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In this work, we analyze the formation of Faraday waves on the free surface of a liquid layer covered by an
insoluble surfactant. The linear analysis that is conducted includes the effects of both surface elasticity and
surface viscosity. The critical force needed to form the waves, as well as the critical wavenumber, are determined
within a large range of values of the dimensionless parameters representing the physicochemical properties
of the surfactant. The examination of carefully selected hydrodynamic variables provides further insight into
the behavior of the system.

1. Introduction

This paper is concerned with the conditions for the onset of
Faraday waves at the interface of a liquid layer covered with a
surface active agent that confers viscous and elastic properties
to the free surface. The phenomenon of Faraday waves refers
to the standing waves formed on the free surface of a horizontal
liquid layer undergoing a oscillatory vertical acceleration,
produced by the vibration of the container.1 When the driving
acceleration ranges from weak to moderate, several types of
wave patterns, such as rolls, squares, or hexagons, are
exhibited.2-4 However, if the vibration of the container is strong
enough, the rupture of the free surface and the ejection of liquid
drops into the gas phase can be observed.5,6

The analysis of this physical phenomenon has practical
interest in spray formation where a controlled/predictable drop
size and flow rate are usually desired. Particular applications
include mass-transfer processes, air humidification, ultrasonic
nebulizers, and fuel injection systems. The study of this problem
is also of interest in fundamental topics with wide applications
in chemical engineering such as nonlinear dynamics and pattern
formation.

The presence of surface-active agents is ubiquitous at most
gas/liquid interfaces, either as additives or as uncontrolled
contaminants. Whatever the case, these adsorbed substances
have a pronounced effect on the interfacial balance of stresses,
and this, in turn, affects the bulk flow. In fact, when a surfactant
is adsorbed at the interface, the forces acting on the free surface
include surface tension gradients and viscous resistance to shear
and dilatation.

The objective of this work is to investigate the influence of
the physicochemical properties of an insoluble surfactant
adsorbed at the liquid surface on the critical conditions for the
formation of Faraday waves. The elastic effects of a surface-
active agent on Faraday waves were examined in the literature
experimentally, analytically, and numerically. Henderson7 mea-
sured the damping rates, natural frequencies, and amplitudes
of the fundamental axisymmetric wave formed in a cylindrical
container partially filled with water covered with an insoluble

film of a surfactant; she also compared the experimental values
with existing theoretical models. Decent8 analyzed the nonlinear
damping of Faraday waves using an evolution equation; in his
study, he considered the surface boundary layer produced by
an inextensible surface film. Kumar and Matar9,10 presented a
full linear stability analysis of the problem valid for liquids of
arbitrary depth and viscosity, when the effect of the lateral
boundaries is negligible. Matar et al.11 examined the evolution
of a thin liquid layer, clean or covered by a surfactant film, in
the nonlinear regime. To this end, they numerically solved the
set of nonlinear differential equations previously derived by
them12 using lubrication theory. Ubal et al.13 presented a
numerical analysis of the full nonlinear problem in which the
conditions for the onset of the instability and the evolution of
the interfacial variables, as a function of the elastic number,
are determined and discussed. The results of the studies
previously mentioned indicate that the critical forcing accelera-
tion needed to induce standing waves in a contaminated surface
is larger than that in a clean surface, although the critical
vibration force shows a nonmonotonical dependence on the
elasticity of the adsorbed film. In addition, all the studies reveal
the existence of a temporal phase shift between the evolution
of the surface elevation and surfactant concentration, which
changes with the elastic number in a similar way to the applied
force.

Surface viscous effects have received considerably less
attention in the literature; Ubal et al.14 numerically investigated
the role of surface viscosity on the onset of the Faraday
instability, assuming that the interfacial properties are indepen-
dent of the surfactant concentration, i.e., neglecting the effect
of the surface elasticity. These authors found that the minimum
force required to form the waves increases with surface viscosity
in a sigmoidal fashion; that is, the threshold acceleration is
almost constant at very low and very high values of that
interfacial property.

In the present work, the combined influence of surface
elasticity and viscosity on the onset conditions for the develop-
ment of standing waves is examined. To this end, the linear
stability analysis presented by Kumar and Matar9 is extended
to account for interfacial viscosity. We also show that the
evaluation of carefully selected interfacial properties is useful
for a better understanding of the phenomena. The paper is
organized as follows. In the next section, the mathematical
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formulation of the problem is presented. In section 3, the results
for a wide range of values of the parameters are shown. Finally,
some concluding remarks are given in section 4.

