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Kerr parametric oscillators are potential building blocks for fault-tolerant quantum computers.
They can stabilize Kerr-cat qubits, which offer advantages toward the encoding and manipulation
of error-protected quantum information. The recent realization of Kerr-cat qubits made use of the
nonlinearity of the SNAIL transmon superconducting circuit and a squeezing drive. Increasing non-
linearities can enable faster gate times, but, as shown here, can also induce chaos and melt the qubit
away. We determine the region of validity of the Kerr-cat qubit and discuss how its disintegration
could be experimentally detected. The danger zone for parametric quantum computation is also a
potential playground for investigating quantum chaos with driven superconducting circuits.

Decoherence is a familiar threat to quantum technolo-
gies. A resourceful way to protect quantum information
against decoherence processes that act locally is to en-
code it nonlocally in the form of superpositions of coher-
ent states [1]. These Schrödinger cat states [2–4] are the
logical states of the so-called Kerr-cat qubit, which can
be generated with driven Kerr parametric oscillators [5–
9], as those experimentally realized in superconducting
circuits [10]. However, the present work warns against
the potential development of chaos if the parameters of
the oscillators are pushed beyond a threshold. As ex-
plained here, the onset of local chaos can disintegrate
the Kerr-cat qubit.
To stabilize Schrödinger cat states, the experiments

combine Kerr nonlinearity and a squeezing (two-photon)
drive. The nonlinear oscillator is achieved with an ar-
rangement of a few Josephson junctions, known as su-
perconducting nonlinear asymmetric inductive element
(SNAIL) transmon [11], which is then sinusoidally driven
at nearly twice the natural frequency of the oscillator. As
a result, the system develops a double-well structure and
a consequent twofold degenerate ground state that gives
rise to the cat states [5–10]. A significant increase of the
relaxation time has been achieved with this setup.
Driven nonlinear quantum oscillators have also been

employed in theoretical studies of quantum activa-
tion [12, 13], quantum tunneling [14–18], and photon-
blockade phenomena [19]. A better understanding of
these systems can be achieved with the derivation of
static effective Hamiltonians [20–22], as those used in the
analysis of quantum tunneling [17, 18] and the coales-
cence of pairs of energy levels [23] that result in excited
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state quantum phase transitions (“spectral kissing”) [24–
26].

Despite the various applications and the advances
brought by Kerr parametric oscillators to quantum com-
putation and quantum error correction [27], chaos can
become a source of concern. The problem that the on-
set of chaos due to qubit-qubit interactions could cause
to quantum computers was first raised in [28–31] and re-
verberates in more recent studies about the scrambling of
quantum information [32–35] and the emergence of chaos
in coupled Kerr parametric oscillators [36–38].

Instead of interacting systems, our focus lies on the
most basic element of the quantum computer, the qubit
itself. The onset of global chaos in the high energy spec-
trum of transmon qubits was studied in [39] and ways
to suppress chaos in a general Hamiltonian for supercon-
ducting qubits was analyzed in [40]. Our concern is with
the onset of local chaos that can develop at the core of the
Kerr-cat qubit and melt it away. As the SNAIL trans-
mons’ nonlinearities are pushed to larger values [11, 41],
required for faster gates [5, 42, 43], we show that the
Kerr-cat qubit dangerously approaches its disintegration.

Driven nonlinear oscillators experimentally realized
with the SNAIL transmon have so far been properly de-
scribed by low-order static effective Hamiltonians. As the
nonlinear effects increase, the static and driven pictures
may still agree [44] if one considers higher orders terms in
the expansion for the effective Hamiltonian [21, 45], but
this process eventually breaks down. When the drive
and nonlinearities become sufficiently strong, chaos sets
in and the oscillator can no longer be described by a
time-independent Hamiltonian.

If on the one hand, chaos puts limits on the Kerr-cat
qubit, on the other hand it opens a new direction of re-
search for superconducting circuits [46]. Quantum chaos
has received increasing attention in fields that range from
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quantum gravity and black holes to condensed matter
and atomic physics due to its relationship with quantum
dynamics, absence of localization, and thermalization.
Examples of quantum chaotic systems that have been
experimentally realized include the kicked rotor [47], the
baker’s map [48], the kicked top [49], the kicked harmonic
oscillator [50], and the driven pendulum [51, 52]. Super-
conducting circuits offer unmatched advantages for the
study of quantum chaos and its consequences, because
both spectrum and dynamics can be measured simulta-
neously. The spectrum can be measured as a function of
the control parameters, potentially allowing for the anal-
ysis of level statistics, and dynamics can be studied in
phase space, which enables the evolution of out-of-time
ordered correlators [25] and Wigner functions. Further-
more, the classical limit is experimentally realizable.

In this work, we identify the border between regular-
ity and chaos in the driven Kerr parametric oscillator,
and estimate the parameter values for which the Kerr-cat
qubit melts away. We also discuss how the qubit disinte-
gration could be experimentally captured. The analysis
is based on the quasienergies and Floquet states of the
driven nonlinear quantum oscillator implemented with
the SNAIL transmon and is complemented with classi-
cal tools that include Poincaré sections and Lyapunov
exponents.

