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Onset of Faraday Waves in a Liquid Layer Covered with a Surfactant with
Elastic and Viscous Properties

Maria D. Giavedoni*™ and Sebastia Ubal®*

INTEC, CONICEFUniversidad Nacional del Litoral, Gemes 3450, 3000 Santa Fe, Argentina, and
Facultad de Ingeniéa, Universidad Nacional de Entre'Bs, Ruta Pre. 11, km 10, 3101 Oro Verde,
Entre Ros, Argentina

In this work, we analyze the formation of Faraday waves on the free surface of a liquid layer covered by an
insoluble surfactant. The linear analysis that is conducted includes the effects of both surface elasticity and
surface viscosity. The critical force needed to form the waves, as well as the critical wavenumber, are determined
within a large range of values of the dimensionless parameters representing the physicochemical properties
of the surfactant. The examination of carefully selected hydrodynamic variables provides further insight into
the behavior of the system.

1. Introduction film of a surfactant; she also compared the experimental values
This paper is concerned with the conditions for the onset of with existing theoretical models. Dec&analyzed the nonlinear
pap ) o - damping of Faraday waves using an evolution equation; in his
Faraday waves at the interface of a liquid layer covered with a .
study, he considered the surface boundary layer produced by

rf tivi nt that confers vi nd elastic properti : ; -
surlace active age at confers viscous and elastic prope ©%n inextensible surface film. Kumar and M&ttrpresented a

(o the free surface. The phenomenon of Faraday waves refer%u" linear stability analysis of the problem valid for liquids of
to the standing waves formed on the free surface of a horizontal . y YSIS P q
arbitrary depth and viscosity, when the effect of the lateral

liquid layer undergoing a oscillatory vertical acceleration, L o . .
produced by the vibration of the contaideWhen the driving bound‘?‘”‘?s IS negligible. Matar et*dlexamined the evolu.tlon.
of a thin liquid layer, clean or covered by a surfactant film, in

acceleration ranges from weak to moderate, several types of h i 4 To thi d. th icall ved th
wave patterns, such as rolls, squares, or hexagons, ard€ noniinearregime. To this end, they numerically solved the

exhibited?4 However, if the vibration of the container is strong et Of nonlinear differential equations previously derived by

enough, the rupture of the free surface and the ejection of liquid them’LZ_ using lubrication theory. Ubal et &. presented a
drops into the gas phase can be obsefved. numerical analysis of the full nonlinear problem in which the

The analysis of this physical phenomenon has practical con(_jitions fpr the onset of the insta_bility and the e\_/olution of
interest in spray formation where a controlled/predictable drop the interfacial variables, as a function of the elastic number,
size and flow rate are usually desired. Particular applications @€ determined and discussed. The results of the studies
include mass-transfer processes, air humidification, ultrasonic Previously mentioned indicate that the critical forcing accelera-
nebulizers, and fuel injection systems. The study of this problem tion needed to induce standing waves in a contaminated surface
is also of interest in fundamental topics with wide applications S larger than that in a clean surface, although the critical
in chemical engineering such as nonlinear dynamics and patternvibration force shows a nonmonotonical dependence on the
formation. elasticity of the adsorbed film. In addition, all the studies reveal

The presence of surface-active agents is ubiquitous at mos[the existence of a temporal phase shift between the evolution
gas/liquid interfaces, either as additives or as uncontrolled Of the surface elevation and surfactant concentration, which
contaminants. Whatever the case, these adsorbed substancé¥ianges with the elastic number in a similar way to the applied
have a pronounced effect on the interfacial balance of stressesforce.
and this, in turn, affects the bulk flow. In fact, when a surfactant ~ Surface viscous effects have received considerably less
is adsorbed at the interface, the forces acting on the free surfaceattention in the literature; Ubal et #lnumerically investigated
include surface tension gradients and viscous resistance to sheahe role of surface viscosity on the onset of the Faraday
and dilatation. instability, assuming that the interfacial properties are indepen-

The objective of this work is to investigate the influence of dent of the surfactant concentration, i.e., neglecting the effect
the physicochemical properties of an insoluble surfactant of the surface elasticity. These authors found that the minimum
adsorbed at the liquid surface on the critical conditions for the force required to form the waves increases with surface viscosity
formation of Faraday waves. The elastic effects of a surface- in a sigmoidal fashion; that is, the threshold acceleration is
active agent on Faraday waves were examined in the literatureaimost constant at very low and very high values of that
experimentally, analytically, and numerically. Hendersmea- interfacial property.
sured the damping rates, natural frequencies, and amplitudes
of the fundamental axisymmetric wave formed in a cylindrical
container partially filled with water covered with an insoluble

In the present work, the combined influence of surface
elasticity and viscosity on the onset conditions for the develop-
ment of standing waves is examined. To this end, the linear
stability analysis presented by Kumar and Matarextended
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tINTEC, CONICET-Universidad Nacional del Litoral. for a better understanding of the phenomena. The paper is
* Facultad de Ingeni@ Universidad Nacional de EntrédRi organized as follows. In the next section, the mathematical

*To whom correspondence should be addressed. Teb4 342

10.1021/ie0615335 CCC: $37.00 © 2007 American Chemical Society
Published on Web 06/21/2007



Ind. Eng. Chem. Res., Vol. 46, No. 15, 200%229

Forced T3=[0+ (K°— ud)VgVI°+

acceleration  Gravity yS[VSVO°IS+ IS'(VSVO)T] ©)
ayeroosldii; ek Air-liquid

z ﬁ ﬂ / interface In eq 6,0 is the surface tensiorS andyS are the dilatational
and shear viscosity coefficients, respectivd§= 1 — nn is
the surface identity tensov? is the interfacial velocity\C? =
2%t + %', with t being a unit vector tangential to the free
surface); andvs = |15V is the surface gradient operator.

