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Abstract: The failure of immunotherapies in cancer patients is being widely studied due to the com-

plexities present in the tumor microenvironment (TME), where regulatory T cells (Treg) appear to 

actively participate in providing an immune escape mechanism for tumors. Therefore, therapies to 

specifically inhibit tumor-infiltrating Treg represent a challenge, because Treg are distributed 

throughout the body and provide physiological immune homeostasis to prevent autoimmune dis-

eases. Characterization of immunological and functional profiles could help to identify the mecha-

nisms that need to be inhibited or activated to ensure Treg modulation in the tumor. To address 

this, quantitative in silico approaches based on mechanistic mathematical models integrating multi-

scale information from immune and tumor cells and the effect of different therapies have allowed 

the building of computational frameworks to simulate different hypotheses, some of which have 

subsequently been experimentally validated. Therefore, this review presents a list of diverse com-

putational mathematical models that examine the role of Treg as a crucial immune resistance mech-

anism contributing to the failure of immunotherapy. In addition, this review highlights the rele-

vance of certain molecules expressed in Treg that are associated with the TME immunosuppression, 

which could be incorporated into the mathematical model for a better understanding of the contri-

bution of Treg modulation. Finally, different preclinical and clinical combinations of molecules are 

also included to show the trend of new therapies targeting Treg. 

Keywords: Treg cells; QSP model; immunotherapy; tumor growth dynamics; computational immune 

framework 

 

1. Introduction 

Immunotherapy in oncology enhances the ability of the immune system to control or 

eliminate cancer cells, thus changing the paradigm of cancer treatment [1]. However, tu-

mor cells can develop various resistance or immune evasion mechanisms, such as the in-

troduction of mutations and/or upregulation of immune checkpoints, in particular pro-

grammed death-ligand 1 (PD-L1). This upregulation contributes to generating an immu-

nosuppressive tumor microenvironment (TME) that enables tumor growth and prolifer-

ation [2–5]. 

The relationship between tumor growth dynamics and changes in the TME is highly 

complex due to the behavior of the immune system, which is mainly responsible for this 

complexity. Figure 1 illustrates this relationship in a simplified way, which is based on 

the cancer-immunity cycle described by Mellman et al. [6]. Briefly, dendritic cells (DCs) 
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recognize and engulf neoantigens and damaged associated molecular patterns (DAMPs) 

produced by dead tumor cells, activating the circulating naive T cells that link the innate 

and adaptive immune responses. However, it is the balance between immune activation 

and suppression that determines whether a tumor will proliferate or be eliminated. The 

antitumor response is induced by DC, M1 macrophages, CD4+ T cells, and cytotoxic CD8+ 

T cells [7–10]. On the other hand, tumor resistance is derived from M2 macrophages, my-

eloid-derived suppressor cells (MDSCs), and regulatory T cells (Treg) [11–13]. 

 

Figure 1. Scheme of cancer cycle immunity. Tumor antigens derived from cell death are engulfed 

by DCs and presented to naive T cells, resulting in the activation of effector cytotoxic T cells (CD8+) 

capable of inducing tumor cell apoptosis and generating a humoral response. This process promotes 

the secretion of pro-inflammatory cytokines and DAMPs that enhance T cell activation. 

This simplified framework on the ICI is intended to illustrate the key events that trig-

ger the antitumor immune effect. It describes the integration of many cell populations that 

can be modulated by the action of cytokines, chemokines and growth factors that play a 

relevant role by interacting with these cells and changing the immunophenotype of the 

tumor. Indeed, the dynamics of immune cells in the TME is strongly influenced by the 

plasticity of some of them, particularly Treg and myeloid cells infiltrating the tumors. 

This, together with the complexity of the immune synapse between different cell subpop-

ulations, conforms to a complex scenario [14]. 

In this context, the design of strategies to improve antitumor efficacy requires sub-

stantial knowledge of these complex interactions between the immune system and cancer 

cells, and the identification of the essential mechanisms that need to be inhibited or stim-

ulated to achieve total tumor rejection and generate immune memory. Given these unmet 
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medical requirements in immune oncology, mathematical models stand out for their abil-

ity to describe and quantify the dynamics of different physio-pathological processes in-

volved in tumor progression and the activity of immunotherapy. 

Different types of models have been reported in the literature, including empirical 

and semi-mechanistic models which aim to describe and/or predict tumor growth. These 

models have provided a good description of tumor growth kinetics after different treat-

ments in animals and patients. They show interesting applications for the development of 

new agents and propose different drug combinations or even new dose regimens to re-

duce the toxicities induced by chemotherapy or radiotherapy. However, in order to inte-

grate the knowledge of the mechanisms triggered by tumors, therapies, and the immune 

system, the model structure requires greater complexity, which is addressed by the quan-

titative system pharmacology (QSP) approach. 

The QSP approach in immune oncology (IO) represents a differentiated scientific and 

bioinformatic tool that incorporates physiology, physiopathology, inter-individual varia-

bility, and therapeutic activity to describe and characterize the interactions between can-

cer cells and immune cells, in a granular way. Importantly, QSP model building is, gener-

ally, based on multi-scale information integrating relevant biomarkers and cell popula-

tions, although these models require certain simplifications of the events generated in the 

TME, which nevertheless reflect the main mechanisms that trigger the immune response. 

