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bstract

A versatile approach for solving the design equations of dissolution/diffusion-controlled drug release from planar, cylindrical and spherical
atrix systems is provided, as an extension of a previously validated approach for planar geometry. The original set of differential mass balance

quations is cast into an equivalent system of integral equations by generating appropriate Green’s functions. Mathematical features common to
he matrix geometry, drug diffusion process, and boundary layer resistance are imbedded in Green’s functions, and thus separated from specific
spects arising from the drug dissolution process. This avoids repetitive computational effort when analyzing different drug dissolution rates.
he solution for the perfect sink condition is given as a special case. Another singular feature is related to the friendly manipulation of a broad
ariety of spatially non-uniform drug loading, including size distribution of solid drug particles. Composite matrices consisting of multi-layers
f equal diffusivity, including membranes, can be numerically simulated solving a concise dissolution–diffusion integral equation, coupled to
he integral equations governing the variable surface area of the dissolving drug particles. This is made within a unique framework and without
ntroducing extra difficulties or adjustments in the programming from one matrix architecture to another. The reliability of the approach presented
s ascertained by comparing the results with existing analytical and numerical solutions for special cases, and also by matching, as asymptotic

ase, the numerical solution of the diffusion equation with a continuum dissolution source described by the Noyes–Whitney equation. An iterative
outine, combined with the topological concept of homotopy, is used to improve the numerical performance. The versatility of the method to treat
ifferent architectures resembling multi-layer matrices of planar, cylindrical and spherical shapes is shown.

2007 Elsevier B.V. All rights reserved.
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. Introduction

A variety of mathematical and numerical approaches have
een proposed to provide some theoretical background for

esigning drug release matrix systems [1]. Major efforts have
ocused on the mathematical modeling of dispersed-drug
elease systems. Since its development in the early 1960s,
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iguchi’s model has been widely used to describe purely
iffusion-controlled release of dispersed drug [2]. Further
ontributions, including exact and approximate solutions
3–6], non-planar geometry [7–14], non-uniform drug loading
15–18], boundary layer resistances and finite external media
5,8,17,19–23], and composite structures [17,24,25], have
xtended the scope of Higuchi’s pioneering model. These and
ther contributions have furthered the mathematical description
f dispersed-drug systems with fast dissolution rates, but their
cope is unsuitable for examining the case of a slowly dissolving
rug since the instantaneous dissolution of drugs is a common

ssumption. By the mid-to-late 1970s, the implications of drug
issolution as a rate-limiting step began to be studied in order to
pproach constant release rates. However, because of the com-
lexity of solving the governing mass balance equations, few
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ig. 1. Schematic illustration of one-dimensional matrix systems of (a) planar, (b
ramework. Dissimilar dotted regions denote layers with different solid drug loa

ontributions have been reported for this relevant case [26–32].
he most accurate descriptions include a source term in the
iffusion equation to account for the drug dissolution process,
nd also allow for variable surface areas of the dissolving drug
articles [30–32]. The dissolution source term has been usually
escribed using a modified Noyes–Whitney type equation [33].
he models vary in their complexity, details, and solution
ethodology. Useful analytical short time approximations have

een derived to describe the fraction of released drug [31,32].
owever, the diffusion and Noyes–Whitney equations must be
umerically solved in a coupled form if an accurate description
f the full release process is desired.

Recently, a new approach for modeling the drug release from
lanar matrix systems containing slowly dissolving drugs has
een proposed [34]. A distinctive feature is related to the friendly
umerical manipulation of a broad variety of non-uniform drug
oading and particle size distributions. Different architectures of
wo-layer and three-layer laminate polymeric systems, includ-
ng empty layers resembling membranes, were easily solved
ithin a unique framework, irrespective of the release system

rchitecture. The reliability of the mathematical and numeri-
al procedures was ascertained by comparison of the simulation
esults with the experimental and numerical data existing in the
iterature, and also matching, as asymptotic case, the solution
f the diffusion equation with a continuum dissolution source
escribed by the Noyes–Whitney equation. Nevertheless, the
sefulness of this approach has still not been examined for the
heoretical analysis of other simple shapes, such as the cylindri-
al and spherical ones.

This contribution deals with the generalization of the

bove-referenced approach to planar, cylindrical and spheri-
al matrices. As the main result of this extended approach, a
oncise and general form of the dissolution–diffusion integral
quation is obtained for all three geometries. The numerical

2

u

ig. 2. (a) Three-dimensional schematic representation of spherical solid drug particl
he matrix. (b) Representation in the continuum framework.
drical, and (c) spherical geometry to be described within a unique mathematical

olution uses iterative solving routines combined with the topo-
ogical concept of homotopy in order to improve the numerical
erformance in comparison with that attainable using the stan-
ard iterative method. The versatility of the method to analyze
issolution-controlled release from single-layer and multi-layer
atrix devices is demonstrated for the three geometrical shapes.
comparative study of the drug release patterns is made for

ifferent matrix architectures.

. Mathematical model

To illustrate the points to be put forward by this contribu-
ion, matrix systems as those schematically shown in Fig. 1
ill be analyzed within a unique framework, irrespective of

he composed architecture. In the following analysis, all sim-
lifying assumptions are identical to those used for the planar
eometry [34]. Likewise, the dispersed-drug release device is
nvisaged as a primary matrix containing solid drug particles
ssembled on N cross-sectional areas symmetrically and arbi-
rarily located at ξ1, ξ2, . . ., ξN (see Fig. 2). By virtue of the
ontinuum framework, these symmetrical assemblies are inven-
oried in the governing mass balance equation as drug dissolution
ources. After a certain time, the exhaustion of particles begins
nd progresses from the outer boundary inwards the matrix,
ource by source, until they vanish. Release systems with drug
issolution sources evenly dispersed in the whole matrix are
easible to be approached as asymptotic case as N → ∞.

