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––––––––– 

 

A mathematical model of RAFT polymerization processes is presented capable of 

predicting the full molecular weight distribution (MWD) through the use of probability 

generating functions (pgf). The bivariate distribution of the intermediate RAFT species 

is calculated. The model is able to work with the three kinetic mechanisms currently 

under discussion for explaining the observed behavior of this type of polymerization. 

For comparison purposes, the population balances were also solved by direct integration 

of the resulting equations. The results show that the pgf technique allows obtaining 

accurate solutions with very small computational times for systems of any average 

molecular weight. Spurious oscillations observed in the high molecular weight tail of 

the MWD can be easily disregarded. A sensitivity analysis over several of the kinetic 

constants is also performed, showing the effects of changing their values over several 

orders of magnitude. This analysis aims to showcase the enormous potential of the pgf 

technique for modeling and optimization of complex polymerization kinetics. 
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1. Introduction 

 

The production of polymers of narrow molecular weight distribution is now feasible 

under industrial conditions using reversible-deactivation radical polymerization, which 

is commonly known as controlled radical polymerization or CRP. In this 

polymerization, a fast initiation step is followed by the establishment of a dynamic 

equilibrium between propagating radicals and various dormant species that is shifted 

towards the dormant species. As a result, the number of active chains at any given 

moment is several orders of magnitude smaller than that of the dormant species. Since 

each active chain may add only a few monomers before becoming dormant again, all 

chains grow slowly at approximately the same speed. Another consequence is that the 

rate of termination reactions is extremely low, since it depends on the concentration of 

active chains. For that reason, the fraction of dead chains is very small, and the reaction 

is practically “living”. Unlike conventional living ionic polymerizations, CRP allows 

the production of unique materials without stringent purity restrictions,
[1]

 making this 

process interesting for industrial applications.  

The three most successful CRP approaches are nitroxide-mediated polymerization 

(NMP), atom transfer radical polymerization (ATRP) and reversible addition-

fragmentation chain transfer (RAFT). They differ in the type of agent used to establish 

the active-dormant species equilibrium and in the nature of this process. In this work we 
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focus on RAFT polymerization. This is one of the most versatile CRP techniques, 

highly effective in achieving the living behavior and compatible with a wide range of 

monomers.
[2, 3]

 It is possible to use it for controlling molecular weights, molecular 

weight distributions, and even complex molecular architectures such as block and 

hyperbranched copolymers.
[2, 4-7]

 On the down side, many RAFT transfer agents have 

limited commercial availability and low stability. In addition, some of them introduce 

end groups into the polymer that give it properties that could be undesirable for certain 

applications, such as color, smell or even toxicity. In those cases an extra step for 

removing them from the resin could be needed.
[8]

  

As already mentioned, the different variants of CRP rely on establishing equilibria 

between active and dormant chains through the addition of an agent that can deactivate 

active chains reversibly. RAFT polymerization differs from the other CRP techniques in 

that the control on the growth of the polymer chains is achieved by means of a 

degenerative chain transfer process, instead of reversibly capping active radicals with a 

trapping agent. The RAFT agent adds to a living radical to produce an intermediate 

radical. This species can then undergo -scission, either to liberate the living radical 

again or to produce a new living radical from the other end of the molecule. Any of 

these radicals continues the propagation reaction. The process rapidly converts the 

initial RAFT agent into a poly-RAFT agent, which in the addition reaction to living 

radicals generates a two-(polymeric) arm adduct. Eventually, the equilibrium is 

established between the addition and fragmentation reactions of the two-arm 

intermediate species. 

Even though RAFT polymerizations have been studied extensively
[2, 3, 9-16]

, there is an 

ongoing debate regarding particular aspects of the kinetic mechanism. It has been 

observed that for certain RAFT agents, such as dithiobenzoates and some 
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dithiocarbamates, there is rate retardation when the concentration of the RAFT agent is 

increased, as well as an induction period. This behavior is not expected for ordinary 

chain transfer agents.
[9, 17]

 Three main theories have been developed to explain the 

different experimental findings for these systems: 

 

Slow Fragmentation Theory (SF) 

Barner-Kowollik et al.
[18]

 proposed that the two-arm intermediate moiety is relatively 

stable and therefore fragments slowly, and that the termination reaction of this species is 

negligible. This theory predicts a large equilibrium constant for the active radical/two-

arm RAFT intermediate species reaction, which is consistent with theoretical and 

experimental findings. However, a weak point of this theory is that it predicts 

concentrations for the two-arm adduct higher than the ones experimentally found.
[16, 19] 

 

Intermediate Radical Termination Theory (IRT) 

Monteiro and de Brouwer
[20]

 assumed that the two-arm adduct may cross-terminate with 

active radicals producing a dead three-arm star polymer. As a result of this reaction, the 

predicted equilibrium constant is much lower than in the SF model, while the overall 

radical concentration is consistent with experimental measurements. However, the IRT 

theory also predicts a population of three-arm star polymers that is much higher than the 

one experimentally detected.
[16, 19]

 

 

Intermediate Radical Termination with Oligomers Theory (IRTO) 

More recently, Konkolewicz et al.
[2]

 developed a theory that considers that the RAFT 

adduct may cross-terminate, but only with short active radicals up to two monomers in 

length. The equilibrium constant and two-arm species concentrations, as well as the 
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amount of three-arm star polymers predicted by this theory, are all in agreement with 

experimental studies. The authors argue that long chain radicals diffuse slowly and 

experience steric hindrance around the radical center, rendering them unable to cross-

terminate with the adduct.
[16, 19]

 

 

There are other proposed mechanisms in the literature. For instance, Buback et al.
[12]

 

proposed that the star product resulting from cross-termination could undergo secondary 

reactions with propagating radicals. This “missing step” theory could account for the 

low concentration of star polymer in RAFT. Moreover, Meiser and Buback
[21]

 recently 

isolated some of the expected by-products of these so called “missing steps.”  

An extensive review on the proposed mechanisms and causes of retardation in dithio-

benzoate-mediated RAFT systems has been developed by Moad,
[22]

 where more specific 

details of the kinetic discussion can be found.  

Interpretation of experimental data using the three main different theories (SF, IRT and 

IRTO) has led to values of rate constants that may differ in up to six orders of 

magnitude.
[23, 24]

 General agreement about the actual mechanism of RAFT 

polymerization is far from having been reached. Actually, active research is being 

carried out on the discrimination between RAFT kinetic theories. Recent works 

provided evidence that the IRT theory provides the best explanation for the rate 

retardation observed in polystyryl dithiobenzoate-mediated styrene polymerization.
[25]

 

On the other hand, Ting et al.
[26]

 provided experimental evidence that is consistent with 

the IRTO theory. In this context, comprehensive mathematical models may be a very 

important tool to aid in the discrimination between the competing theories. They may 

also be useful for the design of experiments, the optimization of the reaction and the 

scaling up of the polymerization process.  
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Several studies have addressed the modeling and simulation of RAFT systems based on 

the proposed mechanisms. Most of them involved the prediction of average properties 

using the method of moments. For instance, Zhang and Ray
[3, 27]

 developed a 

mathematical model that was employed in analyzing process development and design 

issues. Wang and Zhu
[28-30]

 carried out a comprehensive analysis of the kinetics and 

polymer chain properties. More recently, Ye and Schork
[31]

 used moment equations to 

develop a chain and sequence model suitable for optimizing the feeding policy in order 

to obtain a pre-specified polymer microstructure.  