Solid The surface tension and the surface viscosity coefficients are
plate dependent on the concentration of the solute adsorbed at the
interface pS); because of the fact that this work involves the
Figure 1. Sketch of the domain and coordinate system adopted. linear stability of the system, linear equations of state suffice

) _ _ to describe the variations of these interfacial properties with
formulation of the problem is presented. In section 3, the results the surfactant concentration. Thus, we have

for a wide range of values of the parameters are shown. Finally,

some concluding remarks are given in section 4.
0= 05+ (%) ° ) ™
2. Mathematical Formulation dp77o
s
2.1. Governing Equations.Let us consider a liquid layer of #S =//t§ + (8Ls) (0° — pg) (8)
depthHo lying on a horizontal solid surface. The densip) ( ap~Jo
and viscosity g) of the fluid are constant, and the air above it 5
is regarded as inviscid. A monolayer of an insoluble surfactant K> = K5+ (ai) (0°— p5) (9)
is adsorbed at the gas/liquid interface and is responsible for the 8ps 0

viscous and elastic properties exhibited by the free surface. The

system is subjected to a vertical periodic motion; depending on wherepg is the concentration of surfactant at equilibrium (i.e.,
its angular frequency:f) and amplitudedp), this vibration can  at the flat interface)o, 15, and«; are the surface tension and
set the liquid in motion and lead to the formation of surface the coefficients of shear and dilatational viscosity evaluated at
waves. Therefore, the dynam|CS of the fluid in the bulk is pg The Subscript in the Operatoﬁlap%o indicates that the
governed by the NavierStokes and continuity equations, which,  gerivative is computed at equilibrium. To complete the formula-
in a coordinate system moving with the unperturbed interface tjon of the problem, a mass balance for the surfactant adsorbed

(see Figure 1), are written as follows: at the interface is needed; for an insoluble solute, that balance
iSlS
p(% + v-Vv) = —Vp+ uVAy + p(g + a) (1)
8ps Sy 2.S_
Vv =0 @) |+ Vs (V) =DV =0 (10)

wherea is the specific body force which, in the noninertial frame
of reference selected, is equivalent to a modulated gravitational
accelerationd = apw? cost)k).

On the bottom surface, the no-slip boundary condition applies:

whereDS is the surfactant surface diffusion coefficieRt? the

surface Laplacian operatoFW§ = Vs'Vs), and d/ot|, a time

derivative following the motion of the free surface along its

normal direction.

v=0, z=-H, (3) _ 2.2: Spaling and Linearizatign. Bejore performing the
linearization process, a proper dimensionless formulation of the

| problem is convenient. To this end, the characteristic scales

chosen are ¥/ for time, lc = glw? + (ol pw?)1? for length,lcw

for velocity, pg for surfactant concentration, anmhow?c for

Because of the fact that the liquid/air interface is a materia
surface, the usual form of the kinematic condition is imposed:

sh  ah  &h pressure. To selett, we considered the well-known fact that
ot + U& + U@ =w, z=h(txYy) 4) the wavelength of Faraday waves diminishes as the external

frequency is augmented: at low frequencies, typical wavelengths

whereu and v are thex- and y-components of the velocity ~ are of the order o§/w? whereas at high frequencies, they are
vector, respectively, anti(t,x,y) is the deviation of the free  Of the order of §/(pw?)] 2. Therefore, the aforementioned choice
surface shape from the flat configuration at rest. Stresses at thefor Ic is suitable at high (capillary waves), low (gravity waves),
interface are counterbalanced by surface traction; thitlfs,  and intermediate frequencies.

The dimensionless governing equations then are linearized

nNT=vTS z= h(t, X, y) (5) for small perturbations of the equilibrium state; thatiss 0,
_ _ _ p = —pzlg — aw? cosEt)], h(txy) = 0, andpS = p;. After
wheren is the external unit normal to the interface, ahaénd some algebraic manipulation (similar to that employed in ref

TS are the bulk and surface stress tensors, respectively.9), the following set of equations results:

Surfactants adsorbed at the interface are responsible for the

viscous and elastic properties exhibited by the free surface. We v 1

assume that the interface is a Newtonian surface; hence, the ot =—-AVp+ EEVZV (11)
surface stress tensor is given by the Boussin&smgiven

equationt’ V-v=0 (12)
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v=0, z=z, (13)
ow _ _
e 0, z=12 (14)
oh _ _
i w, z=0 (15)
3W_ 2 _
B[1 — F costlh — BFp+ 2Ca§ =Vgih, z=0 (16)
ou , ow\. | [dv | oW\,
(&+£y%&+wp-myw+
Bo,Vi(Vy'vy) + Bo,Vivy, z=0 (17)
9y WO - 1oy2, o -
( Bt)n VW~ pe Vi =0, =0 (19)

In the aforementioned expressions, dimensionless variables are, _
represented by the same symbols as the corresponding dimen-" DENO
sional ones, with the exception of the dimensionless concentra-

tion of surfactant, which is defined as—= pslpg. Also, wis the
z-component of the velocity, andy and Vf' are the gradient
and Laplacian operators in they plane, respectivelyMy =