2. Mathematical Formulation

2.1. Governing Equations.Let us consider a liquid layer of
depthH0 lying on a horizontal solid surface. The density (F)
and viscosity (µ) of the fluid are constant, and the air above it
is regarded as inviscid. A monolayer of an insoluble surfactant
is adsorbed at the gas/liquid interface and is responsible for the
viscous and elastic properties exhibited by the free surface. The
system is subjected to a vertical periodic motion; depending on
its angular frequency (ω) and amplitude (a0), this vibration can
set the liquid in motion and lead to the formation of surface
waves. Therefore, the dynamics of the fluid in the bulk is
governed by the Navier-Stokes and continuity equations, which,
in a coordinate system moving with the unperturbed interface
(see Figure 1), are written as follows:

wherea is the specific body force which, in the noninertial frame
of reference selected, is equivalent to a modulated gravitational
acceleration (a ) a0ω2 cos(ωt)k).

On the bottom surface, the no-slip boundary condition applies:

Because of the fact that the liquid/air interface is a material
surface, the usual form of the kinematic condition is imposed:

where u and V are thex- and y-components of the velocity
vector, respectively, andh(t,x,y) is the deviation of the free
surface shape from the flat configuration at rest. Stresses at the
interface are counterbalanced by surface traction; that is,15,16

wheren is the external unit normal to the interface, andT and
TS are the bulk and surface stress tensors, respectively.
Surfactants adsorbed at the interface are responsible for the
viscous and elastic properties exhibited by the free surface. We
assume that the interface is a Newtonian surface; hence, the
surface stress tensor is given by the Boussinesq-Scriven
equation:17

In eq 6,σ is the surface tension;κS andµS are the dilatational
and shear viscosity coefficients, respectively;IS ) I - nn is
the surface identity tensor;v0 is the interfacial velocity (v0 )
V0st + V0nn, with t being a unit vector tangential to the free
surface); and∇S ) IS‚∇ is the surface gradient operator.

The surface tension and the surface viscosity coefficients are
dependent on the concentration of the solute adsorbed at the
interface (FS); because of the fact that this work involves the
linear stability of the system, linear equations of state suffice
to describe the variations of these interfacial properties with
the surfactant concentration. Thus, we have

whereF0
S is the concentration of surfactant at equilibrium (i.e.,

at the flat interface);σ0, µ0
S, andκ0

S are the surface tension and
the coefficients of shear and dilatational viscosity evaluated at
F0

S. The subscript in the operator (∂/∂FS)0 indicates that the
derivative is computed at equilibrium. To complete the formula-
tion of the problem, a mass balance for the surfactant adsorbed
at the interface is needed; for an insoluble solute, that balance
is18

whereDS is the surfactant surface diffusion coefficient,∇S
2 the

surface Laplacian operator (∇S
2 ) ∇S‚∇S), and ∂/∂t|n a time

derivative following the motion of the free surface along its
normal direction.

2.2. Scaling and Linearization. Before performing the
linearization process, a proper dimensionless formulation of the
problem is convenient. To this end, the characteristic scales
chosen are 1/ω for time, lC ) g/ω2 + (σ/Fω2)1/3 for length,lCω
for velocity, F0

S for surfactant concentration, andFa0ω2lC for
pressure. To selectlC, we considered the well-known fact that
the wavelength of Faraday waves diminishes as the external
frequency is augmented: at low frequencies, typical wavelengths
are of the order ofg/ω2, whereas at high frequencies, they are
of the order of [σ/(Fω2)]1/3. Therefore, the aforementioned choice
for lC is suitable at high (capillary waves), low (gravity waves),
and intermediate frequencies.

The dimensionless governing equations then are linearized
for small perturbations of the equilibrium state; that is,v ) 0,
p ) -Fz[g - a0ω2 cos(ωt)], h(t,x,y) ) 0, andFS ) F0

S. After
some algebraic manipulation (similar to that employed in ref
9), the following set of equations results:

Figure 1. Sketch of the domain and coordinate system adopted.
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In the aforementioned expressions, dimensionless variables are
represented by the same symbols as the corresponding dimen-
sional ones, with the exception of the dimensionless concentra-
tion of surfactant, which is defined asγ ) FS/F0

S. Also, w is the
z-component of the velocity, and∇H and∇H

2 are the gradient
and Laplacian operators in thex-y plane, respectively (∇H )
(ii + jj )‚∇ and∇H

2 ) ∇ H‚∇H). The dimensionless parameters
appearing in eqs 11-18 are the Reynolds number (Re) FωlC2/
µ), the capillary number (Ca ) µωlC/σ0), the Bond number (B
) lC2Fg/σ0), the shear and dilatational Boussinesq numbers (Boµ

) µ0
S/lCµ and Boκ ) κ0

S/lCµ), the Marangoni number (Ma )
â/Ca, whereâ ) -(F0

S/σ0)(∂σ/∂FS)0 is the elastic number), the
Péclet number (PeS ) ωlC2/DS), the ratio between the forced
and gravity accelerations (F ) a0ω2/g), the dimensionless depth
of the liquid layer (zP ) -H0/lC), and the dimensionless
amplitude of the vibration (A ) a0/lC ) BF/ReCa). Equations
16 and 17 are the linear forms of the normal and tangential
components of the surface traction, respectively. A careful
inspection of these two expressions reveals that they are
independent of local variations of the surfactant concentration,
when the elasticity number is negligible.