Quantum and Classical Hamiltonians
The SNAIL transmon is an arrangement of Josephson
junctions with a threaded magnetic flux that allows for
tuning the nonlinearity of the system. Its Hamiltonian
has a potential given by a sinusoidal function. As jus-
tified in Supplementary Note 1, to determine the onset
of chaos in this system, it suffices to consider the Taylor
expansion of the SNAIL potential up to fourth order, so
the undriven part of the Hamiltonian is [18, 26]

Ĥ0

ℏ
= ω0â

†â+
g3
3
(â+ â†)3 +

g4
4
(â+ â†)4. (1)

In the equations above, ω0 is the bare frequency of the
oscillator, â† and â are the bosonic creation and annihila-
tion operators, and g3, g4 ≪ ω0 are the coefficients of the
third and fourth-rank nonlinearities [18, 26]. To create
the Kerr-cat qubit, the system is periodically driven, so
the total Hamiltonian is given by [18, 26]

Ĥ(t)

ℏ
=

Ĥ0

ℏ
− iΩd(â− â†) cosωdt, (2)

where Ωd is the amplitude of the sinusoidal drive, and ωd

is the driving frequency. We set ℏ = 1.
The effective nonlinearity of the system, K, is deter-

mined by half the difference between the frequencies of
the lowest energies of the undriven Hamiltonian, that is,

K = (ω1,0 − ω2,1)/2, (3)

where ωi,j = (E
(0)
i − E

(0)
j ) and E

(0)
i are the eigenvalues

of Ĥ0. In the analysis below, we refer to K as the Kerr

nonlinearity and choose the control parameters g3 and
g4 within ranges that are experimentally accessible. We
stress that what we call K here is an exact quantity, not
the perturbative parameter used in effective Hamiltoni-
ans.
We use Floquet techniques [53] to analyze the period-

ically driven system in equation (2). The Floquet opera-
tor over one period of the drive, Td = 2π/ωd, is denoted
by

U(Td)|Fj⟩ = exp(−iϵjTd)|Fj⟩, (4)

where ϵj are the quasienergies with ϵjTd ∈ [−π, π] and
|Fj⟩ are the Floquet states for j ∈ [0, N − 1], with N
being the truncated Hilbert space dimension.
The derivation of the classical limit of the quantum

Hamiltonian in equation (2) is shown in Methods. Us-
ing the canonical coordinates (q, p), the Hamiltonian is
written as

hcl(t) = h0 +
√
2Ωdp cos (ωdt) , (5)

where

h0 =
ω0

2

(
q2 + p2

)
+

√
23

3
g3q

3 + g4q
4. (6)

Regularity to Chaos
We start our analysis by setting the frequency of the drive
at nearly twice the natural frequency of the oscillator,
ωd ≈ 2ω0. For this choice and the parameters used in
the experiments [18, 26], the system can be described by
a double-well metapotential, as illustrated in Fig. 1(a).
The parameters are given in the first line of Table 1,
which defines the point A.

Point 104K/ω0 Γ nmin

A 0.53 8.5 8.079
B 5.02 8.5 7.249
C 0.53 80 77.007
D 2.91 80 66.134
E 8.33 80 197.924
F 25 80 336.598

Table 1. Parameters for the points A-F marked in Fig. 1(g),
whose phase diagrams are depicted in Figs. 1(a)-(f), and the
corresponding values of nmin obtained with equation (9).

Black dots in Fig. 1(a) designate Poincaré sections.
These points are obtained by evolving many different
classical initial conditions according to equation (5) and
collecting the values of q and p at each time Td. The
curves that are formed with these points coincide with
the energy contours of the classical limit of the static ef-
fective Hamiltonian investigated in [18, 25, 26, 44] [see
equation (44) in Methods]. The red curve in Fig. 1(a) is
the Bernoulli lemniscate, which delineates the boundary
of the double well and is characterized by the following
two parameters: Π = Ωdωd/

(
ω2
d − ω2

0

)
, where

√
2Π is the
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Fig. 1. Regularity and chaos. Quantum and classical analysis in phase space and the quasienergy spectrum for ωd/ω0 =
1.999866. a - f, Phase space analysis of the parameters indicated in Table 1. The black dots give the classical Poincaré sections
for many different initial conditions, the red line in a marks the separatrix that defines the Bernoulli lemniscate, colors from
blue to orange indicate the values of the participation ratio of coherent states projected in the Floquet states. g, Measure of
quantum chaos given by the average ratio r of consecutive quasienergies spacings as a function of K/ω0 and Γ. The six points
A-F marked in g are the same ones chosen for the phase spaces in a-f. They were selected to illustrate the behavior in the
regular, mixing, and chaotic regimes. The solid black curve in g corresponds to equation (12) and indicates the parametric
case, where the classical Lyapunov exponent becomes positive in the vicinity of the center of the lemniscate, while the black
dashed line corresponds to equation (13) and indicates the parameters for which chaos sets in both inside and outside the
original lemniscate, which by then has disappeared. h - i, Lyapunov exponents for the same parameters used in (d)-(e). Zero
Lyapunov exponent (dark blue) indicates regularity.

distance from the center of the phase space to the center
of the double well, and

√
2Γ, which is half the distance

between the two minima of the wells, with Γ = g3Π/K.
The symmetric ellipses within the lemniscate in Fig. 1(a)
are centered at the minima of the metapotential, at
(±qmin=±

√
2Γ, pmin = 0), and the area within the lem-

niscate is equal to 4Γ (see Supplementary Note 2). Using
the Bohr quantization rule and dimensionless coordinates
q and p, we thus have

∮
pdq = 2πnin, and the integer

number of levels inside the lemniscate is given by [26]

nin = 2Γ/π, (7)

which can be measured experimentally.
We color Fig. 1(a) according to the value of the par-

ticipation ratio,

P(α)
R =

1∑
j |⟨α|Fj⟩|4

=
1∑

j

(
πQα

Fj

)2 , (8)

for coherent states |α⟩ projected in the Floquet states,

where â|α⟩ = α|α⟩, with α = (q + ip)/
√
2, and Qα

Fj
=

|⟨α|Fj⟩|2 /π is the Husimi function of each Floquet state.

