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Abstract

Recently the Karcher mean has been extended to the case of probability mea-
sures of positive operators on infinite-dimensional Hilbert spaces as the unique
solution of a nonlinear operator equation on the convex Banach-Finsler manifold
of positive operators. Let (Ω, µ) be a probability space, and let τ : Ω → Ω be a
totally ergodic map. The main result of this paper is a new ergodic theorem for
functions F ∈ L1(Ω, P), where P is the open cone of the strictly positive opera-
tors acting on a (separable) Hilbert space. In our result, we use inductive means
to average the elements of the orbit, and we prove that almost surely these aver-
ages converge to the Karcher mean of the push-forward measure F∗(µ). From our
result we recover the strong law of large numbers and the “no dice” results proved
by the third and fourth authors in the article Strong law of large numbers for the
L1-Karcher mean, Journal of Func. Anal. 279 (2020). From our main result, we
also deduce an ergodic theorem for Markov chains with state space included in P.
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1 Introduction

Let H be a complex and separable Hilbert space. In this note B(H), S and P stand
for the sets of (bounded) linear operators, selfadjoint operators, and strictly positive
operators acting in H respectively. The unitary group of B(H) is indicated by U(H).
If X ∈ B(H), then ∥X∥ stands for the usual operator norm, and we will use | · | to
indicate the modulus of an operator, i.e. |X| =

√
X∗X. On S the closure P generates

a partial order ≤, often known as Löwner order.

When H is finite-dimensional, then P can be equipped with the a trace metric

ds =
(
tr(A−1dA)2

)1/2
= ∥A−1/2dAA−1/2∥2,

where ∥ · ∥2 denotes the Frobenius, also known as Hilbert-Schmidt, norm. In other
words, if α : [a, b] → P is a piecewise smooth curve, its length is defined by

L(α) =

∫ b

a

∥α−1/2(t)α′(t)α−1/2(t)∥2 dt.

This induces a Riemannian structure in P, in which the distance between A,B ∈ P
defined by

d2(A,B) = inf{L(α) : α is a piecewise smooth curve connecting A with B}

can be computed by the formula

d2(A,B) = ∥ log(A−1/2BA−1/2)∥2.

The geodesic joining A and B also has a closed form expression

γAB(t) = A1/2(A−1/2BA−1/2)tA1/2 ,

for 0 ≤ t ≤ 1. In operator theory, γAB(t) is usually denoted by A#tB, and it is called
the weighted geometric mean of A and B. From the metric point of view, P endowed
with the metric d2 is a CAT(0) or Hadamard space. In this setting, the aforementioned
weighted geometric means are just a particular case of the notion of a barycenter. We
say that a measure µ defined in the Borel sets of P belongs to the space P1(P) if for
some (thus all) A ∈ P ∫

d2(X,A)dµ(X) < ∞.
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For such a measure we define the barycenter of µ, also known as the Karcher mean of
µ, by

Λ(µ) = argmin
X∈P

∫
T
δ2(A,X))− δ2(A,B)) dµ(A), (1)

where B is any element of P. It is not difficult to check that Λ(µ) does not depend
on the choice of B ∈ P. It is also easy to check that the weighted geometric means
mentioned before are the barycenter of the atomic measures (1− t)δA+ tδB , where δC
denotes the unit mass probability measure at the point C ∈ P. For these particular
cases, we have a closed formula for the barycenter, given by

A1/2(A−1/2BA−1/2)tA1/2.

This is no longer true in general for measures with three or more points in their
support. This leads to investigating different ways to approximate the Karcher’s mean.

In [26], Sturm defined the inductive means. To motivate their definition, take a
sequence {an}n∈N of complex numbers. Then, trivially we can rewrite the arithmetic
means as follows:

a1 + a2 + a3
3

=
2

3

(
a1 + a2

2

)
+

1

3
a3

...

a1 + . . .+ an
n

=
n− 1

n

(
a1 + . . .+ an−1

n− 1

)
+

1

n
an.