Other authors developed models of RAFT processes capable of predicting the full 

MWD using the PREDICI commercial software.
[18, 32-34]

  In 2001, Barner-Kowollik et 

al.
[18]

 used this software for determining rate coefficients associated with the addition-

fragmentation equilibrium by careful modeling of the time-dependent evolution of 

experimental MWDs. Later on, Feldermann et al.
[32]

 carried out simulations of a RAFT 

polymerization showing results consistent with the SF theory. On the same path, 

Pallares et al.
[33]

 developed a mathematical model based on moment equations able to 

describe a complete mechanism that included the two-arm adduct cross-termination, 

thermal self-initiation of monomer and chain transfer reactions. The resulting 

mathematical model was solved using both FORTRAN and PREDICI commercial 

software, finding equivalent predictions. 

The version of PREDICI used by Pallares et al.
[33]

 required the use of two one 

dimensional (1D) polymer populations, a strategy whose accuracy has been 

questioned.
[35]

 Nevertheless, several authors have proved that this simplification could 

properly represent the kinetics and MWD of the propagating radicals and one arm 

dormant species.
[33, 36]

 However, the information on how the two arms of the RAFT 

adduct are interconnected is lost in the 1D PREDICI scheme which makes impossible 
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the obtainment of its full two dimensional (2D) MWD.
[37]

 It has been reported that a 

module with 2D arrays has been added to PREDICI to overcome this limitation.
[38] 

Using a different approach, Konkolewicz et al.
[2]

 modeled the full MWD of RAFT 

polymers according to the IRTO theory assuming a priori knowledge of the shape of the 

distribution. They found good agreement with experimental data. In a more recent 

work,
[39]

 they developed a simple mathematical model using assumptions such as linear 

dependency of molecular weight with conversion, in order to fit experimental values of 

conversion, molecular weight and polydispersity index (PDI) to validate the proposed 

mechanism.
 
Konkolewicz et al.

[19]
 have also simplified their first model so that the 

polymerization behavior depends on two parameters only. The simplified mathematical 

model showed good agreement with experimental MWD of several RAFT oligomers. 

Tobita
[24, 40]

 modeled average properties and the full MWD of RAFT polymers and 

studied the influence of particle size on polymerization rate in mini-emulsion systems, 

employing probabilistic methods and relying on simplifying assumptions. 

Both Konkolewicz
[2]

 and Tobita
[24]

 based their models on the fact that a living radical 

polymerization progresses by multiple uncapping-recapping events, and that chain 

growth only occurs between uncapping and recapping. Given that the probability of 

adding a monomeric unit during these events is small, a reasonable approximation of 

the distribution of radical lengths was used. Even though good agreement with 

experimental data was found, these simplifications can limit the potential of the 

mathematical model. 

Monte Carlo methods have also been used to model RAFT reactions. Prescott
[41]

 

developed a Monte Carlo model to determine the role of chain-length dependent 

termination in RAFT systems. Afterwards, Prescott et al.
[42]

 used this model to find 

ways to improve polymerization rates in RAFT emulsion polymerizations. Furthermore, 
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Chaffey-Millar et al.
[43]

 presented a novel, parallelized approach to Monte Carlo 

simulation able to deal with complex kinetic schemes while providing detailed 

information on polymer microstructure. They reported computing times shorter than 

those necessary when using PREDICI. 
 

Other authors have modeled rigorously the full MWD in RAFT processes by solving the 

complete set of population balances.
[33]

 Zapata-González et al.
[16]

 presented a 

comprehensive analysis of the full MWD and average properties for the three main 

kinetic mechanisms proposed in the literature using direct integration. The drawback of 

this approach is its high computational cost due to the large number of equations to be 

solved. By the use of the quasi-steady-state approximation, the authors reduced the 

stiffness of the system of equations. This approximation allowed shortening the time 

necessary to solve the differential algebraic equation (DAE) system. The difficulty in 

model development and execution time increases in the case of copolymerization 

processes and / or prediction of complex molecular architectures. 

In spite of these efforts, further improvement of RAFT models is still needed. A 

particular feature of RAFT systems that makes their modeling difficult is the bivariate 

nature of the MWD of the two-arm intermediate species. This is an adduct of two 

growing polymer chains, temporarily linked to the RAFT agent. The 2D treatment is the 

only way of knowing how the two arms are interlinked. Knowledge on the full MWD of 

the intermediate adduct could aid in analyzing the different proposed mechanisms for 

RAFT polymerization
[16]

 and accurately predict the behavior of the system in the case of 

side reactions involving the two-arm adduct.
[9]

 Zapata-González et al.
[37]

 claimed to 

obtain the full 2D MWD of the two-arm adduct radicals but only the 1D MWD is 

reported in their work. Taking into consideration that the 1D distribution is based on the 
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total length of the two-arm intermediate, the information of the length of each 

individual arm is lost. 

In previous works, a mathematical model of a RAFT polymerization system that 

follows the SF kinetics was developed.
[44]

 This mathematical model was capable of 

predicting not only the average properties but also the full MWD of the polymer by 

means of the probability generating function (pgf) transform. This technique allowed 

obtaining reliable outcomes with small computational resources.  

In this work, the previous model has been extended to simulate the RAFT 

polymerization according to either SF, IRT or IRTO kinetics. Comments on the 

computational efficiency and numerical behavior of the pgf technique are presented. 

Besides, prediction of the bivariate MWD of the intermediate two-arm adduct is 

reported. In addition, a sensitivity analysis of controversial rate constants was 

performed aiming at studying their influence on the model predictions and showcasing 

the pgf technique versatility. 

 

2. Methods 

 

2.1 Kinetic Mechanism 

The mathematical model is based on the kinetic mechanism indicated by equations 1-9. 

Please note that by setting appropriate values to the kinetic constants, it is possible to 

represent the three theories for explaining the RAFT phenomena that were discussed in 

the Introduction. 

Initiation: d
0I   2 R

f k
            (1) 

Propagation: p

+1R  M    R 0, ,n

k

n n            (2) 
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Pre equilibrium 

Addition: a1
0 0 0, ,R  TR    R TRn

k
n n    (3) 

Fragmentation: 
f1

0 , ,0 or 0,

                               

R T

  

R    TR  R

            0, ,

n p
k

q p q n n

n

 

 


 (4) 

Core equilibrium 

Addition: aR  TR    R T 0R , , 1, ,
k

n m n m n m      (5) 

Fragmentation: 
f , , or ,

                                   

R TR  

          0, ,

 T

1,

R

,

 Rn m q
k

p p q n m m n

n m

 

  




     (6) 

Termination by combination: tcR  R    P , 0, ,n m n m
k

n m         (7) 

Termination by disproportionation: tdR  R    P  P , 0, ,n m n m
k

n m        (8) 

Cross-termination:

 

c

IRT : 0, ,
the length of radical chain is

IRTO : 0,1,2

n m n+m+
k

ssR + R T n, m = 0,…,

s

s

R    P 

 




(9)  

The chemical species involved are: initiator (I), monomer (M), active radicals with n 

units of M (Rn), dormant (inactive) radicals with n units of M (TRn), intermediate 

(adduct) radicals with two arms of different length (RnTRm), and terminated (dead) 

polymer chains of length n (Pn). The chain transfer agent (CTA) is regarded as an 

inactive radical with 0 units of monomer (TR0). For simplicity, a single set of constants 

was used for both the pre-equilibrium and the core equilibrium (ka1 = ka, kf1 = kf). 