The participation ratio in equation (8) measures the level
of delocalization of a coherent state in the basis defined
by |Fj⟩. The most localized coherent states are those
centered at the minima of the double-well metapotential,
| ± αmin⟩, and at its center (p, q) ≃ (0, 0) [25]. They

have the smallest values of P(α)
R , which correspond to

the darkest tones of blue in Fig. 1(a).
There are two quasidegenerate Floquet states, |Fmin⟩,

that are highly localized at the minima of the double wells
and correspond to superpositions of the two opposite-
phase coherent states, |Fmin⟩ ∝ | + αmin⟩ ± | − αmin⟩
[1, 54]. These states define the Schrödinger cat states
of the Kerr-cat qubit [10]. The expectation value of the
number operator for these states is

nmin = ⟨Fmin|n̂|Fmin⟩ ≈ |αmin|2 = Γ, (9)

which can be measured experimentally. This value is
directly related with the number of states inside the lem-
niscate, nin, given in equation (7).

Kerr-cat qubit disintegration
The portion of the phase space presented in Fig. 1(a) is
characterized by periodic orbits, being therefore regular.
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However, a chaotic sea exists far away from the lemnis-
cate, as shown in Supplementary Note 2. The analysis of
global chaos would classify the system with the parame-
ters of Fig. 1(a) as being in a mixed regime, but this is
not our focus. We are concerned with local chaos, which
can emerge around the phase space center and destroy
the Kerr-cat qubit.

To analyze the transition to chaos in the vicinity of the
phase space center, we vary Γ and K/ω0. This is done so
that the Kerr amplitude remains within values that are
experimentally accessible in the present or near future,
K/ω0 ∈ 33× [10−6, 10−4] (see Methods). The parameter
Γ is varied by changing Π, while keeping ωd ≈ 2ω0.
To determine the onset of quantum chaos, we use the

average ratio of consecutive quasienergy spacings [55, 56],

r̃ =
1

N

N∑
j

min

(
rj ,

1

rj

)
, where rj =

sj
sj−1

, (10)

and sj = ϵj+1 − ϵj . The spectra of chaotic systems
are rigid and their levels are correlated, which results
in Wigner-Dyson distributions for the spacings of neigh-
boring levels. When the symmetries of the chaotic
system comply with the circular orthogonal ensemble,
r̃COE ≈ 0.53. Levels of regular systems are uncorrelated
and follow Poisson statistics, r̃P ≈ 0.39. We compute the
renormalized quantity,

r̄ =
r̃ − r̃P

r̃COE − r̃P
, (11)

so that chaos entails r̄ = 1 and regularity r̄ = 0.
In Fig. 1(g), we construct a map of regularity and chaos

for the quantum system in equation (2). The region in
red indicates that r̄ ≈ 1, so the system is chaotic. This
region emerges for large values of the Kerr amplitude,
K/ω0, and Γ. The region in blue indicates regularity.

The six points, A-F, marked in Fig. 1(g) are chosen for
a more detailed analysis in Figs. 1(a)-(f) of their corre-
sponding phase space structures (classical analysis) and
of the level of delocalization of coherent states written in
the basis of Floquet states (quantum analysis). Just as in
Fig. 1(a), described above, the black dots in Figs. 1(b)-
(f) are associated with the Poincaré sections and the col-
ors give the values of the participation ratio of coherent
states projected in the Floquet states.

Points A, B, and C are in the regular regime. The
lemniscate in Fig. 1(a) persists in Figs. 1(b)-(c), although
it becomes more asymmetric. Notice that the scales in
Fig. 1(a) are not the same as in Figs. 1(b)-(c) .

Point B corresponds to a large value of the Kerr am-
plitude. As seen at the edges of Fig. 1(b), the periodic
orbits disappear, giving space to black dots. In the clas-
sical limit, this region of phase space gives positive Lya-
punov exponents, which implies chaos. In spite of that,
the structure of the Kerr-cat qubit survives and the value
of nmin remains close to Γ, as seen in Table 1. The re-
silience of the Kerr-cat qubit to a range of values of the

the Kerr nonlinearity should be reassuring to the para-
metric quantum computation community (see also Sup-
plementary Note 3).
Point C shows what happens to point B as one ap-

proaches the classical limit, which is done by broadening
the wells. By increasing Γ while keeping ΓK/ω0 con-
stant, we enlarge the wells without changing their shape
and increase the number of levels within (cf. the values
of nmin for B and C in Table 1), thus approaching the
classical picture.
Point D provides the main message of this work. The

center of the double well, which is a hyperbolic point in
Figs. 1(a)-(c), is no longer a single point in Fig. 1(d).
Chaos now exists not only far away from the double-well
structure, but right at the center of the lemniscate, indi-
cating the beginning of its disintegration. At this stage,
any activation between wells [12, 26] will happen through
the chaotic region. We now have chaos and islands of sta-
bility around the structure of the asymmetric double well
and chaos at its center.
To make the onset of local chaos in Fig. 1(d) even more

evident, we replicate this panel in Fig. 1(h), but now color
it with the values of the Lyapunov exponent, λ, obtained
with the classical system in equation (5). There are two
distinct Lyapunov exponents, the one beyond the double
well, associated with global chaos, and the one right at
its center, responsible for melting the qubit away.
The values of Γ and K/ω0 beyond which the interme-

diate regime between regularity and local chaos emerges
follows the black solid line in Fig. 1(g) given by