In some of these models, the activity of immunotherapy has been adapted by incor-

porating the effect of activated tumor-specific cytotoxic CD8+ T cells responsible for tumor 

elimination together with the immune resistance response associated with the failure of 

many immunotherapeutic approaches, mainly due to the presence of tumor-infiltrating 

Treg. Although serious efforts have been made to identify up- or down-regulated bi-

omarkers in Treg, this information has not yet been elucidated and integrated in a quan-

titative framework [15]. 

Therefore, this review summarizes a list of quantitative computational models that 

relate Treg activity to antitumor immunity, exploring the impact of some relevant mech-

anisms involved in IO therapies. Furthermore, different therapeutic strategies to counter-

act the immunoresistance effect of Treg are briefly discussed as a possible contribution to 

the development of QSP models. 

2. Regulatory T Cells in TME 

Treg maintain physiological immune homeostasis by balancing excessive immune 

responses with suppression of autoimmune responses. 

Treg belong to the CD4+ T cell population and are characterized by the expression of 

CD4 and CD25 (or IL-2 receptor) on their surface, and the intracellular nuclear transcrip-

tion factor Forkhead box P3 (Foxp3), which controls Treg proliferation and activity. How-

ever, both biomarkers, Foxp3 and CD25, are also transiently expressed on activated effec-

tor T cells (cytotoxic CD8+ T cells). Therefore, it is relevant to selectively identify Treg to 

study their role in IO. In this sense, Cytotoxic T-Lymphocyte-Associated Protein 4 (CTLA-

4) is one of the preferentially overexpressed biomarkers on the surface of Treg, which has 

led to the synthesis of a specific monoclonal antibody against Treg (Ipililimab). However, 

other molecules are under investigation because of their relationship with their immuno-

suppressive activity, which can contribute to the development of novel inhibitors of Treg. 

Thus, Treg can be classified based on their biomarker expression and cytokine release pat-

terns. A summary of such biomarkers is provided in Supplementary Table S1. 

It is known that Treg can migrate to specific tissues in response to chemokine signal-

ing and differentiate into CD25highFoxp3high, a characteristic of immunosuppressive Treg 

(iTreg), which represents one of the immune escape mechanisms developed by the tumors 

[16,17]. 

Chemokines such as CCL17 and CCL22 are endogenous ligands that selectively bind 

to the CCR4 receptor expressed on activated Treg, promoting Th2 response and thereby 

facilitating Treg tumor infiltration [18,19]. Similarly, CCL18 or CCL1 bind to the CCR8 
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receptor, which is strongly expressed on tumor-infiltrating Treg, and promote Treg pro-

liferation and activation through Foxp3 upregulation [20]. Therefore, the chemokine re-

ceptors, CCR4 and CCR8, are particularly involved in Treg modulation and immunother-

apy efficacy, as these Treg release immunosuppressive cytokines such as IL-10, TGFβ, and 

IL-35 within the TME, competing with the effector CD8+ T cells for IL-2 by upregulating 

the expression of CD25. This activity promotes the depletion of NK cells and disrupts the 

activation and proliferation of effector CD8+ T cells, which become exhausted, inducing 

an immunotolerant and immunosuppressive TME. As a consequence of this process, iTreg 

infiltration in the TME is associated with a poor prognosis and the failure of immunother-

apies [21]. 

Since efficacy of immunotherapies lies in the enhancement of immune surveillance, 

appropriate modulation of functional Treg activity may improve this mechanism and thus 

clinical response. To address this, mathematical modeling provides a useful tool to better 

explore these complexities using an in silico approach to identify mechanisms that could 

explain the observed clinical or preclinical results [22]. 

3. Relevance of Quantitative Mathematical Models to Explore Treg Activity  

in Tumor Growth 

Interest in characterizing tumor growth using quantitative approaches, including 

empirical, semi-mechanistic and QSP models, has grown over the years. One of the pivotal 

mathematical models is the data-driven pharmacokinetic/pharmacodynamic (PKPD) 

model, which is capable of describing tumor growth and identifying significant covariates 

affecting some model parameters under different scenarios through in silico simulations 

[23]. The main goal of such a PKPD model is the screening of tumor sensitivity to drugs 

and drug distribution in the tumor, relying on data from immunosuppressed animal mod-

els (i.e., xenograft mouse), and thus not considering immunological aspects. 

Notably, the inclusion of immunoresistance mechanisms and the antitumor effects 

exerted by effector CD8+ T cells were later accounted for by using data from syngenic 

murine tumor models. This animal model allows for the identification of inter-subject var-

iability in the immune response and the stratification of individuals into responders and 

non-responders [24]. In addition, these models have provided a framework for testing the 

effects of different therapeutic agents including vaccines, Toll-like receptor (TLR) agonists, 

and immune checkpoint inhibitors, among others. However, the role of pro-tumor factors 

such as infiltrating Treg, MDSCs, and PD-L1 upregulation were implicitly modeled due 

to the lack of specific information on lymphocyte populations and biomarker levels. This 

highlights the critical need for experimental data to elucidate the underlying pro-tumor 

mechanisms. 