Nevertheless, applying the methodology using different sets of constants for the two 

equilibriums would be straightforward. 

Given the theoretical nature of this work, a set of typical values taken from the literature 

was used for each kinetic mechanism being considered. The values used as reference for 
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the kinetic parameters are shown in Table 1. Unless otherwise noted, those values are 

applicable to the three kinetic schemes.  

Table 1. Reference kinetic parameters.[16]  

Reaction Parameter Units 

Initiation f = 0.5 

kd = 0.036 

 

h
-1

 

Propagation kp = 3.6 x 10
6
 L·mol

-1
·h

-1
 

Addition ka = 3.6 x 10
9
 L ·mol

-1
·h

-1
 

Fragmentation SF theory: kf = 36 

IRT & IRTO theories: kf = 3.6 x 10
7
 

h
-1

 

h
-1

 

Termination by combination ktc = 3.6 x 10
10

 L·mol
-1

·h
-1

 

Termination by 

disproportionation 

ktd = 3.6 x 10
10

 L·mol
-1

·h
-1

 

Cross-termination SF theory: kc = 0 

IRT & IRTO theories: kc = 3.6 x 

10
10

 

L·mol
-1

·h
-1

 

L·mol 
-1

·h
-1

 

 

1.1. Modeling of Average Properties 

The mathematical model development is based on the population balances drawn from 

the kinetic mechanism. The well-known method of moments is used to transform these 

balances for modeling average molecular properties. The moments involved in the 

mathematical model are defined below: 

Moment of order a (a = 0, 1, 2) of active radicals: 

 
0

a
a n

n

n R




  (10) 

Moment of order a (a = 0, 1, 2) of dormant radicals of one arm: 
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 
0

I a
a n

n

n TR




  (11) 

Moment of order a,b (a,b = 0,0; 1,0; 0,1; 2,0; 1,1; 0,2) of two-arm adduct radicals 

considering the length of each arm: 

 ,

0 0

II a b
a b n m

n m

n m R TR
 

 

  (12) 

Moment of order a (a = 0, 1, 2) of adduct radicals considering their total length: 

 
0

II a
a n

n

n RTR




     (13) 

where n is the total chain length of the two-arm adduct. 

Partial moment of order 0 of two-arm adduct radicals: 

 0

0

II
n n s

s

d R TR




  (14) 

Moment of order a (a = 0, 1, 2) of dead polymer chains: 

 
0

a
a n

n

n P




   (15) 

The population balances are: 

Initiator:  

    d

d
I k I

dt
   (16)  

Monomer: 

    p 0

d
M k M

dt
   (17) 

Living radicals with n units of monomer (n = 0,..., ): 

           

   

  
 

1
d ,0 p 1 ,0 f 02

p a 0 tc td 0

c 0 ,0 ,1 ,2 theory,IRTO theory,IRT

2 1 II
n n n n n

I

nII
n n n

d
R f k I k M R k d

dt

k M k k k
R

k

  

 

     

   

   
 
    
 

 (18) 
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Dormant radicals of one arm with n units of monomer (n = 0,..., ): 

      1
a 0 f 02

II
n n n

d
TR k TR k d

dt
     (19) 

Two-arm adduct radicals with arms of length n and m (n, m = 0,..., ): 

            

      

f c 0 theory, IRT 0 1 2 theory, IRTO

a

n m n m

n m m n

d
R TR k k R R R R TR

dt

k R TR R TR

       

 

 (20)  

Intermediate (adduct) radicals with two arms and total length n (n = 0,..., ): 

            

   

f c 0 theory, IRT 0 1 2 theory, IRTO

a

0

n n

n

n i i

i

d
RTR k k R R R RTR

dt

k R TR

  





     

 
  (21) 

Partial moment of order zero of adduct radicals (n = 0,..., ): 

          

    

0 f c 0 theory, IRT 0 1 2 theory, IRTO 0

a 0 0

II II
n n

I
n n

d
d k k R R R d

dt

k TR R

    

 

     

 

 (22) 

Terminated (dead) polymer chains of length n (n = 0,..., ): 

               

    

1
td 0 tc c theory, IRT2

0 0

2

c theory, IRTO

0

n n

n n n i i n i i
i i

i n i
i

d
P k R k R R k R RTR

dt

k R RTR

 



 

 




     

   

 



 (23) 

In these equations, δtheory, theorytype is 1 if theory = theorytype and 0 otherwise. 

The moment equations are: 

Moment of order a (a = 0, 1, 2) of living radicals: 

             

      

d p c 0 0 1 2 theory, IRTO

0

1
f ,0 p a 0 tc td 0 c 0 theory, IRT2

2 0 0 1 2
a

a II a a a
a j

j

II I II
a a

ad
f k I k M k R R R

jdt

k k M k k k k

   

     



 
     

 

     


 (24) 

Moment of order a (a = 0, 1, 2) of dormant radicals of one arm: 
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   1
a 0 f ,02

I I II
a a a

d
k k

dt
       (25) 

Moment of order a,b (a,b = 0,0; 1,0; 0,1; 2,0; 1,1; 0,2) of two arms adduct radicals 

considering the length of each arm: 

          

 

, f c 0 theory, IRT 0 1 2 theory, IRTO ,

a

II II
a b a b

I I
a b b a

d
k k R R R

dt

k

    

   

     

 

 (26) 

Moment of order a (a = 0, 1, 2) of adduct radicals considering their total length: 

          f c 0 theory, IRT 0 1 2 theory, IRTO

a

0

II II
a a

a
I

a j j

j

d
k k R R R

dt

a
k

j

    

 



     

 
  

 


 (27) 

Moment of order a (a = 0, 1, 2) of dead polymer chains (Pn): 

   

      

1
td 0 tc c theory, IRT2

0 0

c 0 1 2 theory, IRTO

0

0 1 2

a a
II

a a a j j a j j

j j

a
j j j II

a j

j

a ad
k k k

j jdt

a
k R R R

j

       

 

 

 





     
       

     

   
    

   

 



 (28) 

 

1.2. Modeling the Full MWD 

The probability generating function (pgf) technique is employed to model the full 

MWD of the polymer. This technique consists in transforming the mass balances of 

polymeric species, characterized by the number of monomer units, to the pgf domain, 

producing as a result balances for the pgf transform of the MWD. Discrete points of the 

full MWD are recovered from the pgf domain by applying an appropriate numerical 

inversion technique.
[45, 46]

 It is important to point out that this method does not require 

any prior knowledge of the shape of the MWD, and can deal with complex kinetic 

mechanisms.  
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A combination of univariate
[46]

 and bivariate
[45]

 pgfs are applied to the population 

balances to model the MWD of the different polymeric species.  

