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Abstract

Background and purpose: Subjective cognitive complaints post-COVID-19, known as
long-COVID, have unclear effects on neural activity. This study explores the neural
basis of these cognitive impairments by comparing resting-state functional networks of
long-COVID individuals to a control group.

Methods: Forty-two individuals with cognitive complaints persisting 24 weeks post
COVID-19 infection and 43 age-, sex- and education-matched healthy controls without
a history of infection were studied using resting-state functional MRI (rs-fMRI) and the
Uniform Data Set (UDS-3) neurocognitive test battery (NCT). Neuropsychological scores
were adjusted to the mean and grouped into seven cognitive composites. Thers-fMRI data
were partitioned into seven distinct functional neural networks—Salience/Ventral Atten-
tion, Dorsal Attention, Default, Frontoparietal, Visual, Somatomotor, and Limbic—and
their efficiency, largest connected component, and modularity (Q) were studied.

Results: The NCT scores yielded statistically significant differences in long-COVID
subjects compared to controls at attention, language, memory, executive, and global com-
posites. We observed significant differences (p < .001) in the global and mean local
efficiency of the Salience/Ventral Attention and Global networks, and to a lesser extent
(p <.005 and p <.01) in the Default and Dorsal Attention networks.

Conclusions: Our findings reveal significant group-level differences in executive, atten-
tional, language, and memory outcomes, alongside less efficient and organized connec-

tions among Salience/Ventral Attention and Global networks.

KEYWORDS
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INTRODUCTION that can arise between 4 and 12 weeks following the onset of infec-
tion from COVID-19, persisting for a minimum of 2 months without an
With a prevalence that ranges from 6.8% to 87.9% across various alternative explanation.’=3 Patients frequently report difficulties with

countries,! long-COVID presents itself as a co
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nstellation of symptoms memory, attention, and executive functions, severely impacting their
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Control

Age 59 (+/-9.9)

Long-COVID
56 (+/-12.2)

Sex 25 females; 18 males | 30 females; 12 males

Years of education 15 (+/- 3.1) 16 (+/- 2.)
(sinzlen?:fte(:::i:)un‘;y(y) N/A 115 (+/- 0.65)
Hospital admission (n) N/A 10
unﬁr:éizli:sai:\ (n) N/A 3
Mean and interquartile range of NCTs Estimate AAIC
Memory -0.08 [-0.56; 0.47) 112 [-1.78; -0.32] 120 [2.09;-0.30]| 14.45 |[ | E
Language 0.18 [-0.18; 0.52] -0.43 [-0.82; 0.25] -1.63 [-2.67; -0.59]| 10.99
Attention -0.16 [-0.41; 0.26) 121 [1.80; -0.40] 161 [-248;-074]| 1759 || | g
Executive -0.16 [-0.45; 0.06] -0.82 [-1.37;-0.12] -1.56 [-2.75; -0.37]| 12.28 = g_
Visuospatial 0.21 [0.0; 0.43] 0.02 [-0.17; 0.33] -0.88 [-1.94; 0.18]| 0.82
Global 0.09 [-0.09; 0.33] -0.87 [-1.36; -0.25] -3.91 [-7.20; -0.62]| 34.70 f-,

FIGURE 1 Sociodemographics and NCTs' results. Sociodemographics (top panel) and composites in each cognitive domain (mean and
interquartile range; bottom panel). GLMM (group ~ age + sex + education_level + composite + (one|participant)) was used (right columns) to
assess the impact of the composite on the group (estimate and 95% confidence interval), its significance (color scale) and improvement of the
model. GLMM, generalized linear mixed-effects model; NCT, neurocognitive test.

quality of life. Some studies have shown widespread cortical volume
reduction following a COVID-19 infection, with key brain regions (like
the parahippocampal gyrus and the insula) affected.*® Potential con-
tributors point to sustained systemic inflammation and disruptions in
the blood-brain barrier.®”

Functionally, prior research on long-COVID mainly addressed olfac-
tory dysfunction shortly after infection,®®? and only recently pro-
longed effects on brain function have been examined.10-13 By lever-
aging graph theoretical analysis of resting-state functional MRI (rs-
fMRI),1415 we aim to reveal patterns and alterations that may underlie
the cognitive difficulties seen in long-COVID, thereby enhancing our
understanding of its impact on the brain.

MATERIALS AND METHODS
Participants

Our study comprised 42 subjects with cognitive complaints after at
least 6 months following a confirmed positive SARS-CoV2 RT-PCR
result from nasopharyngeal swabs (long-COVID group) with disease
severity mild to moderate® and 43 subjects matched by age, sex, and
years of education with no history of COVID-19 infection (control

group) (Figure 1). Hospitalization and vaccination status did not affect
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eligibility, but participants with prior cognitive decline were excluded.
All participants underwent a USD-3 neurocognitive test (NCT)” and
rs-fMRI protocols.

Neurocognitive tests

The NCTs included: Montreal Cognitive Assessment (MoCA), Craft
Story delayed and trail-making test B (TMT-B) as a general (global)
assessment; Craft Story immediate and delayed for testing memory;
Benson's figure copy and reproduction for testing visuospatial skills;
semantic fluencies and Multilingual Naming Test (MINT) for testing lan-
guage; trail making test A (TMT-A) and direct span to assess attention;
TMT-B and indirect span for testing executive functions. A compos-
ite was made for each of these domains based on the z-scores of their
corresponding tests.!”