ΓK/ω0 =
g3Ωdωd

ω0(ω2
d − ω2

0)
≃ 0.0187. (12)

This line marks the parameters’ values, where the Lya-
punov exponent first gets positive in the vicinity of the
phase-space center, remaining separated from the region
of global chaos. This is a theoretical line, that can be
refined according to the particularities of each experi-
mental setup. It indicates that, despite the transition to
chaos, there is still ample space for the stabilization of
Schrödinger cat states and for reaching large values of K,
which are needed for fast gates.
By increasing the strength of the nonlinearities and

drive, the chaotic sea, which was once far away from the
double well, expands and eventually merges together with
the chaotic region of the phase-space center. This is il-
lustrated with points E-F in Figs. 1(e)-(f). In Fig. 1(e),
two small islands of regularity reminiscent of the double
well persist. They are also visible in the corresponding
Fig. 1(i), which depicts the Lyapunov exponent for the
parameters of point E. In contrast to Fig. 1(i), there is
now a single positive Lyapunov exponent. In Fig. 1(f),

the values of P(α)
R indicate near ergodicity.

In Fig. 1(g), we draw a dashed black line to indicate
the parameters’ values for which chaos close to the phase-
space center and around the double well merge together.
Similarly to equation (12), the analysis is based on the
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Fig. 2. Kerr-cat qubit disintegration. a, Expectation value of the number operator, nmin, and b, Shannon entropy, Smin,
for the Floquet state |Fmin⟩. The two quantities are shown as a function of the Kerr amplitude K/ω0 for Γ = 30 (triangles) and
Γ = 80 (squares). In a: The blue background indicates regular region and the orange background indicates chaotic region; they
are separated by the same black dashed line shown in Fig. 1(g). Panels (I), (II), (III), and (IV) depict the Husimi functions
for the Floquet state |Fmin⟩ indicated in a and b as points (I), (II), (III), and (IV) with K/ω0 = {0.33, 3.66, 8.66, 12} × 10−4.

values of the Lyapunov exponents and the equation for
the dashed line is given by

ΓK/ω0 =
g3Ωdωd

ω0(ω2
d − ω2

0)
≃ 0.03347. (13)

We notice, however, that the Taylor expansion used in
equation (1) works well for values of the nonlinearities
and drive up to equation (12). Beyond that, the full
sinusoidal SNAIL potential should offer a better picture
of the chaotic system.

The analysis in Fig. 1 was performed using a relation
between g3 and g4 that ensures that the parameters in
Fig. 1(a) reproduce the physics in [26], where the second-
order static effective Hamiltonian describes very well the
experiment. There are numerous other possibilities for
varying the parameters, many within experimental ca-
pabilities. Nevertheless, as discussed in Supplementary
Note 3, they should lead to results comparable to those in
Fig. 1. The transition to chaos is unavoidable, although
one may be able to shift the values for the threshold be-
tween regularity and chaos in equation (12).

Chaos Detection
The experiment with the superconducting circuit per-
formed in [26] measured the energy levels of the driven
nonlinear oscillator as a function of the control param-
eter. However, the number of levels currently accessi-
ble to the experiment is not sufficient for the analysis
of level statistics, as done in Fig. 1(g). To circumvent
this issue, we propose a way to detect the transition to
chaos that avoids the analysis of the quasienergy spec-
trum and focuses instead on the properties of the Floquet
state |Fmin⟩. When the system is in the regular regime,

this state coincides with the Schrödinger cat state and is
highly localized at the minima of the wells. As the non-
linearities increase and |Fmin⟩ spreads in phase space, we
can be sure that chaos has already set in.
In Fig. 2(a), we show nmin = ⟨Fmin|n̂|Fmin⟩ as a func-

tion of K/ω0 for Γ = 30 (triangles) and Γ = 80 (squares).
In the presence of the double well, nmin ∼ Γ, as given by
equation (9). The background of the figure is colored ac-
cording to the results in Fig. 1(g), so the region in blue
is regular and orange one indicates chaos. The dashed
black line separating the two regions is the same as in
Fig. 1(g). The analysis is complemented with Fig. 2(b),
which shows the behavior of the Shannon entropy for the
Floquet state |Fmin⟩ projected in the coherent states,

Smin = − 1

π

∫
Qα

Fmin
ln
(
Qα

Fmin

)
d2α, (14)

as function of K/ω0 for Γ = 30 (triangles) and Γ = 80
(squares).
We start by describing the results for Γ = 80 (squares)

in Fig. 2(a). In the regular regime, nmin decays linearly
with the Kerr amplitude. To better explain this behavior,
we select points (I) and (II) and depict their respective
Husimi functions on the left panels (I) and (II). As ex-
pected, the Husimi functions for these two Floquet states
|Fmin⟩ are localized at the minima of the double well, at

q = ±
√
2Γ ≈ ±13. Comparing panel (I) and panel (II),

we see that asK/ω0 increases, the structure of the Husimi
function becomes more asymmetric and the area of the
lemniscate decreases, which reduces the value of nmin.
Since the Husimi functions remain localized in panels (I)
and (II), the values of the Shannon entropy for these two
cases in Fig. 2(b) are comparable.



