nacional de Investigaciones
Científicas y Técnicas (CONICET), Agencia Nacional de Promoción Científica y Tecnológica (ANPCyT),
Universidad Nacional del Litoral (UNL) from Argentina, and from the European Community through grant
SYNCOMECS (SYNthesis of COmpliant MEChanical Systems) project UE FP6-2003-AERO-1-516183.

References

1. Olson, D.G., Erdman, A.G., Riley, D.R.: A systematic procedure for type synthesis of mechanisms with
literature review. Mech. Mach. Theory 20, 285–295 (1985)

2. Yan, H.S., Hwang, Y.W.: The specialization of mechanisms. Mech. Mach. Theory 26, 541–551 (1991)
3. Tsai, L.W.: Mechanism Design: Enumeration of Kinematic Structures According to Function. CRC

Press, Boca Raton (2001)
4. Sandor, G.N., Erdman, A.G.: Advanced Mechanism Design: Analysis and Synthesis, vol. 2. Prentice-

Hall, New Jersey (1984)
5. Lin, C.S., Erdman, A.G., Jia, B.P.: Use of compatibility linkages and solution structures in the dimen-

sional synthesis of mechanism components. Mech. Mach. Theory 31, 619–635 (1996)
6. Erdman, A.G., Sandor, G.N.: Mechanism Design: Analysis and Synthesis, vol. 1, 3rd edn. Prentice-Hall,

New Jersey (1997)
7. Sardain, P.: Linkage synthesis: Topology selection fixed by dimensional constraints, study of an example.

Mech. Mach. Theory 32, 91–102 (1997)
8. McCarthy, J.M.: Geometric Design of Linkages. Springer, Berlin (2000)
9. Mruthyunjaya, T.S.: Kinematic structure of mechanisms revisited. Mech. Mech. Theory 38(4), 279–320

(2003)
10. Murphy, M.D., Midha, A., Howell, L.L.: The topological synthesis of compliant mechanisms. Mech.

Mach. Theory 31, 185–199 (1996)
11. Howell, L.L.: Compliant Mechanisms. Wiley, New York (2001)
12. Freudenstein, F., Maki, E.R.: Creation of mechanisms according to kinematic structure and function.

J. Environ. Plan. B 6, 375–391 (1979)
13. Tsai, L.W.: Systematic enumeration of parallel manipulators. Technical report, Institute for Systems

Research, College Park, MD, USA (1998)
14. Chen, D.Z., Pai, W.M.: A methodology for conceptual design of mechanisms by parsing design specifi-

cations. ASME J. Mech. Des. 127(6), 1039–1044 (2005)
15. Tang, C.S., Liu, T.: The degree code—a new mechanism identifier. ASME J. Mech. Des. 115, 627–630

(1993)
16. Yan, H.S.: Creative Design of Mechanical Devices. Springer, Singapore (1998)
17. Hwang, W.M., Hwang, Y.W.: Computer-aided structural synthesis of planar kinematic chains with simple

joints. Mech. Mach. Theory 27, 189–199 (1992)
18. Hsieh, H.I.: Sistematic methodologies for the automatic enumeration of topological structures of mech-

anisms. Master’s thesis, University of Maryland, USA (1992)
19. Tuttle, E.R.: Generation of planar kinematic chains. Mech. Mach. Theory 31(6), 729–748 (1996)
20. Nieto Nieto, J.: Síntesis de Mecanismos. Editorial AC, Madrid (1977)
21. Geradin, M., Cardona, A.: Flexible Multi-Body Dynamics. A Finite Element Approach. Wiley, New

York (2001)
22. Cardona, A.: Computational methods for synthesis of mechanisms. Technical report, CIMEC-INTEC

(2002)
23. Pucheta, M.A., Cardona, A.: Type synthesis and initial sizing of planar linkages using graph theory

and classic genetic algorithms starting from parts prescribed by user. In: Multibody Dynamics 2005,
ECCOMAS Thematic Conference, Madrid, Spain (2005)

24. Jiménez, J.M., Álvarez, G., Cardenal, J., Cuadrado, J.: A simple and general method for kinematic syn-
thesis of spatial mechanisms. Mech. Mach. Theory 32(4), 323–341 (1997)

25. Da Lio, M., Cossalter, V., Lot, R.: On the use of natural coordinates in optimal synthesis of mechanisms.
Mech. Mach. Theory 35(10), 1367–1389 (2000)

26. Pucheta, M.A., Cardona, A.: A decomposition method for modular dimensional synthesis of planar
multi-loop linkage mechanisms. In: Mecánica Computacional, XV Congreso sobre Métodos Numéri-
cos y sus Aplicaciones, ENIEF 2006, vol. XXVII, pp. 351–373, Santa Fe, Argentina, November 2006

M. Pucheta, A. Cardona

27. Cugnon, F., Cardona, A., Selvi, A., Paleczny, C.: Synthesis and optimization of flexible mechanisms.
In: Bottasso, C.L., Masarati, P., Trainelli, L. (eds.) Multibody Dynamics 2007, ECCOMAS Thematic
Conference on Multibody Dynamics, Milan, Italy (2007)

28. Pucheta, M.A., Cardona, A.: Kinematics synthesis of compliant mechanisms using rigid-body replace-
ment. In: Bottasso, C.L., Masarati, P., Trainelli, L. (eds.) Multibody Dynamics 2007, ECCOMAS The-
matic Conference on Multibody Dynamics, Milan, Italy (2007)

29. SAMTECH S.A. SAMCEF, http://www.samcef.com
30. Open Engineering S.A. OOFELIE: oriented object finite elements led by interactive executor. http://

www.open-engineering.com. University of Liège, Belgium and INTEC, Argentina

	An automated method for type synthesis of planar linkages based on a constrained subgraph isomorphism detection
	Abstract
	Introduction
	A mechanism identifier
	Degree code
	Type Adjacency Matrix
	Synthesis adjacency matrix
	Enumeration of one-DOF kinematic chains

	Generation of atlases of mechanisms
	Atlas of 1-DOF rigid linkage mechanisms: linkage inversions
	Atlas of 1-DOF rigid linkage mechanisms with prismatic joints
	Atlas of 1-DOF compliant linkage mechanisms
	Some comments about efficiency

	Graph representation of kinematic problems
	Initial graph
	Distance from the objective vertex

	Number synthesis by means of a subgraph searching
	Example 1: Path following with prescribed timing
	Example 2: Double function generation

	Rejection of pseudo-isomorphic mechanisms
	Conclusions
	Acknowledgements
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for journal articles and eBooks for online presentation. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