2.3. Solution of the Linear Problem. The original set of
variables of the problem can be reduced to a smaller one (w, h,
and γ), by eliminating p, u, and V by means of the usual
algebraic procedure.19 Because we are considering the formation
of standing waves on the surface of a liquid layer that extends
infinitely in the x-y plane, the solution can be expressed in
terms of normal modes of the form exp(i k‚x), wherek ) kxi
+ kyj is the wave vector. Moreover, because the system is forced
with a 2π-period excitation and a periodic solution is expected,
Floquet theory can be applied; therefore, the time evolution of
the variables can be expressed as a linear combination of time-
periodic modes of the form exp[(s + iδ)t] exp(int), with (s +
iδ) being the Floquet exponent:s is the growth rate, andδ is
equal to 0 or1/2 for the harmonic and subharmonic solutions,
respectively. We then can write

With an algebraic procedure similar to that applied by Kumar
and Matar,9 the following recursion relationship can be obtained:

where

The definition of the dummy variable DENO is given in the
Appendix, (see eq A-5). Also,k is the horizontal dimensionless
wavenumber (k ) (kx

2 + ky
2)1/2), qn

2 ) k2 + iRe(δ + n), and
Bo ) Boκ + Boµ. Bo is the only parameter that accounts for the
surface viscosity of a standing wave of the form exp(i k‚x).
The relationship betweenĥn and γ̂n is obtained from the
surfactant mass balance (eq 18) and is given by

where

The coefficientsen andfn are defined in the Appendix (see eqs
A-7 and A-6). The reader can easily verify that the aforemen-
tioned expressions reduce to those obtained by Kumar and
Matar9 when the surface viscosity is zero (i.e.,Bo ) 0).

The recursive expression (eq 22) can be written as a complex
semi-infinite matrix system for both the harmonic (δ ) 0) and
subharmonic (δ ) 1/2) cases. Specifying the values of the
dimensionless parametersRe, Ca, B, Ma, PeS, Bo, and zP,
choosing a wavenumberk, setting the growth rates equal to 0,
and truncating the matrix system at a finite value ofn, an
eigenvalue problem for the critical driving forceF results. The
numerical tests performed show thatn ) 10 is large enough to
ascertain the invariance of the results. Next, we discuss the
solutions computed with the technique just described.

3. Results and Discussion

In this section, the onset conditions for the formation of
Faraday waves on the free surface of a 0.0015-m-deep liquid
layer subjected to a 120 Hz vertical oscillation are determined.
The density and viscosity of the liquid are those of pure water
at 20°C, and the surface tension of the interface at equilibrium
is equal to 0.070 N/m. Thus,Re ) 199.8,Ca ) 0.005,B )
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0.0371, andzP ) -2.914. The properties of the surfactant (i.e.,
surface diffusivity and the elastic and viscous coefficients) vary
widely.

To establish the critical values of the dimensionless accelera-
tion (FC) and the wave number (kC), the stability maps on the
F-k plane were constructed for each selected set of the
characteristic numbers of the system. From these maps, we
concluded that the first instability is always the subharmonic
response; therefore, the results presented here are only for that
mode.

To better understand the action of a surfactant on the
dynamics of the system, we discuss the separate effects of
surface elasticity and surface viscosity before analyzing their
combined activity on the formation of the waves.

3.1. Surface Elasticity.The main objective of the following
analysis is twofold: (i) to compare the solutions obtained with
the recurrence relation described by eq 22 in the limit of zero
surface viscosity with those previously reported by Kumar and
Matar;9,10 and (ii) more important, to get a deeper insight of
the problem through the analysis of selected interfacial variables.
With this purpose, the elastic number was varied between 0
and 5.5, which, in the present analysis, is equivalent to
modifying the Marangoni number within the range ofMa )
0-1000. Because of the fact that the elastic modulus typically
is between 0 (clean interface) and∼0.1 N/m, the parameterMa
could vary from 0 to∼260 for real surfactants and the physical
parameters stated at the beginning of section 3. On the other
hand, some of the few published values of the surface diffusion
coefficient are on the order of 10-10 m2/s; thus, the resulting
PeS value is∼2 × 106.

In Figure 2a and b, we depict the trends followed byFC and
kC with Ma for four different PeS values; it is easily verified
that these results are in very good agreement with those given
in refs 9 and 10. All the curves are independent ofPeS, either
for very large or very smallMa; besides,FC has a maximum
that becomes less significant and moves toward largerMa as
the ratio between surface diffusion and surface convection
increases. Moreover, this maximum is not longer observed when
PeS , 1. Whenever the maximum is present, the critical
wavenumber shows a minimum that becomes less pronounced
and moves toward lower values ofMa asPeS diminishes.

The studies about the effects that an insoluble surfactant has
on the damping coefficient of free surface waves establish that
this quantity increases nonmonotonically with surface elasticity.