In recent years, new experimental methodologies using functional and phenotypic 

assays have greatly improved the ability (1) to study the temporal characteristics of tumor 

and immune cell progression, (2) to capture the heterogeneity of tumors and TME [24], 

and (3) to provide more comprehensive in vitro and in vivo information on novel thera-

pies. These advances challenge the incorporation of the data obtained into mechanistic 

computational models, which occurs in the QSP model structure. 

Understanding the TME, its elements, and the immune framework is essential to de-

termine the impact of effector CD8+ T cells alongside Treg. Figure 2 depicts the main pro-

cesses involved in either (i) tumor elimination (represented in red) where CD8+ T cells are 

essential, or (ii) tumor progression (represented in blue) where Treg are the main respon-

sible elements. In addition, coordination across lymphocytes CD8+, CD4+, Treg, NK cells, 

macrophages M1 and M2, MDSCs and DCs is required to regulate the development and 

progression of the disease. Integrating these processes with their corresponding bi-

omarkers into a mathematical framework that replicates the most complex immunological 

state triggered by the presence of a tumor is the most challenging exercise in predicting 

the final immune response. 
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Several promising biological markers have been identified to determine the balance 

between antitumor immune response and resistance mechanisms. In particular, an in-

creased intra-tumoral CD8+/Treg ratio has been identified as a predictor of tumor shrink-

age in preclinical studies and has also been translated into clinical trials [25]. An increase 

in activated CD8+ T cells shifts the balance in favor of the immune system to achieve an 

antitumor response. However, the presence of Treg and their balance with CD8+ T cells 

have not fully explained clinical outcomes. This has led to a great interest in preclinical 

studies to investigate the role of Treg inhibition, stimulation, or depletion within the TME, 

which ultimately determines the efficacy of immunotherapeutic approaches in cancer [26]. 

It should be noted that cytokines and chemokines are also relevant players in Treg mod-

ulation, and therefore, their integration into these computational QSP models is necessary. 

On the other hand, the role of other immune cells present in the TME, such as the T helper 

cells and macrophage subsets that control the Th1/Th2 and M1/M2 ratios, respectively, in 

tumor clearance is not yet fully understood [27]. 

 

Figure 2. Processes involved in tumor elimination (represented in red) or tumor progression (rep-

resented in blue). Stimulatory mechanisms to induce antitumor effect must overcome inhibitory 

activities. Intra-tumoral infiltration of activated CD8+ T cells triggers tumor cell death through the 

action of interferon-gamma (IFN-γ), and granzyme B. However, the tumor evades this control by 

inducing specific immunoresistance mechanisms, particularly the proliferation of Treg cells and the 

upregulation of PD-L1 on the surface of tumor cells, leading to effector cell exhaustion. 

Different QSP quantitative frameworks have been published in the literature par-

tially covering the pro- and antitumor response elements described in Figure 2 [28]. In 
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order to explore and consider the role of Treg in cancer in a comprehensive manner, we 

focused our review on those that included the antitumoral effect of Treg in immunother-

apy and applied the following inclusion criteria: (1) preclinical and clinical studies, (2) 

time evolution dynamics of cell populations (described by ordinary differential equations, 

ODEs), and (3) tumor dynamic profiles as the main outcome. We also included articles 

studying longitudinal clinical data on cytokines and relevant lymphocyte populations. A 

total of six articles combining preclinical and clinical data were selected, numbered and 

presented in Table 1, according to increasing complexity in terms of mechanistic aspects, 

cell populations, assay complexity, spatial components (tumor vasculature, tumor com-

partment), and tested therapies. 

The first article, reported by Kronik et al., presents a mathematical non-spatial model 

developed to describe cellular immunotherapy for melanoma using clinical trial data in-

tegrating CD8+ T cells and cytokines [29]. The model includes melanoma cells that express 

immunogenic antigens in the context of the major histocompatibility complex I (MHC I) 

molecules, but also secrete the pro-tumor factor TGF-β, which inhibits T cell activity, im-

plicitly representing the effects of Treg. The tested treatment consists of adoptive T cell 

therapy, based on ex vivo expanded tumor-specific T cell infusion that lyses their target 

and secretes the antitumor factor IFN-γ, which has a positive feedback on MHC I mole-

cules, increasing the cytotoxic T lymphocyte (CTL)-mediated antitumor effect. In addition, 

treatment with IL-2 infusions prolongs the persistence of infused CTL. The combination 

of both therapies promotes a higher antitumor efficacy than adoptive T cell therapy alone, 

with assumable adverse effects. Tumor growth rate and tumor size are essential in pre-

dicting the outcome of therapy, and this mathematical model supports the decision of the 

most favorable schedule for each patient. 

Other studies have reported models focusing on one [30] or on parallel [31] pathways 

of inhibitory factors induced by Treg, TGF-β and/or IL-10 that promote tumor growth and 

reduce the cytotoxicity of effector cells (i.e., CD8+ cells and others such as DC, CD4+ helper 

T cells, and IL-2). In the model reported by Wilson et al., using data from a TC1 murine 

tumor model, the authors considered two types of interactions between tumor cells and T 

cells: (1) the interaction with Treg through TGF-β release to investigate the anti-TGF-β 

treatment, and (2) the interaction with CD8+ cells, by using cancer vaccines as effector cell 

stimulators [30]. The authors conclude that tumor elimination requires combined immu-

notherapy treatments capable of working through different mechanisms since vaccine 

monotherapy is not sufficient to eradicate the tumor. 