The univariate pgf of order a (ϑ a= ϕa, 
I

a , II

a , χa) of any species Xn (Xn= Rn, TRn, 

(RTR)n, Pn) is defined as follows: 

 
 

0

nn a
a

an

X
z z n







   (29) 

where z is the dummy variable of the pgf and γa is the moment of order a of species Xn 

(γa= λa, 
I

a , II

a , εa). The bivariate pgf of order a,b (ψa,b) of species RnTRm is defined as 

follows: 

 
 

,

0 0 ,

,
n mn a m b

a b II
n m a b

R TR
z w z n w m



 

 

   (30) 

where z and w are the dummy variables of the pgf. In this work only pgf of order 0 will 

be employed. Univariate pgf transform is applied to the population balances of the 

species described by a univariate distribution (Rn, TRn, (RTR)n, Pn), and bivariate pgfs 

are used in the case of RnTRm. Details about the transformation process can be found 

elsewhere.
[47, 48]

 The corresponding pgf balance equations are shown below: 

Univariate pgf of order 0 of active radicals ( 0 ): 

               

       

          

0 0 d p 0 0 0 0 a 0 0 0

f 00 00 tc td 0 0 0

2
c 0 0 0 theory, IRT 0 1 2 theory, IRTO

2

1
,1

2

I

II II

II

d
z f k I k M z z z k z

dt

k z k k z

k z R z R z R

        

    

    

     

 
   
 

   

  (31) 

Univariate pgf of order 0 of dormant radicals of one arm (φ
I
0): 

        0 0 a 0 0 0 f 00 00

1
,1

2

I I I I II IId
z k z k z

dt
      

 
    

 
  (32) 
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Univariate pgf of order 0 of two-arm adduct radicals considering their total length 

(φ
II

0): 

           

             

0 0 a 0 0 0 0 f 0 0

c 0 0 0 theory, IRT 0 1 2 0 0 theory, IRTO

II II I I II II

II II II II

d
z k z z k z

dt

k z R R R z

       

      

 

   

 (33) 

Univariate pgf of order 0 of terminated polymer chains Pn (χ0): 

        

             

2

0 0 td 0 0 0 tc 0 0

2
c 0 0 0 0 theory, IRT 0 1 2 theory, IRTO

1

2

II II

d
z k z k z

dt

k z z R z R z R

      

     

 
   

 

   

  (34) 

Bivariate pgf of order 0 of adduct radicals considering the length of each arm (φ
II

00): 

              

  
  

         

00 00 a 0 0 0 0 0 0 0 0

0 00 00 theory, IRT

f 00 00 c

0 1 2 00 00 theory, IRTO

,

,
,

,

II II I I I I

II II

II II

II II

d
z w k w z w z

dt

z w
k z w k

R R R z w

         

   
 

  

  
 

 
 

   
   
 

 
 (35) 

It can be noted that Equation (31) and (32) depend on the bivariate pgf of the adduct 

radical evaluated at w = 1. Taking into account that from the pgf definition given in 

Equation (29)    0 1 1 1I w w     , applying this substitution into Equation (35) 

results in the expression shown in Equation (36). 

Bivariate pgf of order 0 of adduct radicals (φ
II

00) evaluated at w = 1: 

           

             

00 00 a 0 0 0 0 0 0 f 00 00

c 0 00 00 theory, IRT 0 1 2 00 00 theory, IRTO

,1 ,1

,1 ,1

II II I I I II II

II II II II

d
z k z z k z

dt

k z R R R z

         

      

   
 

     
 (36) 

Besides, the pgf of the chain length distribution of the combination of all polymer 

species is needed in order to obtain this distribution. This pgf is defined as shown in 

Equation (37). 

Univariate pgf of order zero of the overall polymer (Rn + TRn + (RTR)n + Pn) (Ω0): 
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 
       0 0 0 0 0 0 0 0

0

0 0 0 0

I I II II

I II

z z z z
z

       

   

  
 

  
  (37) 

Once these balances are solved the pgf are numerically inverted using appropriate 

numerical methods. Discrete points pertaining to the MWD are obtained as a result of 

this numerical inversion. Since the computation of each point is independent of any 

others, the accuracy of its prediction is unaffected by the number and location of the rest 

of the points. The number of points to be recovered must be set by the user considering 

that a large number will result in a smoother curve but a larger equation system. 

Additionally, in the case of univariate pgf inversion, the numerical method requires the 

user to specify a parameter N, which is the number of the terms of expansion of a 

polynomial.
[45]

 As with any polynomial expansion, N needs to be large enough to 

provide good accuracy in the calculation of MWD, but small enough to avoid producing 

excessive noise due to error propagation and unnecessary enlargement of  the system of 

equations. The same concept is extended to bivariate pgf inversion, for which two 

parameters, N1 and N2, need to be specified. The method for finding the optimal value 

of N has been reported elsewhere.
[49]

 As was shown in that work, the MWD recovered 

from the pgf tends to converge to the true MWD as N approaches its optimal value, due 

to the greater accuracy of the numerical inversion. Based on this fact, the optimum N is 

selected by systematically increasing this parameter until there is no appreciable 

difference between the corresponding recovered distributions for two consecutive 

values. Therefore, the selection is performed based only on the MWDs recovered with 

different values of N. This fact makes it unnecessary to have any previous knowledge of 

the distribution in order to use the pgf technique. 

Once the programmer sets the appropriate value of the parameters, the MWD is 

recovered by inverting the pgf transform without the need of any simplifying 
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assumptions or hypotheses. In addition, the mathematical model consists of a relatively 

small number of equations that can be solved in a reasonable time.  

All the simulations were performed in gPROMS (Process Systems Enterprise, Ltd.). 

This equation-oriented modeling environment provides advanced solvers for steady-

state and dynamic simulations or optimizations. In this work the proprietary solver 

DASOLV was used for the solution of mixed sets of differential and algebraic 

equations. DASOLV is based on variable time step/variable order backward 

differentiation formulae that has been proved to be efficient for a wide range of 

problems.
[50]

 A standard desktop computer was used with an Intel® Core™2 Quad 

Q8400 2.66 GHz processor and 8 GB of RAM memory. 

 

3. Results and Discussion  

 

3.1. Accuracy of the Pgf Technique 

In order to verify the reliability of the pgf technique, the MWDs predicted by the pgf 

model were compared with the ones resulting from the solution of the direct integration 

of the population balances. Since no simplifying assumptions were considered for the 

direct integration approach modeled in this work, the memory requirements to obtain 

the full bivariate MWD would be prohibitive on a standard desktop computer. 

Therefore, the comparison between the different approaches was performed only for the 

1D distribution. To this end, Equation (21) for the total length of the two-arm adduct 

was used when the mass balances were integrated. 

The MWDs obtained with the SF, IRT and IRTO theories are shown in Figure 1. The 

reference kinetic parameters shown in Table 1 were used. The same process conditions 
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were specified for all cases. For all the recovered 1D MWD reported in this work, 

values of N of 18 or 19 were found to be optimal. 