Levich20 performed an approximate linear analysis of this
problem and derived an expression for the damping coefficient
as a function of the parameters of the system; nevertheless, he
only studied the two limit situations in which elastic effects
are either negligible or very large. From the expression obtained
by this author, it is easily verified that the damping coefficient
presents a maximum atâC ≈ 2µR2/(Fω0), where R is the
wavenumber andω0 is the natural frequency of the wave. This
result is valid for capillary waves, slightly viscous fluids, and
when surface diffusion is negligible.

The minimum force required to form the waves will be larger
if the damping coefficient increases; thus, the largest value of
FC should be connected to the highest value of this variable. If
the above expression forâC is evaluated for the particular case
considered in this work, withR ≈ 1266.3 m-1 (a value resulting
from the dispersion relationship for inviscid capillary waves),
we obtain â ≈ 0.09. The computed solutions of the linear
problem illustrated in Figure 2 show thatFC is maximum when
â ) 0.094 (kC ) 1254.5 m-1) and 0.092 (kC ) 1262.2 m-1),
for PeS ) 7.991× 104 and 0.7991, respectively.

A more-detailed analysis of the behavior of the system
requires a closer inspection of the interfacial variables. In this
work, we followed the phase difference between the temporal
evolution of the interfacial concentration of surfactant and the
free surface deflections measured in units ofπ,

the amplitude of the tangential surface stretching,

and the magnitude of the curl of the surface velocity,

For the sake of simplicity, all these variables were calculated
for two-dimensional waves (rolls), and details of the calculations
are given in the Appendix. Results illustrated in Figure 3a and
b show that those variables are almost constant for very small
and very largeMa values, in agreement with the trend followed
by FC.

Figure 2. (a) Critical dimensionless acceleration and (b) critical wave-
number, each as a function of the Marangoni number (Ma) for negligible
surface viscosity and surface Peclet number (PeS) values of (- ‚ -) 0.0799,
(s) 0.799 , (‚ ‚ ‚) 7.99, and (- - -) 7.99× 104. Other parameters of the
system areRe) 199.8,Ca ) 0.0055,B ) 0.0371, andzP ) -2.914.

Figure 3. (a) Phase difference betweenγ̂0 and ĥ0, ∆φ0, as a function of
Ma; (b) amplitude of the tangential surface stretching,duS0, and magnitude
of the curl of the surface velocity,rS0, vs Ma; PeS ) (- ‚ -) 0.0799, (s)
0.799, and (- - -) 7.99× 104 (- -). Other parameters of the system are
the same as those described in Figure 2.

∆φ0 ) angle(γ̂0) - angle(ĥ0)

duS0 ) |∇H‚v0|

rS0 )|∇H × v0|
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To provide a better understanding of the phase shift between
the evolution of the local concentration of surfactant and the
free surface deflections, we will first discuss the case corre-
sponding to an inert solute. In this particular situation, the fluid
mechanic problem is not dependent on local variations of the
solute concentration; however, to evaluate the distribution of
solute along the free surface, the interfacial velocity must be
introduced in eq 18. Two limiting situations regarding the mass
balance of solute can be considered: (i) transport controlled
by convection and (ii) transport controlled by diffusion. These
two cases are examined next, in connection with∆φ0, with the
help of eqs A-14 and A-15 in the Appendix and Figure 4, where
the temporal evolutions of the dominant modes of the free
surface height,

and the local concentration of solute,

(at a point A of the free surface that, att ) 0, is at the crest of
a wave whose trough is located at point B), and the maximum
absolute value of the dominant mode of the tangential compo-
nent of the free surface velocity,

which occur between points A and B, are sketched.
It is easy to see that, when the deformation of the free surface

is maximum,|ũ0,MAX| is equal to zero, and that when the free
surface is flat,|ũ0,MAX| is maximum. In case (i), the local
concentration of solute is dependent only on the convective
transport (see eq 18); therefore, the motion of the solute will
have the same direction as the tangential component of the
surface velocity, and the evolution of the free surface height
and the local concentration of solute will be in phase, which is
a result that can be easily derived from eqs A-14 and A-15 from
the Appendix whenPeS . 1. Therefore, at the initial time

considered in Figure 4, the free surface will be rich in solute at
A and it will be depleted at B, whereas, att ) π, the opposite
situation will occur. During the time elapsed between these two
instants of the cycle, convection transports solute from A to B,
reversing the concentration gradient. When the strength of
convection is maximum (the interface is flat), the distribution
of solute becomes uniform.