Increasing the complexity of the model, Robertson-Tessi et al. considered different 

simultaneous pathways of pro-tumor effects [31]. The model, based on in silico multi-scale 

data from tumors with different growth rates and antigenicity, estimates and simulates 

typical time profiles of tumor growth by determining the relevance of various immuno-

suppressive mechanisms at the different stages of tumor growth. In addition to TGF-β-

induced immunosuppression, this model accounts for the conversion of CD4+ helper T 

cells into Treg, and the evaluation of dendritic cell therapy. The model structure allows 

for tumor escape, which is mainly supported by the immunosuppression conferred by 

TGF-β (greater effects with larger tumor sizes), the presence of Treg at all tumor growth 

stages, and the limited access of immune cells to the TME at large tumor sizes (sufficient 

tumor vascularization). Interestingly, for a given tumor growth rate, there is a specific 

antigenicity and optimal dose of transfused dendritic cells that lead to an adequate re-

sponse of the immune system that is large enough to affect the tumor, but small enough 

to avoid excessive Treg promotion and suppressive effects. 

In addition to different cytokines and the most representative immune cell popula-

tions involved in immunotherapy, the role of M1 and M2 macrophages in tumor growth, 

and the use of the M2/M1 ratio as a pro-tumor biomarker, has garnered considerable at-

tention in recent years. Den Breems et al. reported a mathematical model that analyzes the 

stimulation of immunity by Th1 and M1 cells, and their complementary immunosuppres-

sive pro-tumor response derived from M2 and Th2 cells, to describe data from a murine 
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melanoma model [27]. However, type I and type II cytokines, which are required to me-

diate the interaction between M1 and Th1, and between M2 and Th2 cells, respectively, 

are not included in order to keep the model structure relatively simple. The authors con-

clude that an M2/M1 macrophage ratio greater than one can explain the tumor size, but 

caution that experimental studies with longitudinal data on M2/M1 ratio biomarkers are 

too limited to confront these findings. Furthermore, data from human trials are also re-

quired to evaluate/validate the results. 

The model proposed by Coletti et al. for prostate cancer successfully added compart-

mentalization into the prostate gland and lymphoid tissue to the structure using data from 

preclinical experiments, given the paucity of clinical studies [32]. The prostate gland com-

partment contains two types of prostate cancer cells, androgen-dependent (representing 

tumor cell sensitivity) and -independent (corresponding to tumor cell resistant) cells. 

Other players involved, connecting both compartments, are mature DCs, which in lym-

phoid tissues act as functional DCs (Df) or regulatory DCs (Dr) activating CTL or Treg, 

respectively. Finally, the pro-tumor immunosuppression exerted by MDSCs, an essential 

contributor to prostate cancer along with NK, androgens, and IL-2, have been included to 

explore different immunotherapies. Historically, prostate cancer has not responded well 

to immunotherapy possibly due to a strong immunosuppressive TME [33]. Thus, this 

model provides the framework to test in silico a variety of seven combinatorial immuno-

therapies: (1) androgen deprivation therapy, (2) cancer vaccines targeting mature den-

dritic cells, (3) anti-IL-2 for Treg inhibition, (4) anti-CD25 for Treg depletion, (5) admin-

istration of NK cells, (6) combination of anti-CTLA-4 with anti-PD-1 antibodies, and (7) 

cabozantinib (anti-MDSCs). A possible limitation of this model is the lack of effect of the 

suppressive molecules TGF-β and IL-10 secreted by Treg, which may exert a pro-tumoral 

effect. Given that, these biomarkers are easy to obtain from peripheral blood, suggesting 

their inclusion in future models. In addition, although beyond the scope of the current 

review focused on Treg function in the TME, cell mutation from androgen-dependent to 

androgen-independent prostate cancer cells may provide a novel aspect of QSP modeling 

in IO. 

Finally, the most complex QSP model is reported by Ji et al. [34]. This model was 

developed for DTA-1.mIgG2a (DTA-1), a mAb agonist of GITR (glucocorticoid-induced 

tumor necrosis factor receptor-related protein), which is constitutively overexpressed on 

the surface of Treg. DTA-1, tested in two syngenic murine tumor models (CT26 and A20), 

has previously been shown to inhibit Treg and activate cytotoxic CD8+ T and NK cells. 

This is due to a dual activity: (1) inhibition of Treg by the binding of DTA-1 to GITR, and 

(2) a direct depletion of Treg by antibody-dependent cellular phagocytosis (ADCP). This 

depletion, mediated mainly by macrophages, downregulates IL-10 and allows for the ac-

tivation of effector T cells influenced by IL-2 expression. To address this hypothesis, data 

consisting of serum concentrations of DTA-1, soluble GITR (sGITR), and anti-drug anti-

bodies (ADAs) for pharmacokinetic (PK) assessment, as well as the major T cell subsets 

including intra-tumoral levels of Treg (distinguishing high and low GITR expression in 