We fitted a Generalized Linear Mixed-Effects Model (GLMM) with
the group (control or long-COVID) as the dependent variable and
the demographics (age, sex, and education level) and the composite
score as fixed-effects and participants as a random effect. Data were
centered by subtracting the mean before fitting the model. When per-
forming this analysis on the executive, global, and language scores,
three subjects from the long-COVID group were left out due to missing

values.
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Control

Long-COVID

C- Somatomotor @ Visual @ Default @ Ventral Attention @ Dorsal Attention @ Frontoparietal )

FIGURE 2 Mean global networks. Groups’ mean global network at § = 40% (top 1% edges) using OpenOrd in Gephi (v0.10, Gephi Developers,
https://gephi.org/). Each node corresponds to a brain region. Their size depicts their average weighted degree their color and the functional

network they belong to. §, connection density.

Functional MRI

Each participant underwent MRI (T1-weighted; 1 mm? resolution) and
rs-fMRI scans (3 mm?3 resolution; 7-min sessions; 2 s repetition time)
with a GE Discovery 750 3T. These were preprocessed with fMRIPrep
(v23.2, NiPreps Developers, https://fmriprep.org/) with default param-

eters and slice-timing correction. Preprocessing involved head-motion
correction, white matter and cerebrospinal fluid, high-pass filtering
confounds, spatial smoothing with an FWHM kernel of size six, and a
0.08 Hz low-pass filter.

Parcellation was done with Schaefer’s atlas (400 regions of
interest),’® using the Nilearn library (v0.10.1, Nilearn contributors,
https://nilearn.github.io/). fMRI data were split into seven func-

tional neural networks (Salience/Ventral Attention, Dorsal Attention,
Default, Frontoparietal, Visual, Somatomotor, and Limbic)? in addition
to the complete (global) network (Figure 2).

We proceeded to study the structure of these networks through
global topological measures with the tool NetworkX (v3.3, Net-

workX Developers, https://networkx.org/). As some measures require
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shortest-path calculations, we converted the networks’ weights (cor-
relation coefficients) to their absolute values before analysis. A
global thresholding strategy was applied to enhance statistical power,
extracting the greatest edge weights from each network. Inter-group
differences’ significance was assessed at each connection density (5)
using the Wilcoxon rank-sum test.

Global efficiency?° is a measure of integration that, together with
local efficiency, characterizes small-world behavior.2! Defined as the
reciprocal of the harmonic mean of the network’s path lengths, it is
closely related to the network’s characteristic path length, with the
advantage that network fragmentation—which could arise from the
thresholding—does not pose a problem.

Local efficiency?® is a node-specific measure that reflects the extent
of integration between the immediate neighbors of the given node and
can be considered a generalization of the clustering coefficient that
explicitly takes into account paths.22 We report the average across
nodes.

The largest connected component (LCC), a characterization of the

networks’ robustness,?® and the modularity (Q) of the Global net-
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FIGURE 3 Efficiency of functional networks. Group average network efficiency at different 8. Shades of gray describe statistical significance:
black (p < .001), gray (p < .005), and light gray (p < .01). 6, connection density.
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FIGURE 4 LCCand Q of functional networks. (A) LCC as a ratio of the number of nodes across increasing 8. (B) Q measured across different §
for the Global network. LCC, largest connected component; Q, Modularity; 8, connection density.
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FIGURE 4 Continued

work, an estimation of the node’s division into aggregations of densely

connected subgroups,2* were also studied.

RESULTS

The GLMMs ran on the groups yielded statistical significance and a
high AAIC for the composite variable in attention (p <.0001), memory;,
language (p < .001), executive, and global (p < .01), with no significant
effect in visuospatial (p > .1) (Figure 1).

We observe significant differences (p < .001) in the global and local
efficiency of the Salience/Ventral Attention and Global networks and
to a lesser extent (p < .005 and p < .01) in the Default and Dorsal
Attention networks across a wide range of connection densities (with
the exception of the local efficiency in the Default network) (Figure 3).
No significant differences were found in other functional networks nor
the LCC and Q metrics (Figure 4). This notable disparity in network
efficiency is reflected by the structural variations visible in Figure 2,
and might also be partly responsible for the results behind the NCTs,
although no significant correlation was found.

DISCUSSION

This study explored both the cognitive and functional implications
behind the subjective complaints following a COVID-19 infection in
individuals without a history of cognitive decline before infection. Our
clinical study suggests an impact on a broad spectrum of cognitive
functions.® Additionally, we found alterations in the efficiency of net-
works that involved brain regions previously reported to be affected
by long-COVID.*” While no significant differences were observed in
other functional networks, nor the LCC and Q, these disparities in net-
work efficiency suggest that long-COVID may lead to a less resilient
and more fragmented architecture. This hypothesis could explain the

variety of cognitive impairments observed and aligns with the notion of
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COVID-19 affecting brain structure and connectivity, expanding upon
previous findings in the literature.10-13

Our study’s limitations include the cross-sectional design, which
does not allow for the determination of causality. Future research
should consider longitudinal studies to capture the trajectory of
these changes over time and their direct impact on cognitive

performance.
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