The meaning of the symbols to be used in the build-up of the
athematical model can be found in the section as nomenclature.
.1. Solutions for general boundary conditions

The following partial differential equation, describing drug
ndergoing diffusion in the 0 < ξ < 1 interval and dissolution at

es assembled on N cross-sectional areas arbitrarily located at ξ1, ξ2, and ξN into
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the eigenvalue problem for each geometrical shape can be found
elsewhere [35]. It is noticeable that the eigenvalues only depend
on the value of PeB, so that once they are calculated they simply
form a data file to be used for the numerical solution whichever

Table 1
Auxiliary problem defining of Green’s function and the associated eigenvalue
problem

Green’s function
∂
∂τ̄
G(ξ, τ; ξ̄, τ̄) + 1

ξ̄p
∂

∂ξ̄

(
ξ̄p ∂

∂ξ̄
G(ξ, τ; ξ̄, τ̄)

)
=

− 1
ξ̄p
δ(ξ − ξ̄)δ(τ − τ̄) in 0 < ξ̄ < 1, for τ > 0

∂

∂ξ̄
G(ξ, τ; ξ̄, τ̄) = 0 at ξ = 0, τ > 0

∂

∂ξ̄
G(ξ, τ; ξ̄, τ̄) + PeBG(ξ, τ; ξ̄, τ̄) = 0 at ξ = 1, τ > 0

G(ξ, τ; ξ̄, τ + ε) = 0 for ε > 0, in 0 < ξ̄ < 1, where ε is a small but not
zero positive number
M.I. Cabrera, R.J.A. Grau / Journa

oints ξ1, ξ2, . . ., ξN, is a generalization of the mass balance equa-
ion formerly used for the planar geometry to all three simple
eometries:

∂

∂τ
C(ξ, τ) − 1

ξp

∂

∂ξ

(
ξp
∂

∂ξ
C(ξ, τ)

)

=
N∑
n=1

1

ξp
δ(ξ − ξn)PeDσ(ξ)α(ξ, τ)[ 1 − C(ξ, τ)]

in 0 < ξ < 1, τ > 0 (1a)

∂

∂ξ
C(ξ, τ) = 0 at ξ = 0, τ > 0 (1b)

∂

∂ξ
C(ξ, τ) = −PeB[C(ξ, τ) − CB(τ)] at ξ = 1, τ > 0 (1c)

(ξ, τ) = C0(ξ) for τ = 0, in 0 ≤ ξ ≥ 1 (1d)

here exponent p depends on the geometry as follows:

=

⎧⎪⎨
⎪⎩

0 slab

1 cylinder

2 sphere

(1e)

The depletion rate of the dimensionless surface area of the
olid drug particlesα(ξn, τ), which are assumed to be spherical, is
overned by the following set of ordinary differential equations
ODEs):

d

dτ
α(ξn, τ) = −2PeD

Lc CS

r0
nρS

α(ξn, τ)1/2[1 − C(ξn, τ)]

for τ > 0, n = 1, 2, . . . , N (2a)

(ξn, τ) = 1 for τ = 0, n = 1, 2, . . . , N (2b)

hich must be solved jointly with the boundary value problem
iven by Eqs. (1a), (1b), (1c) and (1d).

The model solution must be performed by numerical meth-
ds. For the same reasons argued in the previous contribution, we
refer to cast the original differential equations into equivalent
ntegral equations to be numerically solved using an iteration
cheme. Eqs. (1a), (1b), (1c) and (1d) are transformed to a sin-
le integral equation as follows: (i) Eq. (1a) is integrated with ξp

s weight function and with Green’s functionG(ξ, τ; ξ̄, τ̄) as test
unction to be defined in the following steps; (ii) an appropriate
ifferential problem for Green’s function is defined in a way of
btaining a suitable form of the integral solution; (iii) Green’s

unction is identified by comparing the expression of the result-
ng integral solution with the corresponding generalized Fourier
xpansion; and finally, (iv) the associated eigenvalue problem is
olved for each geometry. Since the procedure is similar to that
pplied in our previous contribution [34], we need not present
etails of the mathematical steps and will write only the resulting
nal expressions:

E

O
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(ξ, τ) =
∫ 1

0
dξ̄ ξ̄pG(ξ, τ; ξ̄, 0)C0(ξ̄)

+PeB

∫ τ

0
dτ̄ G(ξ, τ; 1, τ̄)CB(τ̄)

+PeD

∫ τ

0
dτ̄

N∑
1

G(ξ, τ; ξn, τ̄)σ0(ξn)α(ξn, τ̄)

× [1 − C(ξn, τ̄)] for N = finite (3a)

nd

(ξ, τ) =
∫ 1

0
dξ̄ ξ̄pG(ξ, τ; ξ̄, 0)C0(ξ̄)

+PeB

∫ τ

0
dτ̄ G(ξ, τ; 1, τ̄)CB(τ̄)

+PeD

∫ τ

0
dτ̄

∫ 1

0
dξ̄ G(ξ, τ; ξ̄, τ̄)ϕ0(ξ̄)α(ξ̄, τ̄)

× [1 − C(ξ̄, τ̄)] for N → ∞ (3b)

here Green’s function is the following Fourier expansion:

(ξ, τ; ξ̄, τ̄) =
∞∑
0

exp[−β2
m(τ − τ̄)]ψ−1

m φm(ξ)φm(ξ̄)Θ(τ − τ̄)

(4)

Table 1 summarizes the auxiliary problem to be satisfied by
reen’s function and the associated eigenvalue problem. Table 2

esumes the eigenvalues βm, the eigenfunctions φm(ξ), and the
ormsΨm, to be used for the calculation of Green’s functions for
lanar, cylindrical and spherical geometries. The details to solve
igenvalue problem
1
ξp

d
dξ

(
ξp d

dξ φm(ξ)
)

+ β2
mφm(ξ) = 0 in 0 < ξ̄ < 1

d
dξ φm(ξ) = 0 at ξ = 0

d
dξ φm(ξ) + PeBφm(ξ) = 0 at ξ = 1

rthogonality condition∫ 1

0
dξ̄ ξ̄pφn(ξ̄)φm(ξ̄) = δnmψm, where δnm is the Kronecker delta
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Table 2
Solutions of the eigenvalue problem associated with Green’s function for the general boundary conditions given by Eqs. (1b) and (1c)

Form of the matrix p Eigenfunctions φm(ξ) Norm ψ−1
m Eigenvalues βm are real positive roots of

Planar 0 cosβmξ 2(β2
m + Pe2

B)/(β2
m + Pe2

B + PeB) −βm tanβm + PeB = 0

Cylindricala 1 J0(βmξ) (2/J2
0 (βm))(β2

m/(Pe
2
B + β2

m)) −βmJ1(βm) + PeBJ0(βm) = 0

S 1)2)/
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sive approximations:

C(ξn, τ)k+1 = F [C(ξn, τ)k] for n = 1, 2, . . . , N, τ > 0

(7a)

Table 3
Solutions of the eigenvalue problem associated with Green’s function for the
perfect sink condition

Form of the
matrix

p Eigenfunctions
φm(ξ)

Norm ψ−1
m Eigenvalues βm are real

and positive roots of

Planar 0 cosβmξ 2 βm = (2m + 1)π/2
a b 2 b b
pherical 2 (sinβmξ)/ξ 2(β2
m + (PeB −

a J0 and J1 are the Bessel functions of first kind of order zero and one, respec

he parameters characterizing the dissolution process. It should
e noted that σ0(ξn) is the initial overall surface area of the solid
rug at ξ = ξn per external surface area unit matrix, while ϕ0(ξ)
s the initial overall surface area of solid drug at ξ per volume
nit matrix (cm2 cm−3), as defined in nomenclature.