Treg), effector CD8+ T cells (accounted as the sum of inactivated and activated effector T 

cells), and macrophages (FcgRIV) for pharmacodynamic (PD) assessment, were collected 

from different compartments and analyzed. DTA-1 PK was described by a two-compart-

ment model with a non-linear elimination due to the presence of ADAs capable of binding 

to sGITR. DTA-1 plasma concentrations were directly connected with the tumor compart-

ment for drug trafficking. Interestingly, the authors explain the tumor shrinkage as a re-

sult of the balance of the CD8+/Treg ratio, which first requires depletion of Treg capable 

of causing a reduction in the immunosuppressive effects of IL-10, then promoting the pro-

liferation and differentiation of CD8+ T cells that eliminate cancer cells. Note that several 

complexities were addressed in this study, such as the different antitumor responses de-

pending on the tumor model, and the optimal dose. To describe tumor elimination, the 

authors hypothesized that treatment responses were associated with the presence of Treg 

with high GITR expression, which can induce a greater ADCP effect. Although the model, 
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under certain assumptions, successfully described the PK and PD of DTA-1 in the two 

preclinical tumor models, verification/validation using more complex experimental de-

signs and the inclusion of other immune pathways will be necessary to understand/eluci-

date and quantify the mechanisms hypothesized here. 

Remarkably, the dual activity assumed for DTA-1 is also shared by other mAbs 

against certain biomarkers expressed on Treg. This is the case for anti-CTLA-4, which can 

inhibit Treg activity and also induce Treg depletion via an ADCC mechanism, leading to 

an increase in antitumor efficacy. However, as activated effector T cells and DCs also ex-

press CTLA-4, this strategy could also cause a reduction in these immune cell populations, 

thereby hampering the activity of effector CD8+ T cells [35]. 

All the models reviewed have some characteristics that need to be highlighted. A 

shared limitation to models 1 to 4 is that they are all non-spatial tumor immune models, 

confined to the TME. Although the model proposed by Robertson-Tessi et al. was devel-

oped without spatial elements, it considers the number of tumor cells accessible to the 

immune system, linked with tumor size and vascularization. The spatial localization of 

immune cells may contribute to tumor growth and invasion, thus affecting the perfor-

mance of the models, and therefore, the efficacy of immunotherapy, as mentioned by Ji et 

al. [34]. This highlights the need to compartmentalize the mathematical framework to take 

into account spatial heterogeneity. In addition, reciprocal modulations, which occur be-

tween different subpopulations such as Th1 and Th2, M1 and M2 or DCs at different 

stages of maturation, influencing the heterogeneity of the TME in terms of cytokine com-

position, is a limitation already pointed out by Den Breems et al. when developing their 

model. In this context, another important complexity to be considered is the plasticity and 

differentiation of lymphocytes into Th1, Th2, Treg, or Th17 profiles, highly adaptable to 

different TMEs, an event that requires serious efforts to be addressed quantitatively in 

order to be incorporated into QSP model structures [14,36]. 

Therefore, tumor types and TME heterogeneity may determine different responses 

to treatments as IO therapy does not achieve similar antitumor responses in all treated 

patients. Several internal and external factors are considered to explain the inter- and in-

tra-tumor heterogeneity. New technologies, particularly the spatial transcriptomic ap-

plied to cancer research, offer a great opportunity to understand the localization of the 

different components of TMEs and tumor cells, which combined with the characterization 

of the diversity of gene expression and mutations, can explain the different phenotypes 

and thus the different therapeutic responses of tumors. In this context, the QSP approach 

is a valuable tool to integrate all information to explore diverse hypotheses and simulate 

potential combinations based on each immune patient profile. However, longitudinal pre-

clinical and clinical data on subpopulations of pro- and antitumor cells are essential to 

fully assess the trade-off between Treg and CD8+ cells, which are responsible for IO effi-

cacy. In this work, all models are based on CD25+ and Foxp3+ Treg, except for the model 

by Ji et al., which describes Treg subpopulations according to GITR expression levels. The 

relevance of the mentioned subpopulations was demonstrated by a transcriptomic analy-

sis of 99 solid tumors from cancer patients enrolled in a clinical trial [37]. The authors 

analyzed the correlation between the expression of GITR and its endogenous ligand and 

the efficacy of several GITR agonists tested in preclinical and clinical trials. The heteroge-

neous expression of these proteins between and within cancer types evidenced the neces-

sity to incorporate these data to achieve patient stratification to establish the most appro-

priate IO treatment. For example, tumor responders were those associated with high GITR 

and low–moderate GITR ligand expression, a phenotype found in approximately 30% of 

breast and lung cancer patients, respectively. However, this high GITR expression was 

independent of other immune modulators (PD-1, CTLA-4, OX40), suggesting that a more 

detailed analysis may be critical to provide rational combinations targeting different Treg 

biomarkers. The authors also concluded that other characteristics such as concomitant 

therapies and disease progression might be investigated in each patient as these may also 
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influence the antitumor response. Overall, further studies are warranted to identify the 

most complete immune profile of patients to achieve efficacy. 