As previously reported, for these kinetic parameters the MWD predicted by the SF 

theory presents a bimodal shape.
[16, 51]

 The small kf of the SF theory causes the 

population of the intermediate adduct species to be significant, leading to the high 

molecular weight peak of the bimodal MWD. The other peak of the MWD corresponds 

to the population of one-arm dormant chains. Conversely, in the cases of the IRT and 

IRTO theories the fragmentation of the intermediate adduct is fast and the concentration 

of this species is low. Therefore, only one peak corresponding to the one-arm dormant 

chain is observed in the MWD. 

It can be seen that the points recovered by the pgf technique show good agreement with 

the curves corresponding to direct integration of the population balances. The pgf 

method was able to replicate properly both the width and the location of the MWD 

peaks, even for bimodal distributions, without any previous knowledge of the MWD 

shape. 
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Figure 1. MWDs of the overall polymer obtained with the pgf technique and by direct 

integration. Process conditions: [CTA]0 = 0.01 mol L
-1

; [I]0 = 0.005 mol L
-1

; [M]0 = 5 

mol L
-1

; 30% conversion. Solid lines = MWD by direct integration – Symbols = MWD 

points recovered with pgf technique. 

 

Oscillations caused by numerical noise can be observed in the high molecular weight 

tail of the MWDs predicted by the pgf method. These oscillations do not belong to the 

actual MWD, but they could be mistakenly taken as a second peak of a bimodal MWD. 

Fortunately, the false peaks can be disregarded when recalculating the MWD with 

different values of the parameter N. As an example of the convergence of the MWDs 

when N approaches its optimum value, three curves obtained with different values of N 

are shown in Figure 2. In particular, for the case shown in this figure, the optimal N was 

found to be 19 since the difference between the MWDs recovered with N=18 (not 

shown here) and N=19 was minimal. 

As was previously explained, in the region where the actual MWD lies, the recovered 

MWD curves for different values of N are similar as N approaches its optimum value. In 

the case shown in Figure 2, this is true up to a chain length of approximately 580 units. 
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At higher degrees of polymerization all the curves differ considerably from each other 

and show oscillations. This indicates that the oscillations are spurious, due to numerical 

noise propagation. In this way, numerical noise can be easily identified and neglected. 

In that case, the MWD is set to zero. This procedure was successfully used in previous 

works.
[52, 53]

 The same concept applies to the inversion of the bivariate pgf. 

The existence of this numerical error is a disadvantage of the pgf method since it makes 

it impossible to distinguish small shoulders on the high molecular weight tail. However, 

the main features of the MWD could still be properly predicted. Considering the small 

computational demands of this technique and the accuracy of its predictions, the error 

oscillations may be considered a minor drawback. 

 
Figure 2. MWDs of the overall polymer obtained with the pgf technique and different 

values of parameter N of the pgf inversion method. Process conditions: [CTA]0 = 0.01 

mol L
-1

; [I]0 = 0.005 mol L
-1

; [M]0 = 5 mol L
-1

; 30% conversion. MWD by direct 

integration – Symbols: MWD points recovered with pgf technique and different N 

parameters: N = 14 -  N = 17 -  N = 19. 

 

 

3.2. Efficiency of the pgf Technique  
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The differential algebraic equation (DAE) system associated with the pgf technique can 

be solved in a very short time. Several simulations were performed with different 

[CTA]0/[I]0 ratios, that lead to resins with diverse molecular weights. As a result the 

maximum chain length with nonzero values in the MWD varied. We call this the 

“maximum significant chain length.” Table 2 shows how the computational time 

required to obtain the MWD both by direct integration of mass balances and by the pgf 

technique changes when considering physical systems of different molecular weights. It 

can be observed that it takes less time to solve the mathematical model when using the 

pgf method. Results are presented for the SF theory but similar information is obtained 

for the IRT and IRTO theories. 

Table 2. CPU time required for computing the MWD by direct integration of the 

population balances and by the pgf method. 

Max. chain length pgf technique Direct integration 

250 6 s 10 s 

350 6 s 20 s 

500 5 s 36 s 

600 6 s 56 s 

800 6 s 88 s 

1100 6 s 193 s 

1850 6 s 408 s 

 

In order to obtain the MWD from direct integration of the mass balances, an equation 

for each chain length from 1 up to the maximum significant length must be posed. 

Therefore, the size of the resulting DAE system increases for higher molecular weight 

polymers. On the contrary, the size of the DAE system for the pgf model depends on the 

number of points of the distribution curve that are computed and on the value of 
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parameter N, but not on the molecular weight of the polymer. For that reason, the 

difference in simulation time becomes more relevant as the molecular weight of the 

system increases. For this to be true, neither the value of N nor the number of MWD 

points computed should change significantly, but this is typically the case. Moreover, 

variations of N from 10 to 19 do not represent more than 3 seconds in computational 

time increment. It could be argued that smoothness of the MWD curve could be lost if 

the number of computed points is not increased as the molecular weight of the system 

increases, but this is not the case for the operating conditions considered in this work, as 

shown in Figure 3 for three of the MWD reported in Table 2. The results shown in 

Table 2 and in Figure 3 for the pgf method were obtained computing 40 points of the 

MWD in all cases with N = 18 or 19. 

 
Figure 3. MWDs of the overall polymer obtained for the IRT theory kinetics with the 

pgf technique computing the same number of distribution points for systems of different 

molecular weight.  nmax = 350 units -  nmax = 600 units -  nmax = 1100 units. 

 

The MWDs observed in Figure 3 were obtained with the conditions shown in Table 3. 

Table 3. Conditions for runs presented in Figure 3. 
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nmax 

[M]0 

mol L
-1

 

[I]0 

mol L
-1

 
[CTA]0 

mol L
-1

 

Conversion 

% 

Reaction 

time 

h 

350 5 8 × 10
-3

 8 × 10
-3

 37.9 2.871 

600 5 1 × 10
-2

 8 × 10
-3

 58.9 4.871 

1100 5 2.5 × 10
-2

 6.5 × 10
-3

 90.4 7.871 

 

3.3. Bivariate MWD of the Two-Arm Adduct 

The intermediate two-arm adduct RnTRm is described by a two-dimensional distribution 

accounting for the chain lengths of each of its arms. A noteworthy feature of the 

mathematical model presented in this work is that it is able to provide a rigorous 

prediction of the full bivariate MWD of this intermediate. For this purpose, Equation 

(35) corresponding to the bivariate pgf of the two-arm adduct was used. It should be 

mentioned that the obtainment of the 2D MWD with the direct integration approach was 

prohibitive in terms of computational cost. Therefore, the obtained bivariate MWD are 

drawn only with the points recovered from the pgf balances. The numerical noise 

presented in the bivariate distribution was discarded as previously explained for the 1D 

distribution. 

Figure 4 shows the MWD corresponding to the two-arm adduct for the SF theory. 