In case (ii), diffusion opposes to convection. Therefore, as
the concentration gradient is formed, solute will diffuse in the
direction opposite from that in which it is convected. This will
produce a phase shift between the evolution of the interfacial
distribution of solute and the motion of the liquid in the bulk
(or the free surface deflections). The question is what is the
maximum value of the phase shift that can be associated with
diffusion. The origin of a nonuniform distribution of solute is
convection; when diffusion is very large, one expects that this
mechanism will be able to restore a uniform concentration when
the convective transport is negligible (att ) 0 andπ in Figure
4a) and that the maximum concentration gradient will occur
when convection is maximum (att ) 0.5π and 1.5π in Figure
4a). Therefore, the maximum phase angle difference between
the evolution of the distribution of solute and the free surface
deflections will be as large as 0.5 whenPeS , 1 and the solute
is not a surfactant (see Figure 4b). This result can also be
obtained from eqs A-14 and A-15 in the Appendix.

The previous reasoning is confirmed by results illustrated in
Figure 3a. In fact, for a very weak surfactant (Ma , 1), ∆φ0 ≈
0 and 0.5 whenPeS ) 7.99 × 104 and 0.0799, respectively;
also it is easy to conclude from eqs A-14 and A-15 in the
Appendix and the results of Figure 3a that regardless of the
PeS value, the flow in the bulk is in phase with the flow along
the interface whenMa ) Bo ) 0. Curves that are depicted in
the figure also show that∆φ0 monotonically increases asMa is
augmented until it becomes∼0.75 for the threePeS values
considered. From the aforementioned discussion about the values
of the phase shift for an inert solute, we can conclude that, if
∆φ0 > 0.5, the convective transport of surfactant will change
direction before the motion of the liquid in the bulk is reversed.

Let us first consider the case corresponding toPeS ) 0.07991.
WhenMa is small, the largest concentration gradient is formed
when the convective transport is largest, i.e., when the free
surface is a horizontal plane. Then, at this instant of the cycle,
the Marangoni traction produces its maximum effect on the
interfacial velocity, slowing the motion of the liquid from the
trough to the crest of the wave; therefore, the tangential velocity
turns to zero before the free surface attains its maximum
deformation. If we assume that the effect of diffusion remains
practically the same asâ increasesswhich is a hypothesis
supported by the fact that the solutions obtained (not reported
here) indicate thatγ̂0 diminishes asMa is augmentedswe
conclude that the increase in∆φ0 from 0.5 to 0.75 results
from a phase shift between the motion of the liquid along the
interface and that in the bulk phase. This situation is depicted
in Figure 4d.

Following similar reasoning, we can conclude that, forPeS

) 7.991× 104 and sufficiently largeâ, the phase shift between
the evolutions ofγ̂0 and ĥ0 results from a phase shift between
the motions of the liquid in the bulk and along the interface
that is∼0.75 (see Figure 4c).

Numerical solutions of the fully nonlinear problem previously
reported13 qualitatively agree with the aforementioned discus-
sion. In fact, the phase shift between the evolutions of the free
surface deflection and the tangential component of the surface
velocity increases asâ is augmented.

Figure 4. Schematic representation of the temporal evolution during a cycle
of h̃0 and γ̃0, and |ũ0,MAX|. Panels a and b correspond to an inert solute
when mass transport is controlled by convection or diffusion, respectively;
panels c and d correspond to a surfactant in the limit of very large and
very smallPeS, respectively.

h̃0 ≡ Re[ĥ0 exp( i
2t)]

γ̃0 ≡ Re[γ̂0 exp( i
2t)]

|ũ0,MAX| ≡ |Re[-iûH0
(0) exp( i

2t)] |
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The magnitude of the curl of the surface velocity can be
associated with viscous dissipation at the free surface (see, for
instance, eqs 21 and 1.15 of ref 20). Thus, the larger theFC

value, the larger therS0 value. A comparison of the curves
depicted in Figures 2a and 3b, forPeS ) 7.991 × 104 and
0.07991, shows thatFC andrS0 are indeed correlated. In all three
cases, the value achieved byrS0 at largeMa is ∼10 times greater
than its value when elastic effects are negligible, whereas the
FC value only increases by a factor of 3.

The ultimate effect of surface elasticity is to make the
deformation of the free surface very similar to that of an
incompressible solid plate. This fact can easily be concluded,
observing thatduS0 is almost zero forMa g1000 (see Figure
3b), and thatu ) 0 at the trough and at the crest of the waves.
A salient feature of the curves ofduS0 vs Ma is the maximum
presented whenPeS ) 7.991× 104, which occurs atMa ) 9,
that is, simultaneously with the minimum observed inkC for
the same value ofPeS (see Figure 2b). It is interesting to note
that the inextensible behavior of the free surface whenMa . 1
has been exploited by Huber et al.22 to analyze the formation
of Faraday waves on the free surface of normal alkane under
surface freezing conditions.

3.2. Surface Viscosity.To assess the effect of surface
viscosity on the formation of Faraday waves, we computed the
solution of the linear problem over a large range ofBo values.
The largest value assigned to this parameter (Bo ) 104)
represents a system in which the viscosity of the free surface is
equal to 5.15× 10-3 Pa m s, that is, 5.15 times greater than
the viscosity of the liquid in the bulk. TypicalBo values could
be between 0 (for a surfactant-free interface) and 1.3× 106

(when calculated usingµS + κS ≈ 0.65 N s/m).
As we already noted, the system of eqs 11-18 indicates that,

when the surface tension is constant, the interfacial viscosity
creates a nonzero tangential component of the surface traction
that opposes nonhomogeneous deformations of the interface (see
eq 17). Besides, in this event, the velocity and pressure fields,
as well as the amplitude of the free surface, are independent of
the interfacial concentration of surfactant (Bn ) 0; see eq 24).