(i +jj)-vand Vf' = V y*Vu). The dimensionless parameters
appearing in eqs H18 are the Reynolds numbeéRé= pwlc?/
), the capillary numberGa = uwlc/og), the Bond numberR
= |c?pg/og), the shear and dilatational Boussinesq numk#es (
= u3llcu and Bo, = «J/lcu), the Marangoni numbema =
pBICa, wheref = —(pgloo)(aa/ap% is the elastic number), the
Peclet number Pes = wlc%DS), the ratio between the forced
and gravity acceleration§ (= ayw?g), the dimensionless depth
of the liquid layer ¢ = —Ho/lc), and the dimensionless
amplitude of the vibrationA = ay/lc = BF/ReCgq. Equations

With an algebraic procedure similar to that applied by Kumar
and Matar the following recursion relationship can be obtained:

. R BE .~ .
Anhn + Bn‘yn = fakz(hnfl + hn+1) (22)

where

|

_B+K
DENO|

Ca
%(Sk4 + q," + 2K°q,?) coshkz,) cosh@,z-)—
(k*+ q,* + 6k’g,?) sinhkz,) sinh@,z) +
Bokgy(a,” — k°)(d, coshkz) sinh(@,z:) —

k sinhkz,) cosh(,z.))

_qn(3k2 + qnz)[l - COSh((ZP) COShQnZP)] -
k(K + 3q,) sinhkz,) sinh@,z)} (24)

The definition of the dummy variable DENO is given in the
Appendix, (see eq A-5). Alsd is the horizontal dimensionless
wavenumberK = (k@ + k2)?), g2 = k? + iRg(d + n), and
Bo = Bo, + Bo,. Bois the only parameter that accounts for the
surface viscosity of a standing wave of the form éxpfx).
The relationship betweeih, and 9, is obtained from the
surfactant mass balance (eq 18) and is given by

+

A, — 4k (K + q,%) +

(23)
_ MaRe

7n= G, (25)

where

16 and 17 are the linear forms of the normal and tangential G, = (k(Qn2 — 13 —qn(3k2 + an)

components of the surface traction, respectively. A careful
inspection of these two expressions reveals that they are
independent of local variations of the surfactant concentration,

when the elasticity number is negligible.

2.3. Solution of the Linear Problem. The original set of
variables of the problem can be reduced to a smallerwanb, (
and y), by eliminatingp, u, and v by means of the usual

[1 — coshkz,) cosh@,z)] —
k(39,2 + K?) sinhkz,) sinh@,z)}) +
[Re([(BoK/Pey) + (BoKa,” — K)/Re +
MaKle, + (a," — K){ (K/Pey) + [(q," — K)/Rd}f,)] (26)

algebraic procedur®.Because we are considering the formation The coefficientss, andf, are defined in the Appendix (see eqs
of standing waves on the surface of a liquid layer that extends A-7 and A-6). The reader can easily verify that the aforemen-
infinitely in the x—y plane, the solution can be expressed in tioned expressions reduce to those obtained by Kumar and
terms of normal modes of the form ekp(-x), wherek = ki Matar® when the surface viscosity is zero (i.Bo = 0).

+ kij is the wave vector. Moreover, because the system is forced The recursive expression (eq 22) can be written as a complex
with a 27-period excitation and a periodic solution is expected, Semi-infinite matrix system for both the harmonie< 0) and
Floquet theory can be applied; therefore, the time evolution of Subharmonic & = ) cases. Specifying the values of the
the variables can be expressed as a linear combination of time-dimensionless parameteRe Ca, B, Ma, Pes, Bo, and z,
periodic modes of the form exp{(+ i9)t] exp(nt), with (s + choosing a wavenumbér setting the growth rateequal to O,

i0) being the Floquet exponenst is the growth rate, and is and truncating the matrix system at a finite valuemfan

equal to 0 or/, for the harmonic and subharmonic solutions, €igenvalue problem for the critical driving foréeresults. The
respectively. We then can write numerical tests performed show thmet= 10 is large enough to
ascertain the invariance of the results. Next, we discuss the
n=co solutions computed with the technique just described.

w(t, X, y, 2) = €< > W@ exp{[s+i(0 + n)]t}

n=—oo

(19)
3. Results and Discussion

In this section, the onset conditions for the formation of
Faraday waves on the free surface of a 0.0015-m-deep liquid
layer subjected to a 120 Hz vertical oscillation are determined.
The density and viscosity of the liquid are those of pure water
at 20°C, and the surface tension of the interface at equilibrium
is equal to 0.070 N/m. Thufke= 199.8,Ca = 0.005,B =

h(t, x, y) = € nf h,exp{[s+i(0 +n)]t}  (20)

n=—o0

y(t %, y) = &< i Paexp[s+i(0 +nltt  (21)

n=—oo
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Figure 2. (a) Critical dimensionless acceleration and (b) critical wave- 0.01 0.1 1 10 100 1000 10000
number, each as a function of the Marangoni numbéa)(for negligible Ma
surface viscosity and surface Peclet numiies) values of - - —) 0.0799, Figure 3. (a) Phase difference betwegg and fo, Ao, as a function of
() 0.799 , ¢+ ) 7.99, and £ — —) 7.99 x 10%. Other parameters of the  \ja; (b) amplitude of the tangential surface stretchitigy, and magnitude
system areRe= 199.8,Ca = 0.0055,B = 0.0371, andp = —2.914. of the curl of the surface velocitys, vs Ma; Pes = (— - —) 0.0799, )