It is noteworthy that Eq. (3b), which arises from Eq. (3a) as
symptotic case as N → ∞, is precisely the solution of the diffu-
ion equation with the Noyes–Whitney equation as continuum
issolution source in the 0 < ξ < 1 interval (see Appendix A).
q. (3a) allows the treatment of spatially continuous or piece-
ise continuous loading of dissolved drug by setting C0(ξ),

ncluding discontinuous solid drug loading and arbitrary par-
icle size distributions by specifying σ0(ξn) and r0

n, as desired.
q. (3b) is suitable to analyze release systems with evenly and
rbitrarily dissolved and/or dispersed solid drug into the whole
atrix, according to C0(ξ) and/or ϕ0(ξ). These features render
great flexibility of both integral equations to handle different

rchitectures of release systems.
To complete the integral formulation of the mathemati-

al model, a straightforward integration of the set of ODEs
escribed by Eqs. (2a) and (2b) gives:

α(ξn, τ) = 1 − 2PeD
Lc CS

r0
nρS

∫ τ

0
dτ̄ α(ξn, τ̄)1/2[1 − C(ξn, τ̄)]

for n = 1, 2, . . . , N, τ > 0 (5a)

nd

α(ξ, τ) = 1 − 2PeD
LcCS

r0(ξ)ρS

∫ τ

0
dτ̄ α(ξ, τ̄)1/2[1 − C(ξ, τ̄)]

for N → ∞, τ > 0 (5b)

hich must be solved by coupling to Eqs. (3a) or (3b).

.2. Solutions for the perfect sink condition

The perfect sink condition is a simplifying assumption widely
sed in the modeling of drug release. To deal with this special
oundary condition, PeB = ∞ and CB = 0 must be settled into
he second integral term of Eqs. (3a) and (3b), but this is not
irectly possible. This drawback can be circumvented following
three-step procedure [35]: (i) PeBG(ξ, τ; 1, τ̄) is replaced by
∂G(ξ, τ; ξ̄, τ̄)/∂ξ̄ evaluated at ξ̄ = 1, as established by the outer
oundary condition in the auxiliary problem defining Green’s
unction (Table 1); (ii) Green’s function is taken as the solution of
hat auxiliary problem subjected toG(ξ, τ; 1, τ̄) = 0 as modified
oundary condition; and (iii) CB is assumed to be equal to zero
t all times.

C
S

r

a

(β2
m + (PeB − 1)2 + PeB − 1) βm cotβm + PeB − 1 = 0

.

After proceeding as aforementioned, Eqs. (3a) and (3b)
educe to:

(ξ, τ) =
∫ 1

0
dξ̄ ξ̄pG(ξ, τ; ξ̄, 0)C0(ξ̄)

+PeD

∫ τ

0
dτ̄

N∑
1

G(ξ, τ; ξ̄n, τ̄)σ0(ξn)α(ξn, τ̄)

× [1 − C(ξn, τ̄)] for N → finite (6a)

nd

(ξ, τ) =
∫ 1

0
dξ̄ ξ̄pG(ξ, τ; ξ̄, 0)C0(ξ̄)

+PeD

∫ τ

0
dτ̄

∫ 1

0
dξ̄ G(ξ, τ; ξ̄, τ̄)ϕ0(ξ̄)α(ξ̄, τ̄)

× [1 − C(ξ̄, τ̄)] for N → ∞ (6b)

hich are the respective solutions for the perfect sink condition.
able 3 summarizes the expressions for φm(ξ), βm, andΨm to be
sed for computing Green’s functions for all three geometries.

. Computational method

.1. Numerical algorithm

As reported in the previous contribution, the numerical
ethod proceeds at increasing values of time following an iter-

tion scheme according to the sequence [34]. Solution to the
ntegral equations is then being sought using Piccard’s succes-
ylindrical 1 J0(βmξ) 2/J1 (βm) J0(βm) = 0
pherical 2 (sinβmξ)/ξ 2 βm = mπ

a J0 and J1 are the Bessel functions of first kind of order zero and one,
espectively.
b β0 = 0 is also an eigenvalue, then the corresponding eigenfunction is φ0 = 1,
nd the norm ψ−1

m = 2.
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nd

(ξ, τ)k+1 = F [C(ξ, τ)k] for N → ∞, τ > 0 (7b)

here F represents the R.H.S. of Eqs. (3a), (3b), (6a) and (6b),
nd superscript k denotes kth iteration. This sequence converges
o the solution if the Lipzchitz condition is satisfied [36]. The
onvergence can be usually achieved for values of the param-
ters typically found in dissolution/diffusion-controlled drug
elease from planar matrices, but an unexpected numerical insta-
ility arises under certain conditions for non-planar geometry,
s shown below.

A significant improvement of the numerical performance was
eached combining the above iteration scheme with the homo-
opy method according to:

C(ξn, τ)k+1 = (1 − s)C(ξn, τ)k + sF [C(ξn, τ)k]

for n = 1, 2, . . . , N, τ > 0 (8a)

nd

C(ξ, τ)k+1 = (1 − s)C(ξ, τ)k + sF [C(ξ, τ)k] for N → ∞,

τ > 0 (8b)

here auxiliary parameter s is defined into the 0 ≤ s ≤ 1 interval
37–40]. The homotopy path begins with s = 0 and finishes with
= 1. Note that when s is unity, Eqs. (8a) and (8b) reduce to Eqs.
7a) and (7b), thus satisfying the original solution.