In this context, QSP frameworks are useful tools in decoding cancer processes, 

providing an understanding of the disease, and evaluating the mechanism of action of 

molecular entities. The ultimate goal of these QSP models is to use virtual animal/patient 

populations to inform the design of clinical studies and to test in silico the efficacy of new 

treatments and combinatorial therapies [32]. The common conclusion of all the models 

described here, based mainly on preclinical data, is related to the extrapolation of the 

models to the clinical setting, highlighting the urgent need for the availability of clinical 

data to confront model predictions, as well as the inclusion of human parameters in QSP 

models. At this point, the QSP model reported by Ippolito et al. implements CD8/Treg and 

M1/M2 macrophage ratios to deal with tumor shrinkage using omics data to simulate vir-

tual patients; meanwhile, more recently, Anbari et al. investigated potential biomarkers 

for uveal melanoma patients, identifying tumor and blood CD8+ T cell density, tumor 

CD8+/Treg ratio, and blood naïve CD4+ T cell density as key biomarkers [38,39]. However, 

these studies do not reproduce specific mechanisms around Treg-derived immune re-

sistance effects influencing tumor growth. 

Table 1. Summary of selected QSP models for describing the mechanisms derived from Treg in tu-

mor growth (symbols:  anti-tumor mechanisms;  pro-tumor mechanisms). 

 Immune Key Points Treatment Evaluated Model Structure 

C
y

to
k

in
es

 c
o

n
tr

o
ll

in
g

 C
D

8+   CD8+ mediates tumor killing and IFN-

γ production.  

IL-2 

CD8+ cells 

Kronik et al. [29]  

 

 IFN-γ promotes MHC I expression on 

tumor cells for their recognition. 

 Inhibitory mechanisms are exclusively 

carried out by TGF-β produced by tu-

mor cells. 

P
ro

-/
A

n
ti

tu
m

o
r 

tr
an

si
ti

o
n

 

 CD8+ accessible to tumor cells (effect 

of vascularization) exerts an antitumor 

effect. 

DC therapy 

Wilson et al. [30] 

 

 Key mechanism: Balance between an-

titumor effect derived from Dendritic 

cells (DC therapy) and pro-tumor ef-

fect exerted by iTreg. 

 Inhibitory mechanisms: the presence 

of cytokines (IL-10 and TGF-β) and di-

rect effect of iTreg. 

T
G

F
-β

 a
s 

im
m

u
n

o
re

si
st

an

ce
 

 CD8+ and cancer vaccines are included 

separately, but both act synergistically 

as antitumor agents. 

Cancer Vaccine 

Anti-TGFβ 
Robertson-Tessi et al. [31] 



Pharmaceutics 2024, 16, 1461 10 of 18 
 

 

 iTreg and TGF-β produced by tumors; 

both have inhibitory activity on CD8+ 

cells. 

 

M
1/

M
2 

m
ac

ro
p

h
ag

es
 c

o
n

tr
o

l 

T
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Coletti et al. [32] 
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 CD8+ elicited self-activation through 

IL-2 signaling after initial Treg deple-

tion by therapy. 

Anti-GITR 

Ji et al. [34]  

 

 Treg with high GITR expression 

(Treghi) promote IL-10 secretion inhib-

iting CD8+. 

4. New Strategies for Treg Targeting 

Based on the QSP model proposed for Treg expressing GITR, other biomarkers such 

as CD25, CTLA-4, PD-1, ICOS, OX40, CCR4, and CCR8 (Figure 3) are useful targets that can 

also be exploited and integrated into similar QSP frameworks. Interestingly, mAbs that bind 

to OX40 (BAT6026, BGB-A445) or CCR8 (Nb-Fc1B) are being tested in preclinical models, as 

shown in Table 2. The expression of biomarkers in Treg therefore offers a wide range of 

possibilities for the development of therapies against immunosuppressive activity. 
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Notably, Treg targeting does not always guarantee the efficacy of immunotherapies. 

Therefore, a comprehensive integration of the mechanisms triggered by many of these 

therapeutic approaches to deal with Treg activity into a computational mathematical 

model can enrich the knowledge of immune activity and exquisitely improve the under-

standing of clinical benefits by predicting the most likely response according to different 

therapeutic combinations. Currently, some of these interesting advances in Treg modula-

tion have reached clinical translation and are involved in several clinical trials (Table 3). 

On the other hand, Foxp3, the transcription factor considered the master regulator of 

the Treg immunosuppressive phenotype, is an interesting biomarker that represents a 

challenge for the development of targeted therapies due to its intranuclear location. In this 

sense, intensive research has led to the spread of several peptides that reproduce parts of 

the Foxp3 amino acid sequences and compete for the binding partners and cofactors of 

Foxp3, or non-specific peptides with the ability to bind and inhibit Foxp3 activity [40]. 

Specifically, P60 is a linear peptide capable of selectively binding to Foxp3, preventing its 

nuclear translocation and inducing an antitumor response in preclinical tumor models. 

However, its very short systemic half-life requires a high daily dose administration, lim-

iting its clinical translation. 

 

Figure 3. Schematic representation of the different biomarkers expressed in Treg and involved in 

the different mechanisms of action identified for this lymphocyte subset. Note that Foxp3 is ex-

pressed intracellularly and determines Treg activation. 