Let sa,b(t) = t b+(1−t)a, and for a moment allow us to use the notation a ♯t b = sa,b(t).
Then

a1 + a2 + a3
3

=(a1 ♯ 1
2
a2) ♯ 1

3
a3

a1 + a2 + a3 + a4
4

=((a1 ♯ 1
2
a2) ♯ 1

3
a3) ♯ 1

4
a4,

and so on. The segments are the geodesics in the euclidean space. Thus, in our setting,
we can replace the segments by the geodesic associated to the Riemannian structure
in P1. Given a sequence A = {An}n∈N whose elements belong to P, then the inductive
means are defined as follows:

S1(A) = A1

Sn(A) = Sn−1(A)# 1
n
An (n ≥ 2).

1This generalization can be done in any CAT(0) space in the same way, because in these spaces there
exists a notion of (metric) geodesics.
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Note that these means can be computed explicitly, and they inherit from the
weighted geometric means the monotonicity with respect to the Löwner order. Using
these inductive means, Sturm in [26] proved the following version of the law of large
numbers:
Theorem A (Sturm). Let Yi be a sequence of i.i.d. bounded random variables taking
values in P. If µ denotes the (common) law of the variables Yi, then

Sn({Yi}i)
a.s.−−−−→

n→∞
Λ(µ).

Sturm’s law of large numbers was used by Lawson-Lim [14] and Bhatia-Karandikar
[4] to prove the monotonicity of

Λ
(1
k

k∑
i=1

δAi

)
with respect to the variables Ai ∈ P and the Löwner order, an important conjecture
in matrix analysis. Later a deterministic, also called “no dice”, version of Sturm’s law
that periodically recycles all the points Ai was proved by Holbrook [9]. This result can
be thought of as an ergodic theorem in a finite cyclic group. This reinterpretation of
Holbrook’s result was the motivation of the following Birkhoff-type ergodic theorem
proved in [2]. Let (G,+) be a compact, and metrizable topological group. In this group,
we fix a Haar measure m, a shift-invariant metric dG, and we consider an ergodic
automorphism τ(h) = h + g for some g ∈ G. In this framework, the following result
holds.

Theorem B. Let A : G → P such that the push forward measure µA = A∗(m) belongs
to P1(P). Then, for almost every a ∈ G

lim
n→∞

Sn(A
τ (a) ) = Λ(µA). (2)

where Aτ (a) is the forward ergodic orbit {A(τn(a))}n∈N.

1.1 The infinite dimensional setting

It turns out that this metric formulation of Λ is no longer possible when H is infinite
dimensional. In the infinite dimensional setting the available metrics on P are no
longer 2-convex, thus it is far from being a CAT(0) space. Recall that a function
h : H → (−∞,∞] is strongly convex with parameter κ > 0 if,

h((1− t)x+ ty) ≤ (1− t)h(x) + th(y)− κt(1− t)d(x, y)2,

for every x, y ∈ H and t ∈ [0, 1]. Having established this terminology, it can be proved
that a geodesic metric space (X, d) is CAT(0) if and only if the function x 7→ d(x, z)2 is
strongly convex with parameter κ = 1, for each z ∈ X (see [3] for further information).
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As a matter of fact, the natural metric structure on P, is a Finsler structure where
the length of a piecewise smooth curve α : [a, b] → P, and A,B ∈ P we define

L(α) :=

∫ b

a

∥α−1/2(t)α′(t)α−1/2(t)∥ dt.

Recall that ∥ · ∥ is the usual operator norm. Using this definition of length of a curve
we can define the following distance

d∞(A,B) = inf{L(α) : α is a piecewise smooth curve connecting A with B}.

This metric structure makes the natural actions of GL(H) by conjugation isometries.
In [5], this metric is characterized in the following way

d∞(A,B) = ∥ log(A−1/2BA−1/2)∥.