The curves ofFC andkC, as a function ofBo, are very similar
(see Figure 5): both variables remain constant for smallBo
and then they experience a sharp increase to attain a value that
remains constant and is equal to that reported in the previous
section forMa f ∞ andBo) 0. The effect of increasing surface
viscosity is first noticed inFC and then inkC; that is, a behavior

opposite to that described in Figure 2 for surface elasticity. Also,
neither the absolute maximum presented byFC nor the absolute
minimum exhibited bykC vs Ma, whenPeS > 1, are observed
here.

To further discuss the effects that surface viscosity has on
the system, we calculated the phase difference between the
interfacial concentration of surfactant and the temporal evolution
of the free surface deflections, the amplitude of the tangential
surface stretching, and the magnitude of the curl of the surface
velocity for 0e Bo e5000. The results are illustrated in Figure
6a and b forBo within the range of 0.01-5000, because no
significant changes are noticed for smallerBo.

The effect of increasing viscous effects on these variables is
quite similar to the effect of increasing the elastic number. Both
duS0 and rS0 are monotonic functions ofBo; they are almost
constant at both low and largeBo. The magnitude ofduS0

decreases and approaches zero as the surface viscosity increases,
noting that the velocity distribution becomes smoother asBo
increases; moreover, at large values of this parameter, the
deformation of the free surface is similar to that of a solid plate.
The magnitude ofrS0 increases withBo until it becomes
approximately equal to 10 times the value corresponding to a
clean interface, whenBo ≈ 1000. From this last result, we can
infer that the increasing force required to form the waves asBo
is augmented is due to the larger viscous dissipation near the
interface associated with the presence of the surfactant.20,21

The results illustrated in Figure 6b, corresponding to∆φ0,
are for PeS ) 7.99 × 104. ∆φ0 is indeed a function ofPeS;
nevertheless, in the present situation (in the absence of elastic
effects), the velocity field is not affected by the distribution of
solute; therefore, the only effect of a decreasingPeS is a
translation of the curve of∆φ0 vs Bo toward larger values of
the phase difference (see eqs 18 and A-15).

The phase difference between the temporal evolution of the
interfacial concentration of surfactant and the free surface
deflections increases withBo. One might speculate that, as the
surface viscosity is augmented, the second term in eq 18, which
represents the convective transport of surfactant, diminishes and,
thus, the interfacial distribution of surfactant becomes more and
more dependent on surface diffusion. However, we have already
mentioned that the shape of the curve of∆φ0 vs Bo is
independent ofPeS; therefore, the phase shift also changes when
PeS , 1. Moreover, the solutions of the linear problem (not

Figure 5. Dimensionless critical force and wavenumber, as a function of
the Boussinesq number (Bo) when elastic effects are negligible.

Figure 6. (a) Amplitude of the tangential surface stretching,duS0, and
magnitude of the curl of the surface velocity,rS0, versusMa; (b) phase
difference betweenγ̂0 and ĥ0, ∆φ0, as a function ofMa for PeS ) 7.99
× 104.
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presented here) show thatγn diminishes asBo is augmented.
Therefore,∆φ0 becomes larger because the evolutions of the
tangential surface velocity and the free surface deflection
becomes out of phase; that is,uS0 approaches zero along the
entire interface before the free surface achieves its maximum
deformation. At largeBo, the evolutions of free surface height
and the maximum absolute value of the tangential component
of the free surface velocity are similar to those sketched in
Figure 4d, and the concentration of surfactant follows the same
trend as|ũ0,MAX|.

From the curves illustrated in Figure 6b, it is easy to notice
that the limit achieved by∆φ0 is ∼0.25, i.e., a value significantly
smaller than that reported in the previous section, when elastic
effects were discussed. This issue has been previously reported
when the numerical solution of the full nonlinear problem was
discussed.14

3.3. Combined Effects of Surface Viscosity and Surface
Elasticity. Results discussed in the previous paragraphs show
that the force required to form waves on a free surface
contaminated with a surfactant conferring elastic or viscous
properties to the interface is larger than that on a clean surface.
On one hand, the gradient of interfacial concentration of
surfactant that accompanies the deformation of the free surface
causes a gradient of surface tension that opposes a nonuniform
distribution of the surfactant and, consequently, the motion of
the liquid. On the other hand, surface viscosity hinders the
liquid motion by opposing the nonuniform deformation of the
free surface. For sufficiently large values ofMa or Bo, the
liquid surface behaves as an incompressible solid surface: as
the surface deforms, it bends almost without contracting or
expanding.