Process conditions are indicated in the figure caption. In this case, the optimum values 

of parameter N were found to be N1 = N2 = 10. This 2D distribution shows a notorious 

symmetry. It can be seen that the cross-sectional curves in planes n=c (or m=c), where c 

is a constant, have similar shapes for the various possible c values. In fact, it can be 

verified that these curves differ only in a proportionality factor. Additionally, cross-

sectional curves in planes perpendicular to the m-axis are analogous to the ones in 

planes perpendicular to the n-axis, and the maximum of the bivariate distribution is at 
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n = m =210. These facts are consistent with the distributions of the two arms being 

independent of each other (i.e. [RnTRm] = f(n,m) =f1(n)·f2(m)), and the individual 

distributions of each arm being the same (f1(n)≈f2(m)). This is an expected result since 

any of the arms of the adduct experiences identical probabilities for any event of the 

reaction mechanism. Symmetry with respect to the line m = n is also observed, which is 

logical since RnTRm is the same moiety as RmTRn. Equivalent results are observed for 

different operating conditions and for the other two RAFT kinetic mechanisms. Another 

example may be found in the Supporting Information. 
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Figure 4. Bivariate MWD of the intermediate adduct obtained with the pgf technique 

for SF theory kinetics. Process conditions: [CTA]0 = 0.005 mol L
-1

; [I]0 = 0.005 mol L
-1

; 

[M]0 = 5 mol L
-1

; 30% conversion. 

 

3.4. Sensitivity analysis 
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As shown previously, the pgf technique is a reliable and efficient method for obtaining 

the MWD of RAFT polymers. Therefore, a sensitivity study on rate constants was 

performed using this method aiming at showcasing its versatility. The MWD shown 

from now on are drawn from the recovered points of the pgf, with removal of the 

numerical error oscillations. For all cases, the optimal N parameters were found to be 

either 18 or 19. A generic monomeric unit with molecular weight of 100 g mol
-1

 was 

considered. 

The effect of changes in rate constants was evaluated at two different process 

conditions, shown in Table 4.  

Table 4. Common conditions for simulations. 

Condition 1: Condition 2: 

[M]0 = 5 mol L
-1

 [M]0 = 5 mol L
-1

 

[CTA]0 = 5 x 10
-3

 mol L
-1

 [CTA]0 = 1 x 10
-2

 mol L
-1

 

[I]0 = 5 x 10
-3

 mol·L
-1

 [I]0 = 5 x 10
-3

 mol·L
-1

 

Final conversion = 30% Final conversion = 30% 

 

Fragmentation Rate Constant (kf) in the SF Theory 

The SF theory assumes that the retardation effect observed in RAFT processes is due to 

the slow fragmentation of the two-arm adduct. Therefore, it leads to fragmentation rate 

constants much lower than the ones used for the IRT or IRTO theories. It turns out that 

an accurate value of this rate constant is very important in the SF theory. For the rate 

constants considered in this work the equilibrium constant (Keq = kf/ka) is equal to 10
-8

. 

This small value leads to a bimodal behavior of the distribution. Figure 5 shows the 

resulting MWD of the overall polymer species when the reference value of kf in the SF 

theory is changed in ±50%. The weight fractions of one-arm dormant (TR) and two-arm 
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adduct (RTR) molecules are reported in the figure pointing to their corresponding 

peaks. Taking into consideration that the only species present are TR, RTR, propagating 

radicals and terminated polymer, and that the fraction of propagating radicals is in the 

order of 10
-6

, the weight fraction of terminated polymer may be calculated from the 

information in the figure.   

For the two reaction conditions shown in this figure, it can be seen that when increasing 

kf the height of the second peaks decreases and the one of the first peak increases. This 

is expected and was already reported by other authors.
[16]

 A higher kf would indicate a 

faster fragmentation of the two-arm adduct which would cause a larger concentration of 

one-arm dormant chains. 

As expected, for each of the conditions shown in Figure 5, the number average 

molecular weight is the same for all values of kf ( Mn  ~ 29800 g mol
-1

 when [CTA]0 = 5 

× 10
-3

 mol L
-1

, and Mn  ~ 15000 g mol
-1

 for [CTA]0 =1 × 10
-2

 mol L
-1

). This is so 

because the number of reacted monomers does not vary (equal conversion), nor does the 

total number of chains, which is equal to the initial concentration of transfer agent 

according to the SF theory. However, it can be observed in Figure 5 that the chain 

lengths of the populations of both one-arm dormant chains and intermediate two-arm 

adduct are larger for higher kf. This fact can be explained as a redistribution of the same 

number of reacted monomers in a larger proportion of shorter chains (one arm dormant 

chains), with respect to the longer intermediate adduct (twice the length of the one arm 

moiety). The number average molecular weight remains the same because the number 

of shorter chains is larger. Note that this analysis would not have been possible without 

knowledge of the full MWD. 

It can also be seen from the times required to reach the 30% conversion (Rx time), that 

kf also influences the polymerization rate. Higher values of this rate constant increase 
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the rate of reaction, since more active radicals are released that can propagate with 

monomers. This is expected and has been reported by other authors.
[16, 34]

 

 
Figure 5. Effect changing the fragmentation constant kf by 50% on the MWD of the 

overall polymer and polymerization rate according to the SF kinetics. 
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a) [CTA]0= 5 × 10
-3

 mol L
-1

: 1.5 × kf ref (Rx time = 17.3 h) kf ref  (Rx time = 

20.7 h) 0.5 × kf ref  (Rx time = 27.8 h). 

b) [CTA]0= 1 × 10
-2

 mol L
-1

: 1.5 × kf ref (Rx time = 27.7 h) kf ref  (Rx time = 

34.2 h) 0.5 × kf ref  (Rx time = 49.8 h). 

 

The features mentioned above are observed for each of both reaction conditions. 

Differences between them can be found in the polymerization rate and the molecular 

weight range. For the higher CTA content, polymerization rate and molecular weights 

are lower. This is a typical behavior of RAFT systems and has been reported 

elsewhere.
[24, 39, 51]

 In addition, the proportion of one-arm dormant chains with respect to 

the intermediate adduct is higher.  

In all of these cases the chain growth is well controlled given that bimolecular 

termination is reduced to a minimum. As a result the fraction of dead polymer is less 

than 1%, and all chains grow at the same speed on average, resulting in very low 

polydispersity indexes (between 1.14 and 1.18). 

The effect of more significant changes in kf on the MWD and polymerization rate, of 

two orders of magnitude in the reference value of this kinetic constant, is shown in 

Figure 6. It should be mentioned that the same behavior described before with respect to 

MWD and reaction rate is observed in this figure. In the extreme case of increasing kf 

by a factor of 100, the Keq ceases being so small and the growth of the TR peak and the 

reduction of the RTR peak leads to a monomodal MWD. The small weight fractions of 

RTR reported in Figure 6 are imperceptible as a peak in the MWD curves. These 

distributions are similar to the ones that are obtained by the IRT theory with the 

reference rate constants, which were included in the figure for the sake of comparison. 