In order to illustrate the advantages of this refined numerical
rocedure, Fig. 3 shows the cumulative and rate profiles of drug
eleased from cylindrical and spherical matrices of two-layer
rchitecture for a case exhibiting the aforementioned instability.
or both geometries, numerical simulation based on the classical

cheme without homotopy gives divergent results at longer times
or the cylinder (black region) and the sphere (gray region). How-
ver, the convergence was always achieved using the iteration
cheme with homotopy (solid lines). This numerical refinement
as then used unless otherwise specified.

(
k
g
r
a

ig. 3. Cumulative and rate of drug release profiles, as a function of the dimension
lack and gray regions show divergent results resulting from the iteration scheme w

esults obtained using the iteration scheme combined with homotopy according to E
% (w/v) loaded into the inner layer: C0

outer = ϕ0
outer = 0, C0

inner = 1 and ϕ0
inner = 0.0

S = 5 mg cm−3; ρS = 1.4 g cm−3; PeB = 100; PeD = 1.
embrane Science 293 (2007) 1–14 5

.2. Numerical calculations

All calculations were performed using FORTRAN pro-
rammes in double precision arithmetic. Eigenvalues βm were
ound as positive roots of non-linear equations using Müller’s
ethod for the case of cylindrical geometry [41], and Brent’s
ethod for the planar and spherical geometries [42]. The Bessel

unctions of the first kind of order zero and order one were evalu-
ted using standard routines. It was numerically determined that
he first twenty eigenvalues are enough to accurately compute
reen’s functions. A simple equally spaced quadrature algo-

ithm based on the Newton 3/8 method was used to perform the
umerical integration [43]. The iterative processes were carried
ut until the relative errors of the calculated values were found
o be smaller than 10−4. The total number of grid points used
n the ξ- and τ-coordinates depended upon PeB and PeD values.
he higher are the values of the Peclet numbers, the greater the
eed for more refined grids. However, highly refined grids would
rohibitively demand computer memory space and running time.
he results obtained with different grid sizes were compared to

hose accepted as the exact solution, which was achieved with
00 grid points. After extensive numerical work, it was con-
luded that 100–150 grid points render a good agreement with
he exact solution.

.3. Numerical exploration

For all calculations presented herein, the effect of the rate-
imiting step on the release patterns was studied by varying
he PeD value from 0.1 (dissolution-controlled regime) to 1
dissolution/diffusion-controlled regime). Likewise, the effect
f the external mass transport resistance was analyzed by chang-
ng the PeB value from 10 (non-negligible resistance) to 100
negligible resistance). Diverse matrix systems were designed

eeping constant the surface area to volume ratio and in order to
ive approximately the same total drug release. Accordingly, that
atio was assumed to be equal 10, and the surface area 1 cm2, for
ll three geometries. Thus, the resulting half-thickness or radius

less time, for two-layer matrix systems of cylindrical and spherical geometry.
ithout homotopy according to Eqs. (7a) and (7b). Solid lines show convergent
qs. (8a) and (8b). The calculations were performed for a solid drug loading of
2; drug particle diameter of 5 �m; CB = 0; Lc = 0.1 cm; D = 1 × 10−8 cm2 s−1;
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was 0.1, 0.2, and 0.3 cm for the slab, the cylinder and the
phere, respectively. Note that the characteristic length Lc was
qual to 0.1 cm for the all three geometries. Solid drug load-
ngs ranging from 0 to 5% (w/v), and particle sizes from 1 to
0 �m in diameter, were examined. Since the solid drug parti-
les are assumed to be spherical, the initial solid drug surface
er unit cross-sectional area σ0(ξn) was readily determined from
he initial particle size and solid drug loading at each drug disso-
ution source. Both continuous and piecewise continuous drug
istributions were chosen to show how different architectures,
ncluding single-layer and multi-layer matrix systems, can be
eadily handled within this mathematical framework.

. Numerical results and discussion

Some examples illustrating the usefulness of the integral
ethod for solving the design equations of dissolution and

issolution/diffusion-controlled drug release from planar, cylin-
rical and spherical matrices of quite different architectures will
e presented. However, before doing so we will examine the
uality of the mathematical and numerical solutions.

.1. Comparison with previous analytical solutions

Unfortunately, no exact comparison formulas for testing the
ull descriptive potential of the derived integral equations are
vailable. Analytical solutions for the simplest case of uniformly
issolved drug into the whole matrix and perfect sink condition
re only feasible to be compared. To this special case, after inte-
ration, Eq. (6b) gives the following mathematical expressions
or the cumulative release:

Q(τ) = 1 − 8

π2

∞∑
n=0

1

(2n+ 1)2 exp

[
−(2n+ 1)2

(
π2

4

)
τ

]

for slab (p = 0) (9)

(τ) = 1 − 4
∞∑
n=1

1

β2
n

exp[−β2
nτ] for cylinder (p = 1) (10)

(τ) = 1 − 6

π2

∞∑
n=1

1

n2 exp[−n2π2τ] for sphere (p = 2) (11)

hich are those given by Crank [44].

.2. Comparison with previous analytical approximations

Analytical short-time approximations for the fraction of
eleased drug have been developed to facilitate the analysis of
he early stages of the release process of a slowly dissolving
rug from planar and spherical matrix systems [31,32]. Then,
he results from these integral equations were compared with

hose from such analytical approximations. The comparison was
erformed for uniform solid drug loading largely exceeding the
mount of dissolved drug and the sink condition. Fig. 4 depicts
he fraction of released drug as a function of the square root

s
u
a
b

f 5% (w/v) uniformly distributed into the single-matrix, drug particle diameter
f 10 �m; CB = 0; Lc = 0.1 cm; D = 1 × 10−8 cm2 s−1; CS = 5 mg cm−3; C0 = 1;

S = 1.4 g cm−3; PeB = 100; PeD = 1.

f the time. For both geometries, at earlier stages is evidenced
close match between the predictions from the integral equa-

ions presented in this work (solid lines) and the approximations
y Frenning (dash lines). As expected, the discrepancy between
he predictions increases at larger stages because the analytical
pproximations are no longer applicable.