6

As we enter the chaotic region for Γ = 80, nmin in
Fig. 2(a) and Smin in Fig. 2(b) grow with K/ω0. This
can be understood from the Husimi functions for the
points (III) and (IV), shown on the panels to the right of
Figs. 2(a)-(b). The parameters for point (III) are equiv-
alent to those in Fig. 1(e), where there are two islands of
instability close to the original minima of the double well.
This explains why |Fmin⟩ in panel (III) shows some level
of confinement around the islands, although the state is
visibly more delocalized than those in panels (I) and (II).
The parameters for point (IV) are equivalent to those in
Fig. 1(f), where the system approaches ergodicity, so the
Husimi function in panel (IV) is spread out.

The behavior of nmin and Smin as a function of the
Kerr amplitude for Γ = 30 (triangles) in Figs. 2(a)-(b)
is similar to that for Γ = 80. The difference lies in the
values of the Kerr amplitude required for the onset of
chaos and the consequent growth of nmin and Smin, which
are larger than for Γ = 80.

The disintegration of the double well can then be de-
tected from the analysis of the spread of the Schrödinger
cat states in phase space. This can be done by directly
investigating the Husimi or Wigner functions of these
states in phase space for different values of the system
parameters, or by quantifying their spread with the oc-
cupation number nmin or an entropy, such as Smin. The
growth of nmin and Smin signals the system’s departure
from the regular to the chaotic regime.

Conclusion
Our work brings to light the risk posed by the onset of
chaos for Kerr parametric oscillators, which puts a limit
on the ranges of parameters that can be employed for
qubit implementation. Combining quantum and classi-
cal analysis, we determined the threshold for the rupture
of the Kerr-cat qubit, which happens when chaos first
sets in around the center of the qubit double-well struc-
ture. Important extensions to this work include the role
of dissipation [57, 58] and the analysis of the limitations
that chaos may impose to parametric gates in transmon
and fluxonium arrays.

By increasing the nonlinearities and driving amplitude,
we showed that the Schrödinger cat states of the Kerr-
cat qubit, which are initially confined at the bottom of
the wells, spread and eventually disintegrate. Once these
states are lost, chaos is certain to have spread through-
out the phase space. The process of disintegration could
be experimentally observed with the currently available
technology by measuring the Wigner functions of the cat
states.

The results in this work indicate that the platform of
superconducting circuits allows either to engineer bosonic
qubits for quantum technologies or to induce chaos to
address fundamental questions. This opens up a new av-
enue of research for superconducting circuits. They could
be used, for example, to investigate how chaos affects
the spread of quantum information in phase space and
whether chaos can enhance the tunneling rate between

islands of stability.

METHODS
Quantum and Classical Hamiltonian
To derive the classical Hamiltonian, we write

â =
1√
2ℏeff

(q̂ + ip̂) , (15)

and

[q̂, p̂] = iℏeff,

where ℏeff depends on experimental parameters as ex-
plained in the Supplementary Note 1. The classical limit
is reached by taking ℏeff → 0, since q̂ → q and p̂ → p.
This way, the quantum Hamiltonian,

Ĥ(t)

ℏ
=

ω0

2ℏeff
(q̂ − ip̂) (q̂ + ip̂) +

4∑
m=3

gm
m

(√
2

ℏeff
q̂

)m

+ Ωd

√
2

ℏeff
p̂ cosωdt, (16)

leads to the classical Hamiltonian,

hcl(t) =
ωcl
0

2

(
q2 + p2

)
+

2
√
2

3
gcl3 q

3 + gcl4 q
4

+
√
2Ωcl

d p cos (ωdt) , (17)

where

ω0 = ωcl
0 ℏeff, g3 = gcl3

√
ℏeff,

g4 = gcl4 ℏ2eff, and Ωd = Ωcl
d

√
ℏeff.

The classical static Hamiltonian

h0 =
ω0

2

(
q2 + p2

)
+

√
23

3
g3q

3 + g4q
4. (18)

describes a quartic asymmetric oscillator, that presents
three stationary (critical) points (more details in Supple-
mentary Note 1).

Control parameters
The values ofK/ω0 are varied parametrically by chang-

ing g3/ω0 and g4/ω0 according to the equation

g4 =
20g23
69ω0

. (19)

This choice is made to guarantee that we reproduce the
scenario in [26], where the second-order effective Hamil-
tonian describes very well the experiment. The second-
order effective Hamiltonian is given by [26],

Ĥ
(2)
eff

ℏ
= −K(2)â†2â2 + ϵ

(2)
2 (â†2 + â2), (20)
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where

K(2) = −3g4
2

+
10g23
3ω0

, (21)

and ϵ
(2)
2 = 2g3Ωd/(3ω0). Equation (43) is the same as

equation (45) when K(2) = 10g4. In Supplementary Note
3, we show what happens to the analysis in Fig. 1(g) for
other choices of C in K(2) = C g4.
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I. DRIVEN SNAIL TRANSMON

The Hamiltonian of the experimental driven circuit with M SNAILs is given by

Ĥ(t)

ℏ
= 4EC n̂

2 + UM (φ̂) +
√
2Ω̃dn̂ cos(ωdt). (22)

The inductive energy of a single SNAIL is

USNAIL(φ̂s) = EJ

[
−α cos(φ̂s)−m cos

(
φext − φ̂s

m

)]
, (23)

EC = e2/2C is the Coulomb charging energy of the junction with capacitance C, e is the electron charge, EJ is the
Josephson energy, φext = 2πΦext/Φ0 is the reduced applied magnetic flux, Φ0 = h/2e is the magnetic flux quantum,

φ̂s is the phase drop across the single SNAIL, and the drive is defined by its amplitude Ω̃ and its frequency ωd. The
operators n̂ and φ̂ describe the reduced charge on the capacitance and its conjugate, the reduced flux operator, where
[φ̂, n̂] = i. The single SNAIL consists of a superconducting loop of m large Josephson junctions and a single smaller
junction (tunneling energies EJ and αEJ , respectively), which is threaded with a DC magnetic flux Φext. For an
array of M SNAILs, the effective potential reads as

UM (φ̂) = MUSNAIL(φ̂s[φ̂]) +
1

2
EL (φ̂−Mφ̂s[φ̂])

2
, (24)

where EL is the energy of the linear inductance (or stray inductance) in the system and φs[φ] is defined by the
equation

α sinφs − sin

(
φext − φs

m

)
+ ξJ(Mφs − φ) = 0, (25)

where ξJ = LJ/L is the ratio between the inductance of the big junction in the SNAIL and the linear inductance L.