This result is expected since when the fragmentation constant increases so significantly, 

the “slow fragmentation” ceases being slow, and only a small percentage of chains are 

in the form of the two arms adduct. This is so even though the values of kf of the SF and 

IRT theories still differ by 4 orders of magnitude. 
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It is interesting to note what happens when the same constant is diminished by a factor 

of 100. For the lower [CTA]0, the height of the TR peak decreases so much with respect 

to the one corresponding to RTR chains, that is overlapped by the RTR peak and the 

resulting MWD is also unimodal. On the other hand, for the higher [CTA]0 the MWD 

remains bimodal because the content of TR chains is larger.  
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Figure 6. Effect of changing the fragmentation constant kf by two orders of magnitude 

on the MWD of the overall polymer and the polymerization rate according to the SF 

kinetics.  

a) [CTA]0= 5 × 10
-3

 mol L
-1

:  IRT theory kf ref  100 × kf ref (Rx time = 2.9 h) 

kf ref  (Rx time = 20.7 h) 0.01 × kf ref  (Rx time = 103.3 h). 

b) [CTA]0= 1 × 10
-2

 mol L
-1

:  IRT theory kf ref  100 × kf ref (Rx time = 3.8 h) 

kf ref  (Rx time = 34.2 h) 0.01 × kf ref  (Rx time = 1027.5 h). 

 

 
 

 

 

Fragmentation Rate Constant (kf) and Cross-Termination Rate Constant (kc) in 

the IRT and IRTO Theories 

The IRT and IRTO theories consider that the fragmentation reaction of the intermediate 

two-arm adduct is fast, and incorporate a cross-termination reaction between the adduct 

and active radicals. Figure 7 and 8 show mathematical model outputs for changes in 

kinetic constants of these reactions within ±2 orders of magnitude with respect to their 

reference values in the IRT theory. Unlike the SF theory, substantial changes are 

noticeable only when kf is reduced in 2 orders of magnitude or kc is increased in the 

same amount. This suggests that there is a threshold value for this constants beyond 

which changes in their values are not very significant. 
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Figure 7. Effect of the cross-termination constant kc on the MWD of the overall 

polymer and the polymerization rate according to the IRT theory. 

a) [CTA]0= 5 × 10
-3

 mol L
-1

:  100 × kc ref (Rx time = 15.27 h)  1.5 × kc ref 

(Rx time = 2.68 h) kc ref  (Rx time = 2.48 h)  0.5 × kc ref  (Rx time = 2.26 

h)  0.01 × kc ref  (Rx time = 2.02 h). 

b) [CTA]0= 1 × 10
-2

 mol L
-1

:  100 × kc ref (Rx time = 23.46 h)  1.5 × kc ref 

(Rx time = 3.22 h) kc ref  (Rx time = 2.87 h)  0.5 × kc ref  (Rx time = 2.48 

h)  0.01 × kc ref  (Rx time = 2.03 h). 
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Figure 8. Effect of the fragmentation constant kf on the MWD of the overall polymer 

and the polymerization rate according to the IRT theory. 

a) [CTA]0= 5 × 10
-3

 mol L
-1

:  100 × kf ref (Rx time = 2.02 h)  1.5 × kf ref (Rx 

time = 2.33 h) kf ref  (Rx time = 2.48 h)  0.5 × kf ref  (Rx time = 2.87 h)  

 0.01 × kf ref  (Rx time = 15.28 h). 

b) [CTA]0= 1 × 10
-2

 mol L
-1

:  100 × kf ref (Rx time = 2.03 h)  1.5 × kf ref (Rx 

time = 2.62 h) kf ref  (Rx time = 2.87 h)  0.5 × kf ref  (Rx time = 3.53 h)  
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 0.01 × kf ref  (Rx time = 23.47 h). 

 

 

In both cases, variations in the system outputs can be attributed to the higher probability 

that the two-arm adduct cross-terminates with active radicals. 

It can be seen from the reaction times required to achieve the 30% conversion shown in 

Figure 7, that when the cross-termination rate constant is increased the polymerization 

rate decreases. This is due to the reduction in the concentration of active radicals 

because of the faster termination reaction with the two-arm intermediate adduct. The 

fraction of terminated polymer rises because of a higher concentration of the three-arm 

stars, product of the cross-termination reaction. 

Figure 8 shows that an analogous effect to the increase in kc in 2 orders of magnitude is 

observed when the fragmentation rate constant is reduced in the same proportion. In this 

case, cross-termination competes favorably with fragmentation, and a large amount of 

three-arm polymer is produced at the expense of a negligible amount of RTR. Actually, 

the effect of an increase in kc or a decrease in kf on the population of chains is very 

similar. To illustrate this point, Figure 9 shows the evolution with conversion of the 

one-arm dormant chains (TR), linear terminated chains (P), and three-arm star 

terminated chains (star P). Please recall that P molecules are the result of the 

termination reaction between active radicals as shown in Equation (7) and (8). For the 

sake of clarity, only the curves corresponding to kref, 0.01 × kf ref, and 100 × kc ref are 

shown. It can be seen that the curves corresponding to the increase in kc overlap with the 

ones corresponding to the decrease in kf. Besides, it can be noticed that the three-arm 

star polymer constitute nearly all the dead polymer chains in the reaction medium for 

the highest kc or the lowest kf values.  
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Figure 9. Comparison of the number fraction of the dead polymer species when kc is 

increased or kf is diminished in 2 orders of magnitude with respect to the reference 

value. 100 × kc ref - TR  100 × kc ref - star P  100 × kc ref – P kref - TR 

kref - star P kref - P 0.01 × kf ref - TR  0.01 × kf ref - star P  0.01 × kf 

ref - P  

 

On the other hand, changes in kf or kc do not affect significantly the predicted MWD or 

the polymerization rate when using the IRTO theory. It was verified that the MWD does 

not vary perceptibly even when rate constants varying in 4 orders of magnitude were 

used for [CTA]0 = 5×10
-3

 mol·L
-1

 or [CTA]0 =1×10
-2

 mol·L
-1

. Examples are shown in 

the Supporting Information.  

The influence of kf and kc observed for the IRT theory is not observed in the IRTO 

theory because only oligomeric radicals, with very low concentration in the reaction 

medium, take place in the cross-termination reaction. 

 

4. Conclusions 
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A mathematical model was presented that may successfully simulate the RAFT 

polymerization according to either the SF, IRT or IRTO kinetics making use of the pgf 

transform technique. The model allows obtaining the full MWD accurately using small 

computational resources regardless of the molecular weight of the product. No previous 

knowledge of the shape of the distribution is required. Spurious oscillations are 

observed in the high molecular weight tail of the MWD that can be easily recognized 

and discarded. It is shown in this work that this minor drawback may be 

counterbalanced by the multiple advantages of the pgf technique. The bivariate 

distribution corresponding to the two-arm intermediate adduct is also obtained. This 

distribution allows getting insights into the characteristics of this species. 

A sensitivity analysis was performed on several of the kinetic constants to study the 

behavior of the system, showing that the pgf technique is a valuable tool for modeling 

and studying many complex kinetic mechanisms. The results agreed with those reported 

in the existing literature,
[16, 34]

 and showed that the value of the fragmentation constant kf 

is critical for the SF theory. For the IRT theory, both the fragmentation constant kf and 

cross-termination constant kc are important, but there is a threshold value beyond which 

the model becomes insensitive to further changes. The IRTO theory showed little 

sensitivity to the values of both rate constants. 