This proved that the Finsler metric coincides with the so called Thompson metric,
which can be alternatively characterized as

min{r ≥ 0 : e−r A ≤ B ≤ er A }.

Let P(P) denote the set of τ -additive Borel probability measures. Recall that finite
Borel measures on separable metric spaces are known to be τ -additive (see the begin-
ning of Section 3.1 for the definition). For 1 ≤ θ < ∞, let Pθ(P) be the set of measures
µ ∈ P(P) such that ∫

d θ
∞(X,A)dµ(X) < ∞,

for some (and therefore for all) A ∈ P. Note that the minimization problem (1) has
more than one solution if we replace d2 by d∞. Therefore, the barycenter can not
be defined through the minimization problem. A breakthrough idea was to define the
Karcher mean of a measure µ ∈ P1(P) by using the Karcher equation∫

P
logX Adµ(A) = 0, (3)

where logX A := X1/2 log(X−1/2AX−1/2)X1/2. This approach requires proving that
the Karcher equation has a unique solution, which was a very challenging problem.
The following theorem is the final result of a deep work done in [13], [15], and [17].
Theorem C. Let µ ∈ P1(P). Then, the Karcher equation∫

P
logX Adµ(A) = 0, (4)

has a unique positive definite solution Λ(µ).

This theorem allowed the following definition.
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Definition 1 (Karcher mean). For a µ ∈ P1(P) the Karcher mean is defined as the
unique solution Λ(µ) of (6).

Defined in this way, the Karcher mean is an extension of the mean defined for matri-
ces. Using this definition, Lim and Pálfia proved in [18] the following generalization
of Sturm’s Law of Large Numbers.
Theorem D. Let Yi be a sequence of i.i.d. random variables taken values in P. If
µ ∈ P1(P) denotes the (common) law of the variables Yi, then

Sn(A)
a.s.−−−−→

n→∞
Λ(µ).

2 Main results in this work

Let (Ω, µ) be a probability space, and let τ : Ω → Ω be a totally ergodic map, that is,
a map τ such that

τn = τ ◦ . . . ◦ τ︸ ︷︷ ︸
n times

is ergodic for every n ∈ N. Recall that a characterization of ergodicity is the following:
given measurable sets A and B then

lim
n→∞

1

n

n∑
k=1

µ(τ−k(A) ∩B) = µ(A)µ(B).

The map τ is called weak mixing if

lim
n→∞

1

n

n∑
k=1

∣∣µ(τ−k(A) ∩B)− µ(A)µ(B)
∣∣ = 0

and strong mixing if

lim
n→∞

µ(τ−n(A) ∩B) = µ(A)µ(B).

It is well known that strong mixing =⇒ weak mixing =⇒ total ergodicity. Now, using
this terminology, our main result can be stated in the following way
Theorem 1. Let (Ω, π) be a probability space, and τ : Ω → Ω be a totally ergodic
map. If A : Ω → P is a measurable function such that µ = A∗π belongs to P1(P), then
for almost every ω ∈ Ω

lim
n→∞

Sn(A
τ (ω)) = Λ(µ). (5)

where Aτ (ω) is the forward ergodic orbit {A(τn(ω))}n∈N.

This theorem not only generalizes to the infinite-dimensional setting the Theorem
B, but it also generalizes that theorem in the sense that it applies to a wider class
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of ergodic maps. Indeed, using standard arguments in ergodic theory, Theorem B can
be applied to equicontinuous dynamical systems. However, equicontinuity is necessary
in the proof. In Theorem 1, the topological restrictions disappears. This allows us to
apply the theorem, for instance, to the often-called shift maps. Using these maps and a
well-known trick, we can deduce Lim-Pálfia’s Law of Large Numbers as a consequence
of Theorem 1. More precisely, let Xn : Ω → P be a sequence of random vectors defined
in a probability space (Ω, µ). Define the map φ : Ω → PN by

φ(ω) = (X1(ω), X2(ω), . . .),

and the measure ν = φ∗(µ). In PN we consider the shift operator

τ(A1, A2, A3, . . .) = (A2, A3, . . .).