A. Taylor expansion of the SNAIL potential

By Taylor expanding the potential of the single SNAIL in equation (23) around the minimum φs[φ̄min] = φmin, we
have

USNAIL (φ̂+ φmin) ≈ EJ

(c2
2
φ̂2 +

c3
3!
φ̂3 +

c2
4!
φ̂4 · · ·

)
, cn =

∂nU (φmin)

∂φn
, (26)
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where

c0 = −α cos (φmin)−m cos

(
φext − φmin

m

)
,

c1 = α sin (φmin)− sin

(
φext − φmin

m

)
,

c2 = α cos (φmin) +
1

m
cos

(
φext − φmin

m

)
,

c3 = −α sin (φmin) +
1

m2
sin

(
φext − φmin

m

)
,

c4 = −α cos (φmin)−
1

m3
cos

(
φext − φmin

m

)
,

(27)

and φmin obeys the transcendental equation

c1 = α sin (φmin)− sin

(
φext − φmin

m

)
= 0. (28)

For an array of M SNAILs, the potential energy of the SNAIL in equation (24) can also be expanded, leading to
the following time-independent part of the total Hamiltonian in equation (22),

Ĥ0

ℏ
= 4EC n̂

2 + EJ

( c̄2
2!
φ̂2 +

c̄3
3!
φ̂3 +

c̄4
4!
φ̂4 + · · ·

)
, (29)

where the coefficients c̄n can be replaced with the coefficients cn introduced in [59] as

c̄2 =
p

M
c2,

c̄3 =
p3

M2
c3,

c̄4 =
p4

M3

[
c4 −

3c23
c2

(1− p)

]
,

(30)

where p = MξJ
c2+MξJ

. Only the third and fourth-rank nonlinearities were relevant in the experiments in [18, 26, 59, 60],

as also discussed theoretically in [42]. We show below the relevance of this expansion over the local dynamics in phase
space.

Introducing the dimensionless operators

X̂ =
φ̂√
2ℏeff

, P̂ =
√
2ℏeff n̂, (31)

with [X̂, P̂ ] = i, and truncating equation (29) at fourth order in φ̂, we arrive at the following total time-dependent
Hamiltonian

Ĥ(t)

ℏ
= ω0

(
P̂ 2

2
+

X̂2

2

)
+

2
√
2g3
3

X̂3 + g4X̂
4 +

√
2Ωd cos (ωdt) P̂ , (32)

where

ω0 =
√

8c̄2ECEJ = 2ℏ2effc̄2EJ , g3 =
ℏ3effc̄3EJ

2
, g4 =

ℏ4effc̄4EJ

6
, Ωd =

Ω̃d√
2ℏeff

, (33)

and

ℏeff =

(
2EC

c̄2EJ

)1/4

. (34)

Using the classical limit described in Methods, we compare the Poincaré section obtained for the full potential
[Fig. S 3(a)] with the Poincaré section obtained for the Taylor expanded potential [Fig. S 3(b)] for the parameters
used in the case of point D in Fig. 1 of the main text. This is the point at the transition region between integrability
and chaos, which is the focus of this work. We see that the results in the region of the double well structure are
equivalent. This means that for the analysis of the transition to chaos, it suffices to consider the Taylor expanded
potential as done in the main text.
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Fig. 3. Comparison between full and expanded SNAIL potential in phase space. a, Poincaré sections from the
classical Hamiltonian with the full SNAIL potential. b, Poincaré sections from classical Hamiltonian with the SNAIL potential
expanded to fourth order. Both plots have the parameters corresponding to the point D in the Table 1 of the main text. Black
points are used for regular orbits and red points are used for chaotic orbits. The blue solid line represents the separatrix for
the non-expanded potential (a) and the potential expanded to fourth order (b).

B. Phase-space volume rescaling

Using the following relation

X̂ = q̂/
√
ℏeff, P̂ = p̂/

√
ℏeff (35)

in [X̂, P̂ ] = i, we get [q̂, p̂] = iℏeff. The quantum Hamiltonian in terms of q̂ and p̂ becomes

Ĥ(t)

ℏ
=

ω0

ℏeff

(
q̂2 + p̂2

2

)
+

2
√
2g3

3
√
ℏ3eff

q̂3 +
g4
ℏ2eff

q̂4 +

√
2

ℏeff
Ωdp̂ cos (ωdt) . (36)

By decreasing ℏeff, the double-well structure grows and the number of states within increases, thus bringing the system
closer to the classical limit. An example of this scenario is given in Fig. 1 of the main text, as we move from point B
to point C [see Fig. 1(b) and Fig.1 (c) of the main text].