.3. Numerical validation of special cases

It was numerically corroborated how by increasing N, the
olution given by general Eq. (3a) progressively approximates
hat provided by Eq. (6a). Simulations were performed for a con-
tant dosage of solid drug increasingly dispersed into the matrix
y decreasing the drug loading at the dissolution layer-sources,
n favor of an increased number of these. Fig. 5 shows the result-
ng drug profiles as a function of the ξ-coordinate, at various time
ntervals, for PeD = 1 and PeB = 100. Note that the profiles for
our (short dash line), seven (dash dot line), and 24 (dash line)
issolution layer-sources progressively match with those for a
ontinuum dissolution source, as expected. Undulating profiles
aving a maximum in the neighborhoods of each source are
btained when the solid drug loading is distributed into a small
umber of dissolution layer-sources. Physically, these undula-
ions are a consequence of the dissolution/diffusion-controlled
egime, the diffusion rate being quite slow for equalizing the con-
entration profiles of dissolved drug between the large diffusion
engths separating the dissolution layer-sources. Then, the pro-
les begin to be smoothed as soon as the dissolution sources are

uccessively exhausted from the outer boundary inwards. The
ndulations are smoothed when an increased number of sources
re settled, and obviously vanish when the dissolution sources
ecome continuum. For PeB = 100 and PeD = 0.1, whichever the
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Fig. 5. Drug concentration profiles as a function of the dimensionless spatial coordinate, at various time intervals, for a solid drug loading of 2% (w/v) spatially
d urces.
t e calc
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istributed into four (- - -), seven (–· –· –·), and 24 (– – –) dissolution layer-so
inuum dissolution source described by the Noyes–Whitney equation (—). Th

= 1 × 10−8 cm2 s−1; CS = 5 mg cm−3; C0 = 1; ρS = 1.4 g cm−3; PeB = 100; PeD

umber of dissolution layer-sources, all concentration profiles
not shown) are equally smoothed due to a diffusion rate faster
han the dissolution rate.

It was also numerically tested how by increasing the value
f PeB, and by setting CB = 0, the solution of general Eq. (3b)
pproaches that of Eq. (6b). Fig. 6 shows how the drug concen-
ration profiles calculated for PeB = 10 and CB = 0 (dash line)
iffer from those given for the perfect sink condition but the
esults match for PeB = 100 (dash dot line). Thus, for practical
urposes, the values obtained from Eq. (3b) for PeB ≥ 100 and
B = 0 can be used as the solution for the perfect sink condi-

ion.
The above-described numerical behaviors are congruous with

hose mathematically demonstrated as asymptotic cases. This
eature can be used as another indicator confirming the quality
f both mathematical and numerical solutions.

.4. Example calculations for single-layer matrix systems
Fig. 7 illustrates the rate of release, cumulative release, and
he surface area of the solid drug particles as a function of the
imensionless time for solid drug particles uniformly dispersed
nto single-layer matrix systems approaching the perfect sink

s
u
d
t

ig. 6. Drug concentration profiles as a function of the dimensionless spatial coordi
istributed into the single-matrix, for CB = 0; PeD = 1; PeB = 10 (- - -); PeB = 100 (–· –·
article diameter of 5 �m; Lc = 0.1 cm; D = 1 × 10−8 cm2 s−1; CS = 5 mg cm−3; C0 =
Solid lines correspond to the solution of the diffusion equation with a con-
ulations were performed for a particle diameter of 5 �m; CB = 0; Lc = 0.1 cm;

ondition, PeB = 100. Results for PeD = 1 and 0.1 are included
or the all three geometries. The dissimilar release patterns can be
scribed to the inherent geometrical parameters, as well as to the
eD value. Obviously, dependence of the matrix cross-sectional
rea with the diffusion length is zero for the slab (p = 0), lin-
ar for the cylinder (p = 1), and quadratic for the sphere (p = 2).
oreover, the ratio between the surface area and volume of

he matrix was assumed to be constant for all three geometries.
herefore, the greatest diffusion length in the sphere is three

imes greater than that of the slab. Likewise, this length in the
ylinder is two times greater than that of the slab. These coupled
eometrical effects determine that the planar matrix exhibits a
reater flux compared with those of non-planar geometry, that
f the sphere being the lowest one. Hence, the depletion rate of
he solid drug particles is the fastest into the slab and the slowest
ne into the sphere. Furthermore, the lower is the PeD value, the
lower the drug dissolution rate, and the higher the relative rate of
iffusion. For dissolution–diffusion-controlled regime, PeD = 1,
he slab exhibits a release pattern having three well-defined

tages. At the early stages, the release rate declines quickly
ntil the solid drug particles begin to vanish. Then, a slower
ecline takes place while the vanishing process advances from
he boundary inwards until the solid drug completely vanishes.

nate, at various time intervals, for a solid drug loading of 2% (w/v) uniformly
–·); and the perfect sink condition (—). The calculations were performed for a

1; ρS = 1.4 g cm−3.
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Fig. 7. Rate of drug release, cumulative release, and the surface area of the solid drug particles, as a function of time, for a solid drug loading of 2% (w/v) uniformly
d ticle
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istributed into a single-layer matrix. The calculations were performed for a par
0 = 1; ρS = 1.4 g cm−3; PeB = 100; PeD = 1 (—); PeD = 0.1 (– – –). ξ = 0.0 and 1
articles, respectively.

inally, a faster loss in release rate occurs until all remaining
issolved drug is released. This latter stage is neither exhib-
ted for the cylinder nor the sphere because none of the solid
rug particles can be exhausted within the simulated time. For
issolution-controlled regime, PeD = 0.1, burst effects display
horter periods and steeper profiles. This is due to the fact that
he slower drug dissolution process is unable to sustain the faster
iffusion release of the dissolved drug at the early stages. In this
ase, the depletion rates of the solid drug particles are quite
niform since the impulsive force for the dissolution process is
qualized into the matrix by the relative faster drug diffusion
ransport. Thus, after burst effects, a narrow size distribution
f dissolving solid drug particles yields reduced release rates
xhibiting plateau values. Note that for short times in the region
losest to the center of the matrix, the dimensionless surface
reas of the solid drug particles are larger for PeD = 1 than for
eD = 0.1. It appears to be a somewhat paradoxical result, but this
ehavior can be explained as follows. At the beginning of the
issolution/diffusion-controlled release, marked concentration
radients of dissolved drug are established into the matrix region
loser to the external boundary. This fact determines that the
issolution and exhaustion processes of the solid drug particles
egin and progress from the outer boundary inwards the matrix.

onsequently, the most external particles quickly decline, while

he most internal ones remain almost unchanged. On the other
and, under dissolution-controlled release the depletion rates
f the solid drug particles are quite uniform since the impul-

c
o

C

diameter of 5 �m; CB = 0; Lc = 0.1 cm; D = 1 × 10−8 cm2 s−1; CS = 5 mg cm−3;
note the inner and outer boundaries of the matrix region containing solid drug

ive force for the dissolution process is equalized into the whole
atrix as aforementioned. Therefore, the size of the dissolving

articles reduces more uniformly under this controlling regime
han for the dissolution/diffusion-controlled release. This behav-
or determines the presence of smaller particles for PeD = 0.1
han for PeD = 1, within the region closest to the center of the

atrix. The differences in size are more evident in the sphere
han in the cylinder due to the effect of the geometry on the drug
iffusion process.