To overcome this shortcoming, various modifications have been tested, such as the 

cycling of the linear structure or by the conjugation with the CD28 aptamer. Although 

these strategies provided a slight increase in the half-life of the peptide and an acceptable 

antitumor effect, other more efficient approaches are being sought. Serrano et al. [41] have 

reported a new nanosystem for P60 delivery. The authors have successfully encapsulated 

P60 in advanced nanoliposomes, which were decorated with monovalent variable frag-

ments of anti-CD25 (Fab’-CD25) to selectively target Treg. This novel formulation was as-

sayed in the MC38 mouse tumor model, and induced complete tumor remission in 40% 



Pharmaceutics 2024, 16, 1461 12 of 18 
 

 

of animals after monotherapy and in 100% after combination with anti-PD1. All mice de-

veloped immune memory. This result contrasts with the modest 10% of animals that 

showed tumor elimination after free P60 administration at a dose 50 times higher than 

that of the targeted liposome. Therefore, this nanosystem constitutes an interesting plat-

form to exploit the transport and delivery of not only peptides but also other new mole-

cules or treatments including different types of genes, i.e., small interfering-RNA (siRNA), 

which is capable of inhibiting specific gene expression [42]. Patisiran (Onpattro™), a lipid 

nanoparticle encapsulating siRNA, approved by the US Food and Drug Administration 

(FDA) in 2018 for the treatment of a rare metabolic disease, is a good example of nanosys-

tems’ potential [43]. 

Selective therapies to modulate Treg activity, by depletion and/or inhibition, are 

therefore being actively investigated, with a particular focus on several biomarkers (Tables 

2 and 3). Interestingly, many clinical trials are using inhibitors against OX40, GITR, or 

LAG-3 with promising results. However, the availability of longitudinal data from these 

trials could help to propose and develop more complete QSP model structures that inte-

grate pro- and antitumor mechanisms, allowing for the validation of model predictions, 

accelerating the approval of new therapies, and proposing the most rational combination 

depending on the individual immune profile. Computational models can also guide the 

design of clinical trials to improve the benefit of IO. 

Table 2. Treg-targeted strategies developed and tested in preclinical studies. 

Mechanism of 

Action 
Target Treatment 

Concomitant 

Treatment 

Tumor  

Cell Line 
Immune Response Ref. 

Promotes Treg 

depletion 

CD25 

(IL-2Rα) 

PC61 

(mAb) 
TLR9 agonist 

Brain 

(E-L4) 

↓ 45% Treg lymph nodes ** 

30% Tumor regression ** 

OS 80% treated mice ** 

[44] 

PC61 

(mAb) 
Anti-CTLA-4 

Melanoma 

(B16/BL6) 
↓ 64% peripheral Treg in prophylaxis [45] 

CTLA-4 
4-E03 

(mAb) 

GM-CSF 

Anti PD-1 

Cold 

tumors 

↓ 82% inTreg tumor-infiltrating  

OS > 80% treated mice 
[46] 

GITR 

DTA-1 

(mAb) 

BMA-Ova 

(cancer vaccine) 

Lung 

(3LL) 

↑ CD8+ and NK in tumor * 

↓ Tumor burden * 
[47] 

DTA-1 

(mAb) 
-- 

Melanoma 

(B16) 

OS 60% treated mice ** 

↓ 50% Treg in tumor 
[48] 

DTA-1 

(mAb) 
-- 

Urothelial 

(MB49) 

↑ 82% CD8+ in tumor 

Total tumor regression 100% mice 
[49] 

OX40 

MEDI6383 

(FP) 
-- 

Melanoma 

(A375) 

↓ Tumor burden * 

↑ Proliferation of CD8+ in tumor 
[50] 

BAT6026 

(mAb) 
Anti-PD-1 

Colon 

(MC38) 

↓ Tumor burden * 

↑ 40% CD8+ in tumor ** 

↓ 15% in Treg tumor-infiltrating  

[51] 

BGB-A445 

(mAb) 
-- 

Colon 

(MC38) 

↑ CD8+/Treg ratio in spleen ** 

↓ Tumor burden * 
[52] 

CCR8 

Nb-Fc1B 

(NB) 
Anti-PD-1 

Colon (MC38) 

Lung (LLCOVA) 

↓ Tumor burden ** 

OS (MC38) 15% treated mice 

OS (LLCOVA) 100% treated mice 

[53] 

IgG2a 

(mAb) 
Anti-PD-1 

Solid 

Tumors 

↓ Tumor burden 

↓ 60% Treg in tumor * 
[54] 

OS, Overall Survival; mAb, monoclonal Antibody; FP, Fusion Protein; NB, Nanobody. (* p < 0.05; ** 

p < 0.001). ↓: Reduce, ↑: Increase. 
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Table 3. Treg-targeted strategies involved in clinical trials. 

Mechanism 

of Action 
Target Treatment 

Concomitant 

Treatment 
Clinical Trial Clinical Outcome Ref. 