0.799, and{ — —) 7.99 x 10* (— —). Other parameters of the system are
the same as those described in Figure 2.
0.0371, andr = —2.914. The properties of the surfactant (i.e.,
surface diffusivity and the elastic and viscous coefficients) vary Levich?® performed an approximate linear analysis of this
widely. problem and derived an expression for the damping coefficient
To establish the critical values of the dimensionless accelera-as a function of the parameters of the system; nevertheless, he
tion (Fc) and the wave numbekd), the stability maps on the  only studied the two limit situations in which elastic effects
F—k plane were constructed for each selected set of the are either negligible or very large. From the expression obtained
characteristic numbers of the system. From these maps, weby this author, it is easily verified that the damping coefficient
concluded that the first instability is always the subharmonic presents a maximum &c ~ 2ua?(pwo), where a. is the
response; therefore, the results presented here are only for thalvavenumber and is the natural frequency of the wave. This
mode. result is valid for capillary waves, slightly viscous fluids, and
To better understand the action of a surfactant on the when surface diffusion is negligible.
dynamics of the system, we discuss the separate effects of The minimum force required to form the waves will be larger
surface elasticity and surface viscosity before analyzing their if the damping coefficient increases; thus, the largest value of
combined activity on the formation of the waves. Fc should be connected to the highest value of this variable. If
3.1. Surface Elasticity.The main objective of the following  the above expression f is evaluated for the particular case
analysis is twofold: (i) to compare the solutions obtained with considered in this work, with &~ 1266.3 nT1 (a value resulting
the recurrence relation described by eq 22 in the limit of zero from the dispersion relationship for inviscid capillary waves),
surface viscosity with those previously reported by Kumar and we obtain8 ~ 0.09. The computed solutions of the linear
Matar?1% and (ii) more important, to get a deeper insight of problem illustrated in Figure 2 show thi¢ is maximum when
the problem through the analysis of selected interfacial variables. 3 = 0.094 kc = 1254.5 nt%) and 0.092 Kc = 1262.2 n1Y),
With this purpose, the elastic number was varied between 0 for Pes = 7.991 x 10* and 0.7991, respectively.
and 5.5, which, in the present analysis, is equivalent to A more-detailed analysis of the behavior of the system

modifying the Marangoni number within the range & = requires a closer inspection of the interfacial variables. In this
0—1000. Because of the fact that the elastic modulus typically work, we followed the phase difference between the temporal
is between 0 (clean interface) and.1 N/m, the parametéfia evolution of the interfacial concentration of surfactant and the

could vary from 0 to~260 for real surfactants and the physical free surface deflections measured in unitszof
parameters stated at the beginning of section 3. On the other

hand, some of the few published values of the surface diffusion A, = anglef,) — angleflo)
coefficient are on the order of & m%s; thus, the resulting
Pes value is~2 x 10°. the amplitude of the tangential surface stretching,

In Figure 2a and b, we depict the trends followedHgyand
kc with Ma for four different Pes values; it is easily verified
that these results are in very good agreement with those given
in refs 9 and 10. All the curves are independenPef, either
for very large or very smalMa; besidesfc has a maximum
that becomes less significant and moves toward lakfgras 0
the ratio between surface diffusion and surface convection o =IVy x V7
increases. Moreover, this maximum is not longer observed when
Pes < 1. Whenever the maximum is present, the critical For the sake of simplicity, all these variables were calculated
wavenumber shows a minimum that becomes less pronouncedor two-dimensional waves (rolls), and details of the calculations
and moves toward lower values bfa asPes diminishes. are given in the Appendix. Results illustrated in Figure 3a and
The studies about the effects that an insoluble surfactant hasb show that those variables are almost constant for very small
on the damping coefficient of free surface waves establish thatand very largeMa values, in agreement with the trend followed
this quantity increases nonmonotonically with surface elasticity. by Fc.

dug, = [V,V0

and the magnitude of the curl of the surface velocity,
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considered in Figure 4, the free surface will be rich in solute at
A and it will be depleted at B, whereas, tat 7, the opposite
situation will occur. During the time elapsed between these two
instants of the cycle, convection transports solute from A to B,
reversing the concentration gradient. When the strength of
convection is maximum (the interface is flat), the distribution
of solute becomes uniform.

In case (ii), diffusion opposes to convection. Therefore, as
the concentration gradient is formed, solute will diffuse in the
direction opposite from that in which it is convected. This will
produce a phase shift between the evolution of the interfacial
distribution of solute and the motion of the liquid in the bulk
(or the free surface deflections). The question is what is the
maximum value of the phase shift that can be associated with
diffusion. The origin of a nonuniform distribution of solute is
© convection; when diffusion is very large, one expects that this
0 2 3 6 0 2 3 5 mechanism will be able to restore a uniform concentration when

t t the convective transport is negligible ¢at 0 andsx in Figure
Figure 4. Schematic representation of the temporal evolution during a cycle 4a) and that the maximum concentration gradient will occur
of o and Jo, and |lomaxl- Panels a and b correspond to an inert solute when convection is maximum (&t= 0.57 and 1.5t in Figure
when mass transport is controlled by convection or diffusion, respectively; 4a). Therefore, the maximum phase angle difference between
panels ¢ and d correspond to a surfactant in the limit of very large and . TR
very smallPes, respectively. the evolution of the distribution of solute and the free surface
deflections will be as large as 0.5 whEes < 1 and the solute