Integral Eqs. (3b) and (6b) can also be used to predict the
ffects of spatially non-uniform drug loading on the drug release
atterns by setting the desired functionalities of C0(ξ) and ϕ0(ξ).
e will not present this type of analysis due to the practical limits

n loading a monolithic matrix with non-uniform drug distribu-
ion [24]. In preference, the flexibility of the integral method
or handling piecewise continuous distributions of drug resem-
ling multi-layer systems of the same matrix material will be
scertained since the technology for these systems is available.

.5. Example calculations for two-layer matrix systems

Composite matrices consisting of two layers of equal diffu-
ivity can be simulated by incorporating the following piecewise

ontinuous distributions of dissolved and undissolved drug into
ur framework:

0(ξ) = Θ(ξ∗ − ξ)C0
inner(ξ) +Θ(ξ − ξ∗)C0

outer(ξ) (12a)
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Fig. 8. Rate of drug release, cumulative release, and the surface area of the solid drug particles, as a function of time, for a solid drug loading dissimilarly distributed
in two layers of the same thickness, ξ* = 0.5. (a) All the drug loaded into the outer layer: C0

outer = 1 and ϕ0
outer = 0.02, C0

inner = ϕ0
inner = 0. ξ = 0.5 and 1.0 denote

the inner and outer boundaries of the matrix region containing solid drug particles, respectively. (b) All the drug loaded into the inner layer: C0
outer = ϕ0

outer = 0,
C0

inner = 1 and ϕ0
inner = 0.02. ξ = 0.0 and 0.5 denote the inner and outer boundaries of the matrix region containing solid drug particles, respectively. The calculations

were performed for solid drug loading of 2% (w/v); drug particle diameter = 5 �m; CB = 0; Lc = 0.1 cm; D = 1 × 10−8 cm2 s−1; CS = 5 mg cm−3; ρS = 1.4 g cm−3;
PeB = 100, PeD = 1 (—); PeD = 0.1 (– – –).
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0(ξ) = Θ(ξ∗ − ξ)ϕ0
inner(ξ) +Θ(ξ − ξ∗)ϕ0

outer(ξ) (12b)

hich, by virtue of the Heaviside unit step functionΘ, become:

0(ξ) =
{
C0

inner(ξ) 0 < ξ < ξ∗

C0
outer(ξ) ξ∗ < ξ < 1

(13a)

0(ξ) =
{
ϕ0

inner(ξ) 0 < ξ < ξ∗

ϕ0
outer(ξ) ξ∗ < ξ < 1

(13b)

here ξ* is the dimensionless thickness of the inner layer. Thus,
ifferent two-layer architectures can be undertaken by select-
ng C0

inner, C
0
outer, ϕ

0
inner, ϕ

0
outer, and ξ* in a way of simulating

he desired architecture. Some specific examples will be pre-
ented.

Fig. 8a and b depicts the rate of release, cumulative release,
nd the surface area of the solid drug particles as a function
f the dimensionless time for PeD = 1 and 0.1, PeB = 100, and
solid drug loading of 2% (w/v) dissimilarly distributed in

wo layers of equal thickness. When the drug is loaded into the
uter layer (Fig. 8a), keeping the inner one empty, the release
ate-controlling regime and geometry affect the drug release pat-

erns. The differences are clearly observable during the early
tages of the process. For the dissolution/diffusion-controlled
egime, PeD = 1, the release rate of drug from the slab steadily
iminishes until all solid drug particles rapidly vanish, yielding

i
s
o
d

ig. 9. Rate of drug release and cumulative release, as a function of time, for a t
ame thickness, ξ* = 0.5, C0

inner = C0
outer = 1 and ϕ0

inner = ϕ0
outer = 0.025. (a) Drug

articles of 1 and 10 �m in the inner and outer layers, respectively. The calculations w

S = 1.4 g cm−3; PeB = 100; PeD = 0.1.
embrane Science 293 (2007) 1–14

relatively short drug release period in comparison with the
on-planar geometries. However, after burst effects, a more sus-
ained release is attainable for the cylinder and the sphere, but
ithout approaching constant release rates. For the dissolution-

ontrolled regime, PeD = 0.1, more sustained and reduced release
ates are feasible of being achieved for all three geometries, but
lso the undesirable burst effect cannot be avoided. Conversely,
hen the drug is loaded into the inner layer only (Fig. 8b), act-

ng the outer one as a membrane, a time-delayed release occurs
nstead of the burst effect. This effect is due to the drug must
e transferred to the initially empty outer layer, and definitely
ncreases in the order slab < cylinder < sphere. The same remarks
lso apply to the decline of the drug release rate. Both features are
ttributable to the above-mentioned geometrical factors. Unlike
he case of drug loaded into the outer layer, sustained release
ates are also possible to be reached for PeD = 1, displaying
ow drug distribution changes significantly modify the release
attern. The plots displaying the depletion of the dimension-
ess surface area of solid drug particles give a further insight
o explain the release patterns. Note that the depletion rate of
rug particles depends on both their position into the matrix
nd the release rate-controlling regime. The greater is the prox-

mity to the outer boundary, the faster the depletion rate. The
lower is the drug dissolution rate, the lower the position effect
n the depletion rate. Consequently, the surface area of the
rug particles decreases uniformly throughout the matrix under

otal solid drug loading of 5% (w/v) equally distributed in two layers of the
particles of 10 and 1 �m in the inner and outer layers, respectively. (b) Drug
ere performed for CB = 0; Lc = 0.1 cm; D = 1 × 10−8 cm2 s−1; CS = 5 mg cm−3;
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issolution-controlled regime, resulting in sustained release pat-
erns increasing the order slab < cylinder < sphere. Otherwise,
nder dissolution/diffusion-controlled regime, the drug parti-
les undergo depletion at different rates depending on whether
hey are located into the matrix, yielding an invariable decline
f the release rate that hinders sustained drug release. It is again
oteworthy the effect of the geometry on the release rate, and
herefore over the matrix lifetime.

Fig. 9a and b illustrates how varying the drug particle size dis-
ribution changes the release pattern. Indeed, simulation results
re shown for dissolution-controlled drug release from symmet-
ic matrices having two layers of equal thickness, containing
he same solid drug loading but different drug particle sizes.

hen the inner and outer layers are initially loaded with par-
icles of 10 and 1 �m, respectively (Fig. 9a), the fine particles
nto the outer layer vanish long before those of larger size into
he inner layer. Thus, after burst effect, the release rate of drug
rom the slab slowly decreases until the complete exhaustion
f fine particles is achieved. Then, the release rate declines
till more while the large particles dissolve into the inner layer.
on-planar geometries exhibit slower release rates, delaying the
escribed transition and extending the drug release periods. Note
hat the release profiles are illustrated for different time scales

epending on the geometrical shapes. A significant improve-
ent of the release patterns can be achieved by reversing the

rug particle size distribution, i.e., drug particles of 1 �m are
ow located into the inner layer, and those of 10 �m into the

C

ig. 10. Rate of drug release and cumulative release, as a function of time, for a total
hickness. C0

inner = C0
middle = 1, C0

outer = 0, ϕ0
inner = ϕ0

middle = 0.025, ϕ0
outer = 0. (a)

utwards: 1, 10 and 0 �m. (b) Relative thickness: ξ* = 0.33 and ξ** = 0.66; particle
erformed for CB = 0; Lc = 0.1 cm; D = 1 × 10−8 cm2 s−1; CS = 5 mg cm−3; ρS = 1.4 g
embrane Science 293 (2007) 1–14 11

uter one (Fig. 9b). Although the burst effect remains, release
atterns are characterized by two regimes of nearly constant-rate
elease, displaying a definite break when the fine particles are
ntirely exhausted in the inner layer. This peculiar behavior is
ully illustrated for the planar and cylindrical geometries. How-
ver, the first stage is only observable for the spherical geometry
ecause the second one does not occur within the simulated
imes. From these results, two-layer matrix systems containing
uite different particle sizes in each layer, with those of larger
ize into the outer one, appear to be suitable for approaching two
uccessive drug release periods characterized by nearly constant
elease rates.

The effect of varying the relative thickness of the two layers
an be easily studied by setting ξ*, as desired. Instead of doing
his type of analysis, we have preferred to simulate other more
omplex matrix architectures.

.6. Example calculations for three-layer architectures

Composite matrices consisting of three-layers can be simu-
ated using the following piecewise continuous distributions of
rug:
0(ξ) = Θ(ξ∗ − ξ)C0
inner(ξ) +Θ(ξ − ξ∗)Θ(ξ∗∗ − ξ)C0

middle(ξ)

+Θ(ξ − ξ∗∗)C0
outer(ξ) (14a)

solid drug loading of 5% (w/v) spatially distributed in three-layers of different
Relative thickness: ξ* = 0.45 and ξ** = 0.90; particle diameter from the center
diameter from the center outwards: 1, 10 and 0 �m. The calculations were

cm−3; PeB = 100; PeD = 0.1.



1 l of M

ϕ

w

C

ϕ

w
a
E
e
m
F
w
o

l
a
t
F
e
n
f
b
t
d
o

n
t
a
A
t

5

e
p
a
m
c
s
c
c
e
a
I

(

(

(

(

(

A

N
t
(
A

A
o

2 M.I. Cabrera, R.J.A. Grau / Journa

0(ξ) = Θ(ξ∗ − ξ)ϕ0
inner(ξ) +Θ(ξ − ξ∗)Θ(ξ∗∗ − ξ)ϕ0

middle(ξ)

+Θ(ξ − ξ∗∗)ϕ0
outer(ξ) (14b)

hich reduce as follows:

0(ξ) =

⎧⎪⎨
⎪⎩
C0

inner(ξ) 0 < ξ < ξ∗

C0
middle(ξ) ξ∗ < ξ < ξ∗∗

C0
outer(ξ) ξ∗∗ < ξ < 1

(15a)

0(ξ) =

⎧⎪⎨
⎪⎩
ϕ0

inner(ξ) 0 < ξ < ξ∗

ϕ0
middle(ξ) ξ∗ < ξ < ξ∗∗

ϕ0
outer(ξ) ξ∗∗ < ξ < 1

(15b)

here ξ* is the dimensionless thickness of the inner layer,
nd ξ** – ξ* is the dimensionless thickness of the middle layer.
xample calculations are presented for inner and middle lay-
rs of identical thickness, and an empty outer layer, acting as
embrane of equal diffusivity to that of the other two layers.
or comparison purposes, the inner and middle layers are loaded
ith the same drug distribution as that used in the latter example
f two-layer systems.

Fig. 10a and b displays how varying the thickness of the outer
ayer acting as membrane improves the release pattern. Results
re illustrated for the case of drug particles of 1 �m located into
he inner layer, and those of 10 �m into the outer one, as in
ig. 9b. The presence of the empty membrane diminishes or
rases the burst effect, but the release pattern of further stages is
ot substantially modified with respect to those shown in Fig. 9b,
or all three geometries. Indeed, a significant decrease of the
urst effect is obtained by including a membrane of relative
hickness 0.10 (ξ* = 0.45 and ξ** = 0.90), Fig. 10a, and a time-
elayed release takes place for an increased relative thickness
f 0.34 (ξ* = 0.33 and ξ** = 0.66), Fig. 10b.

The results so far presented demonstrate the effective-
ess of this extended approach for the simulation of single-,
wo-, and three-layer matrix systems of planar, cylindrical,
nd spherical shapes containing arbitrary drug distributions.
nalogous simulations can be done for any multi-layer archi-

ecture.

. Conclusions

A generalized integral method (IM) for solving the design
quations of dissolution/diffusion-controlled drug release from
lanar, cylindrical and spherical matrices has been provided,
s an extension of a previously validated approach for planar
atrices. The reliability of the approach was ascertained by

omparing the results with existing analytical and numerical
olutions for special cases, and also by matching, as asymptotic
ase, the numerical solution of the diffusion equation with a

ontinuum dissolution source described by the Noyes–Whitney
quation. The solution for the usual perfect sink condition was
lso obtained as special case. Some of the characteristics of the
M are as follows: w
embrane Science 293 (2007) 1–14

1) The IM is suitable for handling spatially non-uniform drug
distributions of both dissolved and undissolved drug, includ-
ing piecewise continuous distributions, and arbitrary drug
particle size distributions.

2) The IM is effective for modeling dissolution and
dissolution–diffusion drug release because the associated
eigenvalue problems for all three geometries do not depend
on the value of the PeD, so that once eigenvalues are cal-
culated for a given PeB they become a result irrespective
of whichever ratio between the dissolution and diffusion
rates. While obvious, the usual solution for the perfect sink
condition does not depend on the value of PeB.

3) The IM is versatile for modeling symmetric multi-
layer matrix systems of planar, cylindrical, and spherical
geometries, within a unique framework and without
introducing extra difficulties or adjustments in the program-
ming from one matrix architecture to another. A unique
dissolution–diffusion integral equation, coupled to the inte-
gral equations governing the variable surface area of the
dissolving solid drug particles, must be solved using as well-
established subroutines the corresponding eigenvalues and
eigenfunctions data files to each geometry.

4) The IM has proved suitable to devise a numerical solution
based on iteration schemes combined with the homotopy
method for the improvement of the numerical performance,
especially for cylindrical and spherical geometries. The con-
vergence of the iteration procedure can be achieved for a
wide range of parameters having practical importance.

5) The IM requires some training for solving numerically inte-
gral equations, the use of very refined homotopy paths would
be excessively time consuming, and the treatment of multi-
layer matrices is limited to layers of equal diffusivity.
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ppendix A. Derivation of Eq. (3b) as asymptotic case
f Eq. (3a) as N → ∞

Rearranging the third integral term of Eq. (3a) as follows:

PeD

∫ τ

0
dτ̄

N∑
1

G(ξ, τ; ξn, τ̄)σ0(ξn)α(ξn, τ̄)[1 − C(ξn, τ̄)]

= PeD

∫ τ

0
dτ̄

N∑
1

ξpn �ξnG(ξ, τ; ξn, τ̄)
σ0(ξn)

ξ
p
n �ξn

α(ξn, τ̄)
×[1 − C(ξn, τ̄)] (A.1)

here �ξn is a subinterval of centre ξn and length 1/N.
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PeD Peclet number defined as the ratio between
the diffusion and dissolution characteristic times
(=kDLc/D)

Q cumulative release
rn radius of the solid drug particles at ξn (�m)
s auxiliary parameter into the homotopy method
t time (s)
V matrix volume (cm3)
x spatial coordinate (cm)

Greek symbols
αn dimensionless surface area of solid drug particle

at ξn (= an/a
0
n)

βm mth eigenvalue defined in Tables 2 and 3
δ Dirac delta function (cm−1)
δnm Kronecker delta
Θ Heaviside step function
ϕ0(ξ) initial overall surface area of the solid drug at ξ

per volume unit matrix (cm2 cm−3) (=Na0/V)
ξ dimensionless spatial coordinate (=x/Lc)
ρs density of the solid drug (g cm−3)
σ0(ξn) initial overall surface area of the solid drug at

ξ = ξn per external surface area unit matrix (=
M.I. Cabrera, R.J.A. Grau / Journa

Taking the limit as N → ∞, the R.H.S. of Eq. (A.1) becomes:

lim
N→∞PeD

∫ τ

0
dτ̄

N∑
1

ξpn �ξnG(ξ, τ; ξn, τ̄)
σ0(ξn)

ξ
p
n �ξn

α(ξn, τ̄)

× [1 − C(ξn, τ̄)]

= PeD

∫ τ

0
dτ̄

∫ 1

0
dξ̄ ξ̄pG(ξ, τ; ξ̄, τ̄)ϕ0(ξ̄)α(ξ̄, τ̄)

× [1 − C(ξ̄, τ̄)] (A.2)

here ϕ0 is the initial surface area of solid drug particles per
nit volume of matrix at position ξ, and α is the dimensionless
urface area of the particles at position ξ and time τ.

Combining Eqs. (A.1) and (A.2), we obtain:

PeD

∫ τ

0
dτ̄

∞∑
1

G(ξ, τ; ξn, τ̄)σ0(ξn)α(ξn, τ̄)[1 − C(ξn, τ̄)]

= PeD

∫ τ

0
dτ̄

∫ 1

0
dξ̄ ξ̄pG(ξ, τ; ξ̄, τ̄)ϕ0(ξ̄)α(ξ̄, τ̄)

× [1 − C(ξ̄, τ̄)] (A.3)

ubstituting Eq. (A.3) into Eq. (3a), as N → ∞, the resulting

xpression gives Eq. (3b), which is precisely the integral equa-
ion that would be obtained by applying the integral method
o the diffusion equation with the Noyes–Whitney equation as
ontinuum dissolution source in the 0 < ξ < 1 interval.

Nomenclature

a area of a solid drug particle at time t
(cm2 particle−1)

Ae external matrix cross-sectional area (cm2)
C dimensionless concentration (=Ĉ/CS)
Ĉ concentration of drug dissolved in the matrix

(g cm−3)
CB bulk concentration of drug (g cm−3)
CS saturation concentration of the drug in the matrix

(g cm−3)
D drug effective diffusivity (cm2 s−1)
G Green’s function
kB external mass transfer coefficient (cm s−1)
kD dissolution rate constant of the solid drug particle

(cm s−1)
L half-thickness or radius of the matrix (cm)
Lc characteristic length (cm) (=VA−1 = L/(p + 1))
N number of solid drug particles dispersed into the

matrix
Nn number of solid drug particles at the drug disso-

lution source at (ξ = ξn)
p geometric parameter defined in Eq. (1e)
PeB Peclet number defined as the ratio between the dif-

fusion and bulk mass transfer characteristic times
(=kBLc/D)

ξ
p
nNna

0
n/A

e)
τ dimensionless time (=tD/(Lc)2)
φm mth eigenfunction defined in Tables 2 and 3
ψm norm of the mth eigenfuntions defined in

Tables 2 and 3

Superscripts
0 initial condition

R

[

* or ** interlayer boundary
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