It is well known that this map is strong mixing. On the other hand, if p1 : PN → P
denotes the projection onto the first coordinate, then

Sn({Xi(ω)}) = Sn({p1(τk(x)}k) and (p1)∗(ν) = µ.

In this way, we can get Theorem D as a consequence of Theorem 1. The same trick
can be applied to get an ergodic theorem in the setting of operator valued Markov
chains (see Section 5 for more details)

2.1 Organization of the paper

The paper is organized as follows. In Section 3 we list some preliminaries that we will
need throughout the paper. Section 4 is devoted to the proof of Theorem 1. Firstly
we will prove the case where the function A : Ω → P is bounded, and later on we will
deduce from this particular case the general L1 case. Finally, Section 5 is devoted to
some application of our main result to the study of operator valued Markov chains.

3 Preliminaries

3.1 The Karcher mean

Recall that P(P) denotes the set of τ -additive Borel probability measures, that is,
µ ∈ P(P) satisfies

µ
(⋃

α

Uα

)
= sup

α
µ(Uα),

for any directed family {Uα} of open sets. Equivalently, a σ-finite probability measure
is τ -additive if and only if it is fully supported, that is µ(supp(µ)) = 1 (See [8, 12]).
For 1 ≤ θ < ∞, Pθ(P) is the set of measures µ ∈ P(P) such that∫

d θ
∞(X,A)dµ(X) < ∞,
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for some (and therefore for all) A ∈ P. For a measure µ ∈ P1(P). the Karcher equation∫
P
logX Adµ(A) = 0, (6)

has a unique positive definite solution Λ(µ), and by definition this solution is the
Karcher mean. As in the finite dimensional setting, the Karcher mean in P is contrac-
tive with respect to the Wasserstein distance. Recall that, the L1-Wasserstein distance
between µ, ν ∈ P1(P) is defined as

W1(µ, ν) = inf
γ∈Π(µ,ν)

∫
P×P

d∞(A,B) dγ(A,B) (7)

where Π(µ, ν) denotes the set of all τ -additive Borel probability measures on the
product space P× P with marginals µ and ν.
Theorem 2 (see Proposition 2.5. [13]). Let Ai, Bi ∈ P for 1 ≤ i ≤ n. Then Λ for
µ = 1

n

∑n
i=1 δAi

and ν = 1
n

∑n
i=1 δBi

satisfies

d∞(Λ(µ),Λ(ν)) ≤ 1

n

n∑
i=1

d∞(Ai, Bi). (8)

In particular, by permutation invariance of Λ in the variables (A1, . . . , An), we have

d∞(Λ(µ),Λ(ν)) ≤ min
σ∈Sn

1

n

n∑
i=1

d∞(Ai, Bσ(i)) = W1(µ, ν). (9)

As a consequence, the following result is obtained in [18] for general measures.
Theorem 3. For all µ, ν ∈ P1(P) it holds that

d∞(Λ(µ),Λ(ν)) ≤ W1(µ, ν). (10)

3.2 Inductive means

Let A,B ∈ P and t ∈ [0, 1], recall that weighted geometric mean A#tB is

A#tB = A1/2
(
A−1/2BA−1/2

)t
A1/2 = A

(
A−1B

)t
.

If µ = (1− t)δA+ tδB , then A#tB is the unique solution of the corresponding Karcher
equation ∫

P
logX Adµ(A) = (1− t) logX A+ t logX B = 0
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As we mentioned in the introduction, given a sequence A ∈ PN, the inductive means
are define as:

S1(A) = A1

Sn(A) = Sn−1(A)# 1
n
An (n ≥ 2).