In this section, we discuss the combined effects of surface
viscosity and surface elasticity on the conditions for the onset
of the waves. To this end, we built the stability charts on the
F-k plane for selected values ofMa, a wide range ofBo, and
for PeS ) 7.991 × 104 and 0.7991. From these maps, we
determined the values ofFC and kC for the particular set of
parameters chosen. Figure 7a and b shows the evolution ofFC

andkC vs Bo, respectively, whenPeS ) 7.991× 104.
The values ofMa used in the analysis were selected

considering the results reported in Figure 2a: the first three
values are to the left and the last three to the right of the
maximum presented byFC vs Ma.

The minimum force needed to form the waves as well as the
critical wavenumber are not sensitive to variations of surface
viscosity at small and large values ofBo. At low Bo, FC andkC

are dependent onMa, whereas at largeBo, they attained the
limits reported in the previous section; i.e.,FC ≈ 1.40 andkC

≈ 0.655 (see Figures 2 and 5). Moreover, the results illustrated
in Figure 3a and in the inset of Figure 7a, show that there exists
a range ofMa within which FC > 1.4. The extension of this
region is dependent onBo: it is larger for very small values of
this parameter and it is no longer present forBo > 100.
Therefore, according to the selected value ofMa, the critical
force will either decrease or increase asBo is augmented. We
have noted previously that there is a reverse interfacial flow
when surface elasticity rules the behavior of the system; Miles21

argued that the film back flow, when near in quadrature with
the bulk flow, results in an enhanced viscous dissipation, relative
to the viscous dissipation produced by an inextensible surface
as that formed when the surface viscosity is very large. This
larger viscous dissipation leads to a biggerFC.

The region ofBo within which an increase of this parameter
affects the response of the system is dependent on the value of

Ma: the lower limit of this region corresponds to a largerBo
asMa becomes larger. This fact, together with the nonmonotonic
behavior exhibited byFC, as a function ofMa (see the inset in
Figure 7a), leads to the intersection of the curves.

All the curves illustrated in Figure 7b that correspond to the
evolution ofkC with Bo merge when this parameter is>400.
Another feature of the results reported in this figure is the
minimum detected forMa ) 25, 50, and 100, which moves
toward higherBo asMa is augmented.

We also evaluated here the evolution of some interfacial
variables, and the results obtained are depicted in Figure 8a-c.
As expected, all these variables are dependent exclusively on
Ma when the surface viscosity is small; consequently, they
present the features described previously forBo ) 0; also, they
approach a limit that is independent ofMa and Bo when the
surface viscosity is large enough. The results illustrated in Figure
8a show thatduS0 monotonically decreases asBo increases, and
that the differences due to surface elasticity become less
remarkable asBo becomes larger; therefore, the maximum
exhibited byduS0 with Ma for a fixed Bo (see Figure 3b) is
noticeable, up toBo values closer to 20. ForBo > 400, the
amplitude of the tangential stretching approaches zero for all
the systems studied.

The magnitude of the curl of surface velocity versusBo is
illustrated in Figure 8b. For negligible surface viscosity,rS0, as

Figure 7. (a) Dimensionless critical force and (b) wavenumber, as a
function of Bo for selected values ofMa. Other parameters of the system
areRe) 199.8,Ca ) 0.0055,B ) 0.0371,zP ) -2.914, andPeS ) 7.991
× 104.
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a function ofMa, follows the nonmonotonic trend reported in
Figure 3b, and for largeBo, this property approaches 5.5, which
is the value previously reported for the inextensible limit. The
most remarkable feature of the curves reported in this figure is
the local minimum observed whenMa > 0.5; this minimum
becomes less important and displaces toward higher values of
Bo whenMa is augmented.

The results illustrated in Figure 8c, which correspond to the
phase difference between the interfacial concentration of sur-
factant and the free surface deflections, show that, at lowBo,
∆φ0 is dependent only onMa, but then this variable either
decreases (Ma e 5) or increases (Ma g 10), until it becomes
approximately equal to 0.25 for sufficiently largeBo, indepen-
dent of Ma. That is,∆φ0 achieves the limit reported already
for a system contaminated a surfactant that only confers to the
interface viscous effects.

The different behavior of the phase difference results from
the competition between elastic and viscous tensions. IfMa >
20 andBo , 1, the convective transport of solute will reverse
before the motion of the liquid in the bulk, and a phase shift
even larger than 0.5 (the maximum phase difference attributable
exclusively to surface diffusion) can be observed. In this case,
an increase ofBo not only diminishes the interfacial velocity
but also avoids the asynchronous motion of the interface and
the bulk.

If the aforementioned analysis is conducted forPeS ) 0.7991,
very similar results are obtained. The more remarkable differ-
ences are the disappearance of the minimum in the curves of
kC and the displacement of the minimum values ofrS0 toward
higher values of bothMa andBo. These features suggest that
elastic effects are less noticeable when the ratio between the
magnitudes of diffusion and convection is>1.