To provide a better understanding of the phase shift betweenis not a surfactant (see Figure 4b). This result can also be
the evolution of the local concentration of surfactant and the obtained from egs A-14 and A-15 in the Appendix.
free surface deflections, we will first discuss the case corre-  The previous reasoning is confirmed by results illustrated in
sponding to an inert solute. In this particular situation, the fluid Figure 3a. In fact, for a very weak surfactamg < 1), Ago ~
mechanic problem is not dependent on local variations of the 0 and 0.5 wherPes = 7.99 x 10* and 0.0799, respectively;
solute concentration; however, to evaluate the distribution of also it is easy to conclude from eqgs A-14 and A-15 in the
solute along the free surface, the interfacial velocity must be Appendix and the results of Figure 3a that regardless of the
introduced in eq 18. Two limiting situations regarding the mass Pes value, the flow in the bulk is in phase with the flow along
balance of solute can be considered: (i) transport controlled the interface wheiMa = Bo = 0. Curves that are depicted in
by convection and (ii) transport controlled by diffusion. These the figure also show that¢o monotonically increases &4a is
two cases are examined next, in connection with, with the augmented until it becomes0.75 for the threePes values
help of egs A-14 and A-15 in the Appendix and Figure 4, where considered. From the aforementioned discussion about the values
the temporal evolutions of the dominant modes of the free of the phase shift for an inert solute, we can conclude that, if
surface height, Ag¢o > 0.5, the convective transport of surfactant will change

direction before the motion of the liquid in the bulk is reversed.

Ry = Re{ﬁo ex;{L)] Let us first consider the case corresponding¢e= 0.07991.
2t WhenMa is small, the largest concentration gradient is formed
when the convective transport is largest, i.e., when the free
surface is a horizontal plane. Then, at this instant of the cycle,
i the Marangoni traction produces its maximum effect on the
Vo= Re[f/o exr{i)] interfacial velocity, slowing the motion of the liquid from the
trough to the crest of the wave; therefore, the tangential velocity
turns to zero before the free surface attains its maximum
deformation. If we assume that the effect of diffusion remains
practically the same ag increaseswhich is a hypothesis
supported by the fact that the solutions obtained (not reported
here) indicate thaf, diminishes asMa is augmentettwe
i conclude that the increase iipy from 0.5 to 0.75 results
[To max| = ‘RE{—iOHO(O) EXL(E)” from a phase shift between the motion of the liquid along the
interface and that in the bulk phase. This situation is depicted

which occur between points A and B, are sketched. in Figure 4d.

It is easy to see that, when the deformation of the free surface ~ Following similar reasoning, we can conclude that, Regs
is maximum, |tio max| is equal to zero, and that when the free = 7.991x 10* and sufficiently large8, the phase shift between
surface is flat,|tomax| is maximum. In case (i), the local the evolutions ofyg andhg results from a phase shift between
concentration of solute is dependent only on the convective the motions of the liquid in the bulk and along the interface
transport (see eq 18); therefore, the motion of the solute will that is~0.75 (see Figure 4c).
have the same direction as the tangential component of the Numerical solutions of the fully nonlinear problem previously
surface velocity, and the evolution of the free surface height reported® qualitatively agree with the aforementioned discus-
and the local concentration of solute will be in phase, which is sion. In fact, the phase shift between the evolutions of the free
aresult that can be easily derived from egs A-14 and A-15 from surface deflection and the tangential component of the surface
the Appendix wherPes > 1. Therefore, at the initial time  velocity increases g8 is augmented.

EaLN |u0.MAX

-1 (@

and the local concentration of solute,

(at a point A of the free surface that,tat 0, is at the crest of

a wave whose trough is located at point B), and the maximum
absolute value of the dominant mode of the tangential compo-
nent of the free surface velocity,
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Figure 5. Dimensionless critical force and wavenumber, as a function of Figure 6. (a) Amplitude of the tangential surface stretchinlys, and
the Boussinesq numbeB¢) when elastic effects are negligible. magnitude of the curl of the surface velocity, versusMa; (b) phase
difference betweeryg andhg, Ago, as a function oMa for Pes = 7.99
x 104

The magnitude of the curl of the surface velocity can be

associated with viscous dissipation at the free surface (see, for,,,qgite 1o that described in Figure 2 for surface elasticity. Also,
instance, eqgs 21 and 1.15 of ref 20). Thus, the largerFhe

. neither the absolute maximum presentedrgyhor the absolute
value, the larger thes, value. A comparison of the curves i im exhibited byke vs Ma, whenPes > 1, are observed
depicted in Figures 2a and 3b, fées = 7.991 x 10* and

0.07991, shows th&ic andrg, are indeed correlated. In all three

- ; N To further discuss the effects that surface viscosity has on
cases, the value achieved iy at largeMa is ~10 times greater