As a consequence of Theorem 2, applied to the weighted geometric mean, we
directly get by induction the following result.
Lemma 4. Given A,B ∈ PN, then

d∞(Sn(A), Sn(B)) ≤ 1

n

n∑
i=1

d∞(Ai, Bi). (11)

Remark 1. In the finite dimensional setting, Theorem 2, Theorem 3, and Lemma 4
also hold replacing d∞ by d2. ▲

3.3 Evolution systems related to Λ

The fundamental W1-contraction property (10) leads to the development of an ODE
flow theory for Λ, which resembles the gradient flow theory for its potential function in
the finite dimensional case or in CAT(0)-spaces (see [16, 23] and the monograph [3] for
the CAT(0) gradient flow). The development of this theory for Λ and the Thompson
metric is done in [18]. In this last part of the preliminaries, we collect some results
from that theory that we will need in this work.
Definition 2 (Resolvent operator). Given µ ∈ P1(P) we define the resolvent operator
for λ > 0 and X ∈ P as

Jµ
λ (X) := Λ

(
λ

λ+ 1
µ+

1

λ+ 1
δX

)
, (12)

that is, the unique solution of the Karcher equation

λ

λ+ 1

∫
P
logZ A dµ(A) +

1

λ+ 1
logZ(X) = 0.

Many results involving the resolvent operator that hold in CAT(0) spaces have
been also proved in this setting, for instance, the following contraction property of the
resolvent operator.
Proposition 5 (Resolvent contraction). [See [18], Proposition 4.1, for a proof] Given
µ ∈ P1(P), for λ > 0 and X,Y ∈ P we have

d∞(Jµ
λ (X), Jµ

λ (Y )) ≤ 1

1 + λ
d∞(X,Y ). (13)

From the definition it is not difficult to see that Jµ
λ (Λ(µ)) = Λ(µ). Moreover, we

have the following convergence result.
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Proposition 6. [See [18], Proposition 5.1, for a proof] Let µ ∈ P1(P), d ≥ 0 an
integer and X ∈ P. Let {

X0 := X

Xk := Jµ
1/(k+d)(Xk−1) if k > 0.

Then d∞(Xk,Λ(µ)) → 0.
The next result will be very important to relate the ergodic theorems with respect

to inductive means and the classical Birkhoff theorem.
Lemma 7. Let µ, νi ∈ P1(P) for i ∈ N, l ≥ 0 an integer and X0, Y0 ∈ P. Let

Xk+1 := Jµ
1/(l+k+1)(Xk) and Yk+1 := J

νk+1

1/(l+k+1)(Yk).

Then

d∞(Xk+1, Yk+1) ≤
l + 1

k + l + 1
d∞(X0, Y0) +

1

k + l + 1

k+1∑
i=l+1

W1(µ, νi).

Proof. As d∞(Λ(µ),Λ(ν)) ≤ W1(µ, ν) and as the W1 distance is convex we have that
for any λ > 0, x, y ∈ P and µ, η ∈ P1(P),

d∞(Jµ
λ (x), J

η
λ(x)) = d∞

(
Λ

(
1

1 + λ
δx +

λ

1 + λ
µ

)
,Λ

(
1

1 + λ
δy +

λ

1 + λ
η

))
≤ W1

(
1

1 + λ
δx +

λ

1 + λ
µ,

1

1 + λ
δy +

λ

1 + λ
η

)
≤ 1

1 + λ
W1 (δx, δy) +

λ

1 + λ
W1(µ, η)

=
1

1 + λ
d∞ (x, y) +

λ

1 + λ
W1(µ, η).

Thus when λ = 1/k we get that

d∞(Jµ
1/k(x), J

η
1/k(x)) ≤

k

1 + k
d∞ (x, y) +

1

1 + k
W1(µ, η),

so applying this inequality to d∞(Xk+1, Yk+1) and induction we get

d∞(Xk+1, Yk+1) ≤
l + 1

k + l + 1
d∞(X0, Y0) +

1

k + l + 1

k+1∑
i=l+1

W1(µ, νi).

proving the assertion. ■
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4 Proofs of the main results

This section is devoted to the proof of Theorem 1. Throughout this section, (Ω, π)
is a probability space, and τ : Ω → Ω is a totally ergodic map. Given a measurable
function A : Ω → P, we say that F ∈ L1(Ω,P) if A∗π ∈ P1(P).