Promotes 

Treg 

depletion 

CD25 

(IL-2Rα) 

Daclizumab 

(mAb) 

HLA-A2 

(cancer vaccine) 

FDA 

Approved 
1st dose ↓ 70% Treg at weak 11  [55] 

Basiliximab 

(mAb) 

ACT with CD8+ 

Cells 

FDA 

Approved 
1st dose ↓ 70% Treg-CD25hi at day 7 * [56] 

Denileukin difitox 

(FP) 
-- 

FDA 

Approved 
1st dose ↓ 25% Treg-CD25hi at day 5  [57] 

LMB-2 

(FP) 

MART-1 

(cancer vaccine) 
NCT00080535 1st dose ↓ 70% Treg-CD25hi for 7 days * [58] 

RFT5-dgA 

(Immunotoxin) 
-- 

NCT00314093 

NCT00667017 

NCT00586547 

1st dose ↓ 100% Treg-CD25hi for 7 days [59] 

CCR4 
Mogamulizumab 

(mAb) 
Nivolumab 

FDA 

Approved 

Control Disease: 

40% treated patients 
[60] 

Promotes 

Treg 

inactivation 

CTLA-4 

Tremelimumab 

(mAb) 
-- 

FDA 

Approved 

Control Disease: 

51% treated patients  

OS increases in 2.8 months 

[61] 

Ipilimumab 

(mAb) 

Nivolumab 

Cisplatin 

FDA 

Approved 

60% Tumor Growth inhibition ** 

15% treated patients increase OS 
[62] 

PD1 

Pembrolizumab 

(mAb) 
Lenvatinib FDA Approved 

↓ Tumor burden ** 

70% treated patients increase OS ** 
[63] 

Nivolumab 

(mAb) 

Fluvestrant 

Letrozole 

NCT01783938 

NCT01176461 

Control Disease: 

40–55% treated patients  
[64] 

LAG-3 
Relatlimab 

(mAb) 
Nivolumab NCT03470922 40% treated patients increase OS [65] 

Promotes 

Treg 

inactivation 

GITR 

TRX518 

(mAb) 

Gembicatine 

Pembrolizumab 

Nivolumab 

NCT01239134 

NCT02628574 

NCT03861403 

Control disease: 

30–50% treated patients  

OS increases in 2.6 months  

[65] 

MK-1248 

(mAb) 
Pembrolizumab NCT02553499 

Control disease: 

47% treated patients 
[66] 

MEDI1873 

(FP) 
-- NCT02583165 

↑ IFN-γ and Granzyme  

Stable disease: 

42.5% treated patients  

[67] 

GWN323 

(mAb) 
Spartalizumab NCT02740270 

Control disease: 

34% treated patients  
[68] 

OX40 

Ivuxolimab 

(mAb) 
Utomilumab 

NCT02315066 

NCT03971409 

NCT03390296 

Control disease: 

34% treated patients  

Stable disease for 4–6 months  

[69] 

GSK3174998 

(mAb) 
Pembrolizumab NCT02528357 

Control disease: 

23% treated patients 
[70] 

BMS-986178 

(mAb) 

Nivolumab 

Ipilimumab 

NCT02737475 

NCT03831295 

NCT02737475 

Control disease: 

73% treated patients  
[71] 

MEDI6469 

(mAb) 
-- 

NCT02559024 

NCT02205333 

NCT01862900 

82% treated patients increase OS [72] 

MOXR0916 

(mAb) 
-- 

NCT02410512 

NCT02219724 

NCT03029832 

Control disease: 

33% treated patients  
[73] 

MEDI0562 

(mAb) 

Nivolumab 

Pembrolizumab 

NCT03336606 

NCT02705482 

NCT02318394 

NCT03267589 

47% treated patients increase OS [74] 

OS, Overall Survival; mAb, Monoclonal Antibody; FP, Fusion Protein; ACT, Adoptive Cell Therapy; 

Control Disease encompasses patients who have achieved a complete response, a partial response, 

or a stable disease, all of which are defined according to the RECIST criteria (* p < 0.05; ** p < 0.001). 

↓: Reduce, ↑: Increase. 
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5. Conclusions 

Model-based quantitative pharmacology has demonstrated an important role in the 

development of new therapeutic molecules, providing information on doses and regi-

mens and also exploring different mechanisms involved in tumor progression and elimi-

nation. QSP models applied to IO allow for the elucidation of specific immune mecha-

nisms to better understand the biology of the disease, therapies, and individual immune 

profiles, with the aim of identifying different cancer types and patients to propose partic-

ular combinations to achieve an efficient antitumor response. 

This review presents a list of diverse computational mathematical models that exam-

ine the role of regulatory T cells as a crucial immune resistance mechanism, contributing 

to the failure of immunotherapy. In all models, both Treg and cytotoxic CD8+ T cells are 

included, either explicitly or implicitly, in the quantitative immune frameworks proposed 

for evaluating tumor growth based on the immune therapies tested in preclinical models. 

While QSP models have demonstrated their capacity to explore intriguing hypotheses, 

longitudinal preclinical and clinical data on pro- and antitumor cell subpopulations are 

indispensable for identifying the most plausible mechanisms involved in IO. Further-

more, new strategies for targeting Treg based on specific biomarkers involved in their 

activation status are emerging as promising therapies to enhance the antitumor immune 

response, thereby generating considerable interest in many of them. 

However, in order to individualize treatments and improve the efficacy of IO, QSP 

models face important challenges, such as the integration of data on tumor heterogeneity, 

the spatial localization of immune cells within the TME, the plasticity and activation status 

of immune cells, the identification of specific biomarkers, pro- and anti-inflammatory cy-

tokine levels, and others. This will require more refined preclinical and clinical trial de-

signs for longitudinal data collection and the application of new technologies. 

Supplementary Materials: The following supporting information can be downloaded at: 

https://www.mdpi.com/article/10.3390/pharmaceutics16111461/s1, Table S1: Classification of Treg 

cells based on the expression of biomarkers [75–77]. 
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