> . o the system, we calculated the phase difference between the
than its value when elastic effects are negligible, whereas the e tacial concentration of surfactant and the temporal evolution
Fc value only increases by a factor of 3. of the free surface deflections, the amplitude of the tangential
The ultimate effect of surface elasticity is to make the gyrface stretching, and the magnitude of the curl of the surface
deformation of the free surface very similar to that of an yg|ocity for 0< Bo <5000. The results are illustrated in Figure
incompressible solid plate. This fact can easily be concluded, g5 and b forBo within the range of 0.0£5000, because no
observing thadus, is almost zero foMa >1000 (see Figure significant changes are noticed for smaliw.
3b), and that = 0 at the trough and at the crest of the waves.  Tne effect of increasing viscous effects on these variables is
A salient feature of the curves dlip vs Ma is the maximum  qjite similar to the effect of increasing the elastic number. Both

presented wheRes = 7.991 x 10*, which occurs aMa = 9, dus, and rs, are monotonic functions oBo; they are almost

that is, simultaneously with the minimum observedkinfor constant at both low and largBo. The magnitude ofdus,

the same value cﬁ’es (see Elgure 2b). It is interesting to noté  jecreases and approaches zero as the surface viscosity increases,
that the inextensible behavior of the free surface wikler= 1 noting that the velocity distribution becomes smootheBas

has been exploited by Huber et’4fto analyze the formation  jncreases: moreover, at large values of this parameter, the
of Faraday waves on the free surface of normal alkane undergeformation of the free surface is similar to that of a solid plate.
surface freezing conditions. The magnitude ofrs, increases withBo until it becomes
3.2. Surface Viscosity.To assess the effect of surface approximately equal to 10 times the value corresponding to a
viscosity on the formation of Faraday waves, we computed the clean interface, wheBo ~ 1000. From this last result, we can
solution of the linear problem over a large rangeBofvalues. infer that the increasing force required to form the waveBas
The largest value assigned to this parameto & 10%) is augmented is due to the larger viscous dissipation near the
represents a system in which the viscosity of the free surface isinterface associated with the presence of the surfattght.
equal to 5.15x 1073 Pa m s, that is, 5.15 times greater than  The results illustrated in Figure 6b, correspondinghigy,
the ViSCOSity of the ||qU|d in the bulk. TyplCﬁO values could are for Pes = 7.99 x 104 A¢O is indeed a function OP%;
be between 0 (for a surfactant-free interface) and ».30° nevertheless, in the present situation (in the absence of elastic
(when calculated usings + «s ~ 0.65 N s/m). effects), the velocity field is not affected by the distribution of
As we already noted, the system of eqs-18 indicates that, solute; therefore, the only effect of a decreasifg; is a
when the surface tension is constant, the interfacial viscosity translation of the curve algo vs Bo toward larger values of
creates a nonzero tangential component of the surface tractionthe phase difference (see egs 18 and A-15).
that opposes nonhomogeneous deformations of the interface (see The phase difference between the temporal evolution of the
eq 17). Besides, in this event, the velocity and pressure fields, interfacial concentration of surfactant and the free surface
as well as the amplitude of the free surface, are independent ofdeflections increases witBo. One might speculate that, as the
the interfacial concentration of surfactal, (= 0; see eq 24).  surface viscosity is augmented, the second term in eq 18, which
The curves of¢c andk, as a function oBo, are very similar represents the convective transport of surfactant, diminishes and,
(see Figure 5): both variables remain constant for siBall thus, the interfacial distribution of surfactant becomes more and
and then they experience a sharp increase to attain a value thamore dependent on surface diffusion. However, we have already
remains constant and is equal to that reported in the previousmentioned that the shape of the curve &# vs Bo is
section forMa — c andBo = 0. The effect of increasing surface  independent oPes; therefore, the phase shift also changes when
viscosity is first noticed ifF¢c and then irkc; that is, a behavior Pes < 1. Moreover, the solutions of the linear problem (not
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presented here) show that diminishes adBo is augmented. 24]

Therefore,A¢o becomes larger because the evolutions of the 1
tangential surface velocity and the free surface deflection 2,2—_
becomes out of phase; that is, approaches zero along the 2.0
entire interface before the free surface achieves its maximum 181
deformation. At largeBo, the evolutions of free surface height ]
and the maximum absolute value of the tangential component 1,6
of the free surface velocity are similar to those sketched in g 4 4]
Figure 4d, and the concentration of surfactant follows the same © |
trend as|tio max|- 1.2
From the curves illustrated in Figure 6b, it is easy to notice 1,04
that the limit achieved bA¢o is ~0.25, i.e., a value significantly X7 N D
smaller than that reported in the previous section, when elastic 1 @
effects were discussed. This issue has been previously reported 05‘_ ....... Ma=100
when the numerical solution of the full nonlinear problem was 0,4 ~——rrrrm—r—rrrr—r—rrrr T
discussed? 0,01 0,1 1 10 100 1000 10000
3.3. Combined Effects of Surface Viscosity and Surface Bo
Elasticity. Results discussed in the previous paragraphs show  0.656
that the force required to form waves on a free surface 0.654-
contaminated with a surfactant conferring elastic or viscous R
properties to the interface is larger than that on a clean surface. 0652 _
On one hand, the gradient of interfacial concentration of 0.650 4
surfactant that accompanies the deformation of the free surface 1
causes a gradient of surface tension that opposes a nonuniform 0'648'_
distribution of the surfactant and, consequently, the motion of 0.646 -
the liquid. On the other hand, surface viscosity hinders the ke 0.644 ]
liquid motion by opposing the nonuniform deformation of the R
free surface. For sufficiently large values bfa or Bo, the 0.642
liquid surface behaves as an incompressible solid surface: as ¢ g40-
the surface deforms, it bends almost without contracting or .
expanding. 0'638'_
In this section, we discuss the combined effects of surface  0.636 1

viscosity and surface elasticity on the conditions for the onset
of the waves. To this end, we built the stability charts on the
F—k plane for selected values dfa, a wide range oBo, and

for Pes = 7.991 x 10* and 0.7991. From these maps, we
determined the values dfc and k¢ for the particular set of
parameters chosen. Figure 7a and b shows the evolutibp of
andkc vs Bo, respectively, whePes = 7.991 x 10%

