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ABSTRACT

Even within the simplest real solar cell model, the exact value of the fill factor (FF) is only computable by numerical
calculations. Here, we perform approximations to the power–voltage curve given by the one-diode model with series
and shunt resistance losses, obtaining explicit expressions for the voltage and current at the maximum power point, and thus
an explicit approach for the FF. Over a broad range of possible solar cell parameters, including cells where the impact of
shunt losses on the fill factor is not negligible, the approximate equations yield relative errors typically around 1%. The
equations are applied to explore the dependence of FF on alternative buffer material thickness of organic solar cells,
and to investigate the incidence of shunt and series resistance losses on the FF of Cu(In,Ga)Se2 solar cells under indoor
illumination conditions. Copyright © 2012 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Solar cell development requires appropriate loss diagnoses
based on measured output characteristics. A fundamental
analysis consists in the fitting of current density–voltage J
(V) curves using single or double-diode models to represent
the equivalent electrical circuit of a solar cell [1–3]. In real
solar cells, the electrical model also requires the inclusion
of both series and parallel (or shunt) resistance losses [1,4].
Within the single-diode model of real solar cells, the implicit
current density–voltage J(V) equation reads as follows:

J Vð Þ ¼ J0 exp
V � Jrs
AVt

� �
� 1

� �
þ V � Jrs

rp
� Jph (1)

Where J0 is the reverse saturation current density,A the diode
ideality factor, Vt the thermal voltage, Jph the photocurrent
density, rs the specific series resistance and rp the specific
parallel (or shunt) resistance. The thermal voltage is given
by Vt= kT/q, being k Boltzmann’s constant, q the elementary
charge, and T the device temperature. The knowledge of the
parameters of Equation (