Also recall that, for the sake of simplicity, we use the following notation. Given a
function A : Ω → P, let Aτ : Ω → PN be defined by

Aτ (ω) := {Aτ
j (ω)}n∈N where Aτ

j (ω) = A(τ j(ω)).

In other words, for each ω ∈ Ω, the sequence Aτ (ω) is the forward ergodic orbit.

4.1 The bounded case

Our first main result is the following bounded version of the Theorem 1.

Theorem 8. Let (Ω, π) be a probability space, and τ : Ω → Ω be a totally ergodic
map. If A : Ω → P is a bounded measurable function and µ = A∗π, then for almost
every ω ∈ Ω,

lim
n→∞

Sn(A
τ (ω)) = Λ(µ). (14)

To begin with, we will consider an arbitrary sequence A ∈ PN, and only at the end
we will consider the sequence associated to the ergodic orbit. The proof of Theorem 8
is a combination of different techniques developed in [18], among them the following
two results. The proofs of these results can be found in [18] Lemma 5.5. and Theorem
5.6 equation (47) respectively.
Lemma 9. Let A ∈ PN. Then, for n ≥ 1 big enough and every k ∈ N there exists
E ∈ S such that

Skn(A)− Sk(n+1)(A) + E +
1

n+ 1

1

k

k∑
j=1

logSk(n+1)(A) Akn+j = 0 (15)

and for some constant C > 0

∥E∥ ≤ C
diam supp(µ)

n2
.

Lemma 10. Let {An}n∈N be a sequence in PN. Given k ∈ N, define

µk,n =
1

k

k∑
j=1

δAkn+j
.
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Then, there exists N ≥ 1 big enough such that for every n ≥ N there exists Skn such
that

d∞(Skn(A), Skn) = O(n−2), (16)

and

Sk(n+1)(A) = J
µk,n

1/(n+1)Skn. (17)

We will also need the following number theoretical lemma (see for instance [20]).
Lemma 11. Let ak ≥ 0 be a sequence such that

ak+1 ≤
(
1− 1

k + 1

)
ak +

β

(k + 1)2
,

where α, β > 0. Then

ak ≤ β(1 + log(k + 1))

k + 1
.

Now we are ready to proceed to the proof of Theorem 8.

Proof of Theorem 8. Assume that N is big enough. Using the notation of Lemma 10,
define {

S̃kn = SkN if 1 ≤ n ≤ N

S̃k(n+1) = J
µk,n

1/(n+1)S̃kn if n > N
.

Then, by the resolvent contraction (Proposition 5) and (16) we get that

d∞(Sk(n+1)(A), S̃k(n+1)) ≤
(
1− 1

n+ 2

)
d∞(Skn, S̃kn) +O(n−2).

Therefore, by Lemma 11

d∞(Skn(A), S̃kn) ≤ C
log n

n
.

Now we define {
Ŝn = S̃nk if 1 ≤ n ≤ N

Ŝ(n+1) = Jµ
1/(n+1)Ŝn if n > N

By Lemma 7 we get that

d∞(S̃kn, Ŝn) ≤
1

n

n∑
j=N

W1(µ, µk,j).
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By Proposition 6 , we know that Ŝn −−−−→
n→∞

Λ(µ). Recall that

µk,n =
1

k

k∑
j=1

δAkn+j
.

Till now, we have considered an arbitrary sequence {An}n∈N. Now, consider the ergodic
orbit {A(τn(ω))}n∈N. Then the measures µnk depend on the point ω ∈ Ω. In particular

µk,n+1(ω) = µk,n(τ
k(ω)).