 

Nomenclature 

 

   f   initiator efficiency 

 I  concentration of initiator 

ik   kinetic constant of generic reaction i 
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 M  concentration of monomer 

iMn   number average molecular weight of generic species i 

MWD  weight average molecular weight distribution 

 nP   concentration of terminated polymer with n units of M 

 nR  concentration of radical chain with n units of M 

 n sR TR  concentration of two-arm adduct (intermediate radical) with n units of M in 

one branch and s units in the other branch 

 
n

RTR 
   concentration of two-arm adduct with total length of n units of M 

 nTR  concentration of dormant radical of one arm with n units of M 

w Second dummy variable for pgf 

z First dummy variable for pgf 

 

Greek Symbols 

 

,n a   Kronecker delta 

I
a  ath order moment of one-arm dormant 

II
a  ath, bth order moment of two-arm adduct considering its total length 

,
II
a b  ath, bth order moment of two-arm adduct considering each branch length 

0
II

nd  Parcial moment of the two-arm intermediate adduct 

a  ath order moment of macroradical chain 

a  ath order moment of terminated copolymer 
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 0 z  0th order probability generating function of radical chain 

 0
I z  0th order pgf of dormant chain of one-arm 

 0
II z  0th order pgf of two–arm intermediate adduct 

 00 ,II z w  0th order bivariate pgf of two-arm adduct radicals 

 00 ,1II z  0th order bivariate pgf of two-arm adduct radicals evaluated at w = 1 

 0 z  0th order pgf of terminated polymer 

 0 z  0th order pgf of the overall polymer 
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Bivariate MWD of the intermediate adduct obtained with the pgf technique for IRT 

theory kinetics. Process conditions: [CTA]0 = 0.01 mol L
-1

; [I]0 = 0.005 mol L
-1

; 

[M]0 = 5 mol L
-1

; 30% conversion. 
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Effect of the fragmentation constant kf and of the cross-termination constant kc on the 

MWD of the overall polymer and the polymerization rate according to the IRTO theory 

for [CTA]0 = 5 x 10
-3

 mol L
-1

. 

a) Variation of kf:  100 x kf ref (Rx time = 2.02 h)  1.5 x kf ref (Rx time = 2.02 

h) kf ref  (Rx time = 2.02 h)  0.5 x kf ref  (Rx time = 2.03 h)  

 0.01 x kf ref  (Rx time = 2.24 h). 

b) Variation of kc:  100 x kc ref (Rx time = 2.23 h)  1.5 x kc ref (Rx time = 

2.03 h) kc ref  (Rx time = 2.02 h)  0.5 x kc ref  (Rx time = 2.02 h)  

 0.01 x kc ref  (Rx time = 2.02 h). 
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Figure Captions 

 

Figure 1. MWDs of the overall polymer obtained with the pgf technique and by direct 

integration. Process conditions: [CTA]0 = 0.01 mol L
-1

; [I]0 = 0.005 mol L
-1

; [M]0 = 5 

mol L
-1

; 30% conversion. Solid lines = MWD by direct integration – Symbols = MWD 

points recovered with pgf technique. 
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Figure 2. MWDs of the overall polymer obtained with the pgf technique and different 

values of parameter N of the pgf inversion method. Process conditions: [CTA]0 = 0.01 

mol L
-1

; [I]0 = 0.005 mol L
-1

; [M]0 = 5 mol L
-1

; 30% conversion. MWD by direct 

integration – Symbols: MWD points recovered with pgf technique and different N 

parameters: N = 14 -  N = 17 -  N = 19. 

Figure 3. MWDs of the overall polymer obtained for the IRT theory kinetics with the 

pgf technique computing the same number of distribution points for systems of different 

molecular weight.  nmax = 350 units -  nmax = 600 units -  nmax = 1100 units. 

Figure 4. Bivariate MWD of the intermediate adduct obtained with the pgf technique 

for SF theory kinetics. Process conditions: [CTA]0 = 0.005 mol L
-1

; [I]0 = 0.005 mol L
-1

; 

[M]0 = 5 mol L
-1

; 30% conversion. 

Figure 5. Effect changing the fragmentation constant kf by 50% on the MWD of the 

overall polymer and polymerization rate according to the SF kinetics. 

c) [CTA]0= 5 × 10
-3

 mol L
-1

: 1.5 × kf ref (Rx time = 17.3 h) kf ref  (Rx time = 

20.7 h) 0.5 × kf ref  (Rx time = 27.8 h). 

d) [CTA]0= 1 × 10
-2

 mol L
-1

: 1.5 × kf ref (Rx time = 27.7 h) kf ref  (Rx time = 

34.2 h) 0.5 × kf ref  (Rx time = 49.8 h). 

Figure 6. Effect of changing the fragmentation constant kf by two orders of magnitude 

on the MWD of the overall polymer and the polymerization rate according to the SF 

kinetics.  

c) [CTA]0= 5 × 10
-3

 mol L
-1

:  IRT theory kf ref  100 × kf ref (Rx time = 2.9 h) 

kf ref  (Rx time = 20.7 h) 0.01 × kf ref  (Rx time = 103.3 h). 

d) [CTA]0= 1 × 10
-2

 mol L
-1

:  IRT theory kf ref  100 × kf ref (Rx time = 3.8 h) 

kf ref  (Rx time = 34.2 h) 0.01 × kf ref  (Rx time = 1027.5 h). 
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Figure 7. Effect of the cross-termination constant kc on the MWD of the overall 

polymer and the polymerization rate according to the IRT theory. 

c) [CTA]0= 5 × 10
-3

 mol L
-1

:  100 × kc ref (Rx time = 15.27 h)  1.5 × kc ref 

(Rx time = 2.68 h) kc ref  (Rx time = 2.48 h)  0.5 × kc ref  (Rx time = 2.26 

h)  0.01 × kc ref  (Rx time = 2.02 h). 

d) [CTA]0= 1 × 10
-2

 mol L
-1

:  100 × kc ref (Rx time = 23.46 h)  1.5 × kc ref 

(Rx time = 3.22 h) kc ref  (Rx time = 2.87 h)  0.5 × kc ref  (Rx time = 2.48 

h)  0.01 × kc ref  (Rx time = 2.03 h). 

Figure 8. Effect of the fragmentation constant kf on the MWD of the overall polymer 

and the polymerization rate according to the IRT theory. 

c) [CTA]0= 5 × 10
-3

 mol L
-1

:  100 × kf ref (Rx time = 2.02 h)  1.5 × kf ref (Rx 

time = 2.33 h) kf ref  (Rx time = 2.48 h)  0.5 × kf ref  (Rx time = 2.87 h)  

 0.01 × kf ref  (Rx time = 15.28 h). 

d) [CTA]0= 1 × 10
-2

 mol L
-1

:  100 × kf ref (Rx time = 2.03 h)  1.5 × kf ref (Rx 

time = 2.62 h) kf ref  (Rx time = 2.87 h)  0.5 × kf ref  (Rx time = 3.53 h)  

 0.01 × kf ref  (Rx time = 23.47 h). 

Figure 9. Comparison of the number fraction of the dead polymer species when kc is 

increased or kf is diminished in 2 orders of magnitude with respect to the reference 

value. 100 × kc ref - TR  100 × kc ref - star P  100 × kc ref – P kref - TR 

kref - star P kref - P 0.01 × kf ref - TR  0.01 × kf ref - star P  0.01 × kf 

ref - P  
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