Defining â =
1√
2ℏeff

(q̂ + ip̂), we can write the Hamiltonian as

Ĥ(t)

ℏ
= ω0â

†â+
g3
3
(â+ â†)3 +

g4
4
(â+ â†)4 − iΩd(â− â†) cos (ωdt) . (37)

From the parameters ω0, g3, g4 and Ωd, it is possible to get the classical limit using

ω0 = ωcl
0 ℏeff, g3 =

√
ℏ3effg

cl
3 , g4 = ℏ2effgcl4 , Ωd =

√
ℏeffΩcl

d , (38)

where the classical parameters have the superscript cl.

II. EMERGENCE OF THE BERNOULLI LEMNISCATE

To better understand the origin of the lemniscate in Fig. 1(a) of the main text and where it emerges in phase space,
let us start by analyzing the classical static Hamiltonian in equation (6) of the main text,

h0 =
ω0

2

(
q2 + p2

)
+

√
23

3
g3q

3 + g4q
4. (39)
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This Hamiltonian describes a quartic asymmetric oscillator that presents three stationary (critical) points with p = 0.
They are the minima

(q0, p0) = (0, 0),

(q1, p1) = (d−, 0),

and the hyperbolic point

(q2, p2) = (d+, 0),

where d± =
√
2
(
−g3 ±

√
g23 − 2g4ω0

)
/(4g4). The condition g23 − 2g4ω0 > 0 ensures that d± is real.

The linearized Hamilton equations around a critical point {qc, pc} of h0 satisfies the following linear differential
equations, (

q̇
ṗ

)
=

(
0 ω0

−ω0−4
√
2g3qc−12g4q

2
c 0

)(
q−qc
p−qc

)
. (40)

The stability or instability around {qc, pc} is determined by the eigenvalues λm of the matrix constructed in equa-
tion (40). If the eigenvalues are complex numbers, λm = i ω̃m, the orbits in the neighborhood of the critical point are
periodic and have frequencies ω̃m. If the eigenvalues of the matrix are real, then the critical point is unstable and its
Lyapunov exponent is equal to max(λm).

−10 −5 0 5 10

d+

√
2Π2

√
2Γ

p
p

p

q

q q

−5

0

5

−0.2 0 0.2 0.4
−0.1

0

0.1

−100

0

100 (a)

(b) (c)

−150 −100 −50 0 50

Fig. 4. Emergence of the Kerr cat qubit. a, Phase space metapotential of the classical Hamiltonian hcl(t) in equation (39)
representing a large asymmetric double well. Black points are used for regular orbits. The red points indicate orbits with
positive Lyapunov exponents (chaos). The two green symbols indicate the critical points: circle for (q0, p0) = (0, 0), and cross
for (q2, p2) = (d+, 0). The blue line is the separatrix of the asymmetric double well. b, Enlarged image of panel a close to the
point (0, 0), providing a view of the additional symmetric double well that emerges at the phase space center. The red line

is the Bernoulli lemniscate. The distance between the two minima is 2
√
2Γ. c, Enlarged image of panel b close to the point

(0, 0). The distance between the phase space center (0, 0) and the hyperbolic point of the Bernoulli lemniscate is
√
2Π.

In Fig. S 4(a), we show the Poincaré sections (black lines) for the driven system described by hcl(t) in equation (39)
with a frequency ωd that is nearly twice ω0 and with the parameters used in the experiment in [26] and in Fig. 1(a)
of the main text. The stationary points of h0, (q0, p0) = (0, 0) and (q2, p2) = (d+, 0) are marked with green symbols:
circle for (0, 0) and cross for (q2, p2). The blue line crossing at the hyperbolic point (q2, p2) is the separatrix of the big
asymmetric double well. The red points indicate a chaotic sea that appears in the vicinity of the separatrix. Around
the minimum at (0, 0), the orbits are periodic and have frequencies ω̃0 = ω0.
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A. Double well at the phase space center

Close to the stationary point (q0, p0) = (0, 0) at the center of the phase space, there is a bifurcation caused by the
chosen driving frequency, ωd ≃ 2ω0, that gives rise to another double-well structure. This is better seen in Fig. S 4(b),
where we enlarge the area around (q0, p0). The entire analysis developed in the main text concerns this region of the
phase space.

The double-well structure in Fig. S 4(b) also exhibits three critical points: two minima and a hyperbolic point.
Notice that the hyperbolic point of this double well is very close to phase space center (0, 0). The separatrix is
indicated with the red line, which corresponds to the Bernoulli lemniscate given by

(q2 + p2)2 = 4Γ(q2 − p2),

and in polar coordinates

r2(θ) = 4Γ cos(2θ),

where the focal distance is
√
2Γ. The surface area corresponds to

4

∫ π/4

0

∫ r(θ)

0

r dr dθ = 4Γ, (41)

which is the result used to obtain equation (7) in the main text.

Point 104K/ω0 Γ nmin

√
2Γ/|d+|

√
2Π/|d+|

A 0.53 8.5 8.079 0.04122 0.00148492
B 5.02 8.5 7.249 0.141397 0.0157244
C 0.53 80 77.007 0.12647 0.0140573
D 2.91 80 66.134 0.29577 0.0769191
E 8.33 80 197.924 0.49995 0.219769
F 25 80 336.598 0.86594 0.659321

Table 2. This table is the same as Table 1 of the main text. It gives the parameters for the points A-F marked in Fig. 1(g) of

the main text, but now the values of
√
2Γ/|d+| and

√
2Π/|d+| are also given.