Since τ is totally ergodic,

1

n+ 1

n∑
j=0

W1(µ, µk,j(ω)) =
1

n+ 1

n∑
j=1

W1(µ, µk,0((τ
k)j(ω)))

−−−−→
n→∞

∫
Ω

W1(µ, µk,0(ω)) dπ.

Note that the supports of the measure µ and the measures µk,0 are contained in a
bounded set X0. Hence the functions ω 7→ W1(µ, µk,0(ω)) are uniformly bounded. In
consequence, if we can prove that for almost every ω ∈ Ω

lim
k→∞

W1(µ, µk,0(ω)) = 0, (18)

then by the dominated convergence theorem we get that

lim
k→∞

∫
Ω

W1(µ, µk,0(ω)) dπ = 0.

This would conclude the proof. In order to prove (18), first of all note that X0 can be
assumed not only bounded but also separable. So, on the one hand, the boundedness
of X0 implies that the measures {µk,0} are uniformly integrable in the sense that

lim
R→∞

lim sup
k→∞

∫
d∞(x,A)≥R

d∞(x,A)dµk,0(A) = 0.

Theferofe, the topology generated by W1 coincides with the weak-∗ (also called weak)
topology of X0 (see [18, Prop. 2.2] for a proof of this fact). On the other hand, since
any separable metric space admits a totally bounded metrization that preserves the
topology (see [6, Thm 2.8.2]), the weak convergence can be tested using only bounded
Lipschitz functions BL. Since this space is separable with respect to the sup-norm, if
{fn}n∈N is a dense set in BL, the convergence∫

X0

fn dµk,0 −−−−→
k→∞

∫
X0

fn dµ

13



for each function fn, follows by the standard Birkhoff ergodic theorem for every ω in
a complement of a zero measure set Nn in Ω. So, in the complement of the union N
of the sets Nn, we get the desired weak convergence of the measures µk,0 to µ. ■

4.2 The L1 case

This section is devoted to extend Theorem 8 to any integrable function. The strategy
is to use an approximation argument based on the following two results.
Lemma 12. Let A,B ∈ L1(Ω,P). If βA = Λ(A∗π) and βB = Λ(B∗π), then

d∞(βA, βB) ≤
∫
Ω

d∞(A(ω), B(ω))dπ(ω). (19)

Proof. By Theorem 3 we know that

d∞(βA, βB) ≤ W1(A∗π,B∗π).

Let F : Ω → P2 be defined by F (ω) = (A(ω), B(ω)). Then taking in (7) γ = F∗(π) we
get the desired inequality. ■

Lemma 13. Let A,B ∈ L1(Ω,P). Given ε > 0, for almost every ω ∈ Ω there exists
n0, which may depend on ω, such that

d∞
(
Sn(A

τ (ω)), Sn(B
τ (ω))

)
≤ ε+

∫
Ω

d∞(A(ω), B(ω))dπ(ω), (20)

provided n ≥ n0.

Proof. Indeed, by Corollary 4

d∞
(
Sn(A

τ (g)), Sn(B
τ (g))

)
≤ 1

n

n−1∑
k=0

d∞
(
Aτ

k(g), B
τ
k (g)

)
=

1

n

n−1∑
k=0

d∞
(
A(τk(g)), B(τk(g))

)
,

and therefore, the lemma follows from the classical Birkhoff ergodic theorem. ■

Proof of Theorem 1. Let A ∈ L1(Ω,P). As in Lemma 12, let βA = Λ(A∗π). Define the
sequence of bounded functions

An(ω) =

{
A(ω) if d∞(A(ω), βA) ≤ n

βA if d∞(A(ω), βA) > n
.

14



Then (see for instance the beginning of the proof of Lemma 6.2 in [18])∫
Ω

d∞(A(ω), An(ω))dπ(ω) −−−−→
n→∞

0.