The values ofMa used in the analysis were selected \a the lower limit of this region corresponds to a largam
considering the results reported in Figure 2a: the first three ag\va becomes larger. This fact, together with the nonmonotonic
values are to the left and the last three to the right of the pahavior exhibited bfc, as a function oMa (see the inset in

R | MR | MR | MR
10 100 1000 10000

Bo

Figure 7. (a) Dimensionless critical force and (b) wavenumber, as a
function of Bo for selected values dfla. Other parameters of the system
areRe= 199.8,Ca= 0.0055,B = 0.0371,z = —2.914, ancPes = 7.991

x 104

0.01 0.1

maximum presented blyc vs Ma.

The minimum force needed to form the waves as well as the
critical wavenumber are not sensitive to variations of surface
viscosity at small and large values®b. At low Bo, Fc andkc
are dependent oMa, whereas at larg8o, they attained the
limits reported in the previous section; i.&¢ ~ 1.40 andkc
~ 0.655 (see Figures 2 and 5). Moreover, the results illustrated
in Figure 3a and in the inset of Figure 7a, show that there exists
a range ofMa within which Fc > 1.4. The extension of this
region is dependent dBo: it is larger for very small values of
this parameter and it is no longer present o > 100.
Therefore, according to the selected valueMd, the critical
force will either decrease or increaseBsis augmented. We
have noted previously that there is a reverse interfacial flow
when surface elasticity rules the behavior of the system; kliles
argued that the film back flow, when near in quadrature with
the bulk flow, results in an enhanced viscous dissipation, relative
to the viscous dissipation produced by an inextensible surface
as that formed when the surface viscosity is very large. This
larger viscous dissipation leads to a bigger

The region ofBo within which an increase of this parameter

Figure 7a), leads to the intersection of the curves.

All the curves illustrated in Figure 7b that correspond to the
evolution ofkc with Bo merge when this parameter 400.
Another feature of the results reported in this figure is the
minimum detected foMa = 25, 50, and 100, which moves
toward higheBo asMa is augmented.

We also evaluated here the evolution of some interfacial
variables, and the results obtained are depicted in Figure 8a
As expected, all these variables are dependent exclusively on
Ma when the surface viscosity is small; consequently, they
present the features described previousliyHor= 0; also, they
approach a limit that is independent ia and Bo when the
surface viscosity is large enough. The results illustrated in Figure
8a show thatlus, monotonically decreases Bs increases, and
that the differences due to surface elasticity become less
remarkable aBo becomes larger; therefore, the maximum
exhibited bydus, with Ma for a fixed Bo (see Figure 3b) is
noticeable, up tdBo values closer to 20. FdBo > 400, the
amplitude of the tangential stretching approaches zero for all
the systems studied.

The magnitude of the curl of surface velocity ver&sis

affects the response of the system is dependent on the value ofllustrated in Figure 8b. For negligible surface viscosity, as
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negligible andPes > 1 is not longer observed when the surface
viscosity dominates the dynamics of the system. Also, whenever
the critical force passes through a maximum, the critical
wavenumber passes through a minimum (though not simulta-
neously); therefore, in this case, the wavelength of the waves
formed in a contaminated surface can be slightly larger than
that for a clean interface.

The study that has been performed notes that, in the limit of
either very high elasticity or very high viscosity, the free surface
deforms in a manner similar to that of a solid plate; that is, it
bends almost without contracting or expanding. The only
difference observed is the smaller value of the phase difference
between the variations of surfactant concentration and the free
surface deflections for larg@o and lowMa, compared to that
attained at largdv/la and smallBo.

0.8
0.6+

A, 041
0.2
0.0 e
0.01 0.1 1 10 100 1000 10000 We also showed how the evaluation of interfacial properties
Bo such as the amplitude of the tangential surface stretching and
Figure 8. Evolution of @) dus,, (b) rs, and €) A¢o, each as a function of of the curl of the surface velocity contribute to a better

Bofor selected values d¥la. Other parameters of the system are the same ynderstanding of the behavior of the system.
as those described in Figure 7.

. . . Appendix. m ion of the Interfacial Variabl
a function ofMa, follows the nonmonotonic trend reported in ppendix. Computation of the Interfacial Variables

Figure 3b, and for largBo, this property approaches 5.5, which . . .
is the value previously reported for the inextensible limit. The ~ The phase shift A¢y) between the corresponding time-
most remarkable feature of the curves reported in this figure is Periodic modes of the interfacial concentration of surfactpit (
the local minimum observed whevla > 0.5: this minimum and the deflection of the free surfadey)(was calculated for
becomes less important and displaces toward higher values ofthe case = 0 (fundamental subharmonic mode), following the
Bo whenMa is augmented. methodology presented in Appendix B of ref 9. Besides, to
The results illustrated in Figure 8c, which correspond to the €valuate the influence of the presence of surfactants on the
phase difference between the interfacial concentration of sur- velocity field, the amplitude of the horizontal divergence and
factant and the free surface deﬂections’ show that’ atBovv the curl of the surface Velocity were calculated. With this
A¢o is dependent only oMa, but then this variable either ~Purpose, and without losing generality, theaxis was taken
decreasesMa < 5) or increasesMa = 10), until it becomes ~ along the direction of the wavevectdq)( then, Viy-v® = u/dx
approximately equal to 0.25 for sufficiently lar@®, indepen- and Vxv® = (3u/dz — dw/8X)—j -
dent ofMa. That is, Ago achieves the limit reported already  very priefly, the calculation oWV is described next. The
for a system contaminated a surfactant that only confers to thecontinuity equation implies
interface viscous effects.
The different behavior of the phase difference results from
the competition between elastic and viscous tensiordalf Yooy, 4 ow _ 0— ou_  aw (A-1)
20 andBo < 1, the convective transport of solute will reverse H O
before the motion of the liquid in the bulk, and a phase shift
even larger than 0.5 (the maximum phase difference attributable
exclusively to surface diffusion) can be observed. In this case,
an increase oBo not only diminishes the interfacial velocity
but also avoids the asynchronous motion of the interface and w =&z 1)
the bulk. '
If the aforementioned analysis is conductedPeg = 0.7991, . - ; . i
very similar results are obta?/ned. The more remarkable differ- W= [W,2e"*™ +irze ] (A-2)
ences are the disappearance of the minimum in the curves of "=
kc and the displacement of the minimum values gftoward
higher values of bottMa andBo. These features suggest that whereW is the complex conjugate d,,

elastic effects are less noticeable when the ratio between the ) o )
magnitudes of diffusion and convection 3sl. From eq A-2, and with a procedure similar to that used in

ref 7 to calculateA¢o, the following expression can be obtained:

0z oX 0z

where

<)

4, Conclusion

of both surface elasticity and surface viscosity on the onset of oz

Faraday waves on a liquid layer of arbitrary depth. Results

reported here for typical values Bfe Ca, B, andz show that

the presence of a surfactant always increases the force required herefore, the amplitude @w/dzin z= 0 is dependent on the
to develop a wavy interface; nevertheless, the nonmonotonic modulus of d/dz|—o, which is evaluated by taking into account
behavior exhibited byc vs Ma when the surface viscosity is  that div,/dz|.~o = —kb, + gnd,, where

: : N w o= diy 1 ]
The linear analysis presented in this work includes the effects ékszd_”‘ CO{(E"’ n)t+¢n] (A-3)
n=| z
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—kb, + q.d, = k{[h,(—3K* + 2K%qr* + q,%) +
27 K¥MaRdq,[—1 + coshkz,) cosh(},z-)] +
K[, (K + 2Kk’qr? — 3g,%) —
7. + q.)MaRdsinh (kz,)sinh @,z-)} =~ DENO (A-4)
DENO = Rd(q, — K)f, + kBoe]
f, = 0, cosh(1,z) sinhkz,) — k sinh(g,z,) coshkz,) (A-6)

e, = 2K’q,[1 — cosh,z>) coshkz,)] +
k(K* + 0,") sinh@,z:) sinhkz,) (A-7)

(A-5)

In the aforementioned expressiohsijs the (i+1)th component

h = h, expk-x) exp{ (Ii)t]
7 = Yo expk-x) exp[(ié)t]
w = Wy(2) expk-x) exp{ (lz)t]

Also, in this contextuy represents the component of the velocity
along the direction of the wavevector:

u,= CIHO(Z) expk-x) ex;{ (lz)t]

If these expressions are introduced in egs 15 and 18, the

of the eigenvector corresponding to the largest eigenvalue, andfollowing equations are easily obtained:

yn is evaluated with eq 25. It is important to note that, in the

routine used to solve the problem, the eigenvectors are scaled
so that the norm of each is equal to one; therefore, values of
the interfacial properties are referenced to unity and not to the

actual amplitude of the free surface deformation.

The calculations performed indicate thatittlz|,—o > dWy/
dz|,—o for n > 1; thus, the amplitude obw/9z/.—o can be

represented by the first term of the series in all the results shown

in this work.

Concerning the magnitude of the curl of surface velocity, it
can be easily verified, from egs A-1 and A-2, that

3W_ o ikxa
o ike"W(t,2) (A-8)
oW

u=— W E + f(Z,t) (A-g)

Because there is no mean flow along the horizontal direction,
f(zt) = 0. Consequently, from eqgs A-8 and A-9,

(Vxv)

.(l AW ikx (A-10)

=iz = —kWw| €
Y k822 )220

Finally, replacing eq A-2 in eq A-10, we obtain the following
expression for the curl:

00

. N 1 .
(V x v), =5 2IC| coa{(an + t) +¢,| (A-11)

n=

Ineq A-11,C,= i(REK)(0 + n)c, and tanisn = (Cn,i/(?n,r), where

h {ik’Re(0 + n)[—2f, + Bok(g, — |)]} — MaRek7,f,

n DENO

(A-12)

In = 0O COSh((ZP) COShQnZP) -
k sinhkz) sinh@,z) (A-13)

Also, in this case, the results obtained indicate that the magnitude

of the curl of the surface velocity is determined by the value of
the first coefficient of the seriesCyl. In the text, |Col is
referenced asg,.

It is also useful to take into account that the standing
subharmonic solutions are approximately given by

angle@(0)) — anglef) = 7 (A-14)

angIeHGHO(O)) —angle,) = angle(ié + %) (A-15)

We have evaluated angtei{i,(0)) — anglef) instead of angle-
(One(0)) — anglefo), becauséi(0) is spatially shifted byr/(2Kk),
with respect toiig(0), ho, or Po.
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