In Fig. S 4(c),
√
2Π is the distance between the phase space center (0, 0) and the center (hyperbolic point) of the

Bernoulli lemniscate. The separation between the two points can be understood as follows. The dynamics around the
critical point (0, 0) is given by

q(t) = q0(t) + qr(t),

where q0(t) is the homogeneous solution obtained with the undriven classical Hamiltonian h0 and qr(t) is obtained
from the linear terms of the Hamilton equations for the driven case, so that

q̈r + ω2
0qr = −

√
2ωdΩd sinωdt,

and

qr(t) =
√
2Π sin(ωdt),

where

Π = Ωdωd/
(
ω2
d − ω2

0

)
.

The linear response associated with qr(t) causes a translation of the center of the lemniscate by the amplitude
√
2Π.

Therefore, as one can see from Figs. 4(a)-(c) in the main text, the condition for the existence of a well-defined inner
double-well structure centered close to (0, 0) is

|
√
2Π|+ |

√
2Γ| < |d+|. (42)

In Table S 2, we complement Table 1 of the main text by providing the values of
√
2Γ/|d+| and

√
2Π/|d+|. All

points, except for point F, satisfy the inequality in equation (42). For point F, the lemniscate is already destroyed by
chaos.



14

III. CONTROL PARAMETERS

In the main text, the values of K/ω0 are varied parametrically by varying g3/ω0 and g4/ω0 according to the equation

g4 =
20g23
69ω0

. (43)

This choice is made to guarantee that we reproduce the scenario in [26], where the second-order effective Hamiltonian
describes very well the experiment. The second-order effective Hamiltonian is given by [26],

Ĥ
(2)
eff

ℏ
= −K(2)â†2â2 + ϵ

(2)
2 (â†2 + â2), (44)

where

K(2) = −3g4
2

+
10g23
3ω0

, (45)

and ϵ
(2)
2 = 2g3Ωd/(3ω0). Equation (43) is the same as equation (45) when K(2) = 10g4. In this section, we show what

happens to the analysis in Fig. 1(g) of the main text for other choices of C in K(2) = C g4.
In Fig. S 5(a), we show in color the values of K(2) as a function of g3/ω0 and g4/ω0. Blue gradient is used when

K(2) < 0 and red gradient for K(2) > 0. The green, cyan, purple, and orange lines indicate the examples where
C = {1, 10, 100,−0.6976}, respectively. In Fig. S 5(b), we use the difference δK = |K −K(2)| to compare K(2) and K.
The behavior of δK with C is non-monotonic. The best match between K and K(2) happens for K(2) = 10g4 (cyan
line), which justifies the use of this choice for the analysis in the main text.

0 10 20 30

K(2)=−33×10−4

K
(2

) =
3
3
×
1
0
−
4

K(2)=−33×10−6

K
(2

) =
3
3
×
1
0
−
6

(f)
(c)

(d)

(e)

10
4
δ K

/ω
0

0

3

6

10−5

10−3

10−1

g 4
/ω

0

g3/ω0

104 |K/ω0|

K(2)=g4
K(2)=10g4
K(2)=100g4

K(2)=−0.6976g4

(a)

(b)

4×10−110−210−3

0

50

100

0

50

100

1 10 30 1 10 30

104 |K/ω0| 104 |K/ω0|
r

Γ

Γ

0

0.5

1
(c) (d)

(e) (f)

Fig. 5. Parameter selection and quantum chaos maps. a, Kerr amplitude K(2) of the second-order effective Hamiltonian
(in color) as a function of g3/ω0 and g4/ω0. Red is used for K(2) > 0 and blue for K(2) < 0; the solid black lines mark constant

values of K(2); the green line marked as (c) is for K(2) = g4, the cyan line (d) is for K(2) = 10g4, the purple line (e) is for

K(2) = 100g4, and the orange line (f) is for K(2) = −0.6976g4. b, Absolute difference between K(2) and K as a function

of |K/ω0| for different choices of K(2) = Cg4, as indicated. c-f, Measure of quantum chaos given by the average ratio r of

consecutive quasienergies spacings as a function of K/ω0 and Γ, for ωd/ω0 = 1.999866 and (c) K(2)/g4 = 1, (d) K(2)/g4 = 10,

(e) K(2)/g4 = 100, and (f) K(2)/g4 = −0.6976. The black solid curve indicatesthe parametric case, where the classical Lyapunov
exponent becomes positive in the vicinity of the center of the lemniscate, and the black dashed curve indicates the parameters
for which chaos sets in both inside and outside the original lemniscate.
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We notice that for the experimental parameter K/ω0 = 0.32/6000 used in [26], our choice of K(2) = 10g4 implies
that g3/ω0 = 25.7371/6000, which is very close to the experimental value g3/ω0 = 30/6000 used in that same work.
The example C = −0.6976 is selected also using the parameters g3/ω0 = 25.7371/6000 and K(2)/ω0 = −0.32/6000,
with the difference that K(2) is now negative. We investigate C = −0.6976, because negative Kerr amplitudes are also
experimentally available.

Figure S 5(d) is exactly the same as Fig. 1(g) of the main text. It shows the average value of the quantum chaos
indicator r̄ as a function of Γ and K/ω0. To complement the analysis of the regular to chaos transition performed in
the main text, we show in Fig. S 5(c), Fig. S 5(e), and Fig. S 5(f) the results for r̄ as a function of Γ and K/ω0 for
K(2) = g4, K

(2) = 100g4, and K(2) = −0.6976g4, respectively. The results are comparable, although for K(2) = g4 in
Fig. S 5(c), we see that the transition to chaos gets shifted to larger values of Γ and K/ω0.

There are numerous ways in which the parameters of the Hamiltonian may be varied. There are various paths that
can be taken to change g3 and g4 that are not necessarily linear, as those in Fig. S 5, but the relationship in the
equation (12) of the main text is general.
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