Now, the result follows combining Lemmas 12 and 13. ■

5 Some consequences of the ergodic theorem

In this section we will deduce from Theorem 1, an ergodic theorem with respect to the
inductive means for Markov chains with values in P. The trick is the same as the one
used in the introduction to deduce Lim-Pálfia’s law of large numbers. Let Xn : Ω → P
be a sequence random vectors defined in a probability space (Ω, µ). Define the map
φ : Ω → PN by

φ(ω) = (X1(ω), X2(ω), . . .),

and the measure ν = φ∗(µ). In PN we consider the shift operator

τ(A1, A2, A3, . . .) = (A2, A3, . . .).

Note that, if p1 : PN → P denotes the projection onto the first coordinate, then

Sn({Xi(ω)}) = Sn

(
{p1(τk(x)}k

)
.

5.1 Ergodic theorem for Markov chains

Assume that {Xn}n∈N is a Markov chain whose state space is a finite subset Σ of P.
Recall that this means that the sequence satisfies the Markov property

µ(Xn+1 = σn+1|Xn = σn, . . . , X0 = σ0) = µ(Xn+1 = σn+1|Xn = σn), (21)

and for any σi, σj ∈ Σ the quantity

p(i, j) = µ(Xn+1 = σj |Xn = σi),

is independent of n. Let P be the transition matrix, that is, the matrix such that
Pj,i = p(i, j). Assume that the Markov chain is regular, that is, there exists n > 0
such that Pn has all its entries positive2. This implies the existence and uniqueness
of a stationary distribution π3.

Now, assume that µ(X1 = σj) = πj . Since the chain is regular, the shift map is
not only ergodic, but also it is strong mixing with respect to the measure ν = φ∗(µ).

2These matrices are also known as primitive matrices in the setting of Perron-Frobenius theory.
3There exist weaker conditions under which the stationary measure also exists and it is unique. See for

instance chapter 8 of [10] for a matrix analysis approach of this result, or the books [21] and [25] for a
probabilistic approach.
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This implies that τ is totally ergodic with respect to ν. Since

Sn({Xi(ω)}) = Sn

(
{p1(τk(x)}k

)
and (p1)∗(ν) =

∑
j

πjδσj
,

by Theorem 1 we get that

Sn({Xi(ω)}) −−−−→
n→∞

Λ

(∑
j

πjδσj

)
a.s.

in d∞. In other words, we have proved the following result.
Theorem 14. Let (Ω, w) be a finite probability space, and let {Xn}n∈N be an ergodic
Markov chain. If π denotes the stationary measure associated to the chain, then

Sn({Xi(ω)}) −−−−→
n→∞

Λ

(∑
j

πjδσj

)
a.s.

in d∞.

6 Concluding remarks

In this paper, we proved a new ergodic theorem for functions F ∈ L1(Ω,P), where P is
the open cone of the strictly positive operators acting on a (separable) Hilbert space.
Firstly, we proved the case where the function F : Ω → P is bounded. Later on, we
deduce from this particular case the general L1 case. In our approach, we use inductive
means to average the elements of the orbit, and we proved that almost surely these
averages converge to the Karcher mean of the push-forward measure F∗(µ). Finally,
we use this result to get some application to the study of operator valued Markov
chains. Possible extension of this ergodic theorem could be interesting. For example,
extend this result to finite-dimensional symmetric cones or to the positive cone of a
JB-algebra.
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[3] M. Bačák, Convex analysis and optimization in Hadamard spaces, De Gruyter
Series in Nonlinear Analysis and Applications 22 (2014).

[4] R. Bhatia and R. Karandikar, Monotonicity of the matrix geometric mean, Math.
Ann. 353:4 (2012), pp. 1453–1467.

[5] G. Corach, H. Porta and L. Recht, Geodesics and operator means in the space of
positive operators, Int. J. Math., 4:2 (1993) pp. 193–202.

[6] R.M. Dudley, Real Analysis and Probability, Cambridge Studies in Advanced
Mathematics, 74. Cambridge University Press, Cambridge (2002).
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