4. Conclusion

The linear analysis presented in this work includes the effects
of both surface elasticity and surface viscosity on the onset of
Faraday waves on a liquid layer of arbitrary depth. Results
reported here for typical values ofRe, Ca, B, andzP show that
the presence of a surfactant always increases the force required
to develop a wavy interface; nevertheless, the nonmonotonic
behavior exhibited byFC vs Ma when the surface viscosity is

negligible andPeS > 1 is not longer observed when the surface
viscosity dominates the dynamics of the system. Also, whenever
the critical force passes through a maximum, the critical
wavenumber passes through a minimum (though not simulta-
neously); therefore, in this case, the wavelength of the waves
formed in a contaminated surface can be slightly larger than
that for a clean interface.

The study that has been performed notes that, in the limit of
either very high elasticity or very high viscosity, the free surface
deforms in a manner similar to that of a solid plate; that is, it
bends almost without contracting or expanding. The only
difference observed is the smaller value of the phase difference
between the variations of surfactant concentration and the free
surface deflections for largeBo and lowMa, compared to that
attained at largeMa and smallBo.

We also showed how the evaluation of interfacial properties
such as the amplitude of the tangential surface stretching and
of the curl of the surface velocity contribute to a better
understanding of the behavior of the system.

Appendix. Computation of the Interfacial Variables

The phase shift (∆φn) between the corresponding time-
periodic modes of the interfacial concentration of surfactant (γ̂n)
and the deflection of the free surface (ĥn) was calculated for
the casen ) 0 (fundamental subharmonic mode), following the
methodology presented in Appendix B of ref 9. Besides, to
evaluate the influence of the presence of surfactants on the
velocity field, the amplitude of the horizontal divergence and
the curl of the surface velocity were calculated. With this
purpose, and without losing generality, thex-axis was taken
along the direction of the wavevector (k); then,∇H‚v0 ) ∂u/∂x
and∇×v0 ) (∂u/∂z - ∂w/∂x)z)0j .

Very briefly, the calculation of∇H‚v is described next. The
continuity equation implies

where

whereŵ*n is the complex conjugate ofŵn.

From eq A-2, and with a procedure similar to that used in
ref 7 to calculate∆φ0, the following expression can be obtained:

Therefore, the amplitude of∂w/∂z in z ) 0 is dependent on the
modulus of dŵn/dz|z)0, which is evaluated by taking into account
that dŵn/dz|z)0 ) -kbn + qndn, where

Figure 8. Evolution of (a) duS0, (b) rS0, and (c) ∆φ0, each as a function of
Bo for selected values ofMa. Other parameters of the system are the same
as those described in Figure 7.

∇H‚v0 + ∂w
∂z

) 0 w
∂u
∂x

) - ∂w
∂z

(A-1)

w ) eikxŵ(z, t)

ŵ ) ∑
n)0

∞

[ŵn(z)e
i(1/2+n)t + ŵ*n(z)e

-i(1/2+n)t] (A-2)

∂w

∂z
) 2eikx∑

n)0

∞ |dŵn

dz | cos[(12 + n)t + φ̃n] (A-3)
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In the aforementioned expressions,ĥn is the (n+1)th component
of the eigenvector corresponding to the largest eigenvalue, and
γ̂n is evaluated with eq 25. It is important to note that, in the
routine used to solve the problem, the eigenvectors are scaled
so that the norm of each is equal to one; therefore, values of
the interfacial properties are referenced to unity and not to the
actual amplitude of the free surface deformation.

The calculations performed indicate that dŵ0/dz|z)0 . dŵn/
dz|z)0 for n > 1; thus, the amplitude of∂w/∂z|z)0 can be
represented by the first term of the series in all the results shown
in this work.

Concerning the magnitude of the curl of surface velocity, it
can be easily verified, from eqs A-1 and A-2, that

Because there is no mean flow along the horizontal direction,
f(z,t) ) 0. Consequently, from eqs A-8 and A-9,

Finally, replacing eq A-2 in eq A-10, we obtain the following
expression for the curl:

In eq A-11,C̃n ) i(Re/k)(δ + n)cn and tanφ̂n ) (C̃n,i/C̃n,r), where

Also, in this case, the results obtained indicate that the magnitude
of the curl of the surface velocity is determined by the value of
the first coefficient of the series,|C̃0|. In the text, |C̃0| is
referenced asrS0.

It is also useful to take into account that the standing
subharmonic solutions are approximately given by

Also, in this context,uH represents the component of the velocity
along the direction of the wavevector:

If these expressions are introduced in eqs 15 and 18, the
following equations are easily obtained:

We have evaluated angle(-iûH0(0)) - angle(γ̂0) instead of angle-
(ûH0(0)) - angle(γ̂0), becauseûH0(0) is spatially shifted byπ/(2k),
with respect toŵ0(0), ĥ0, or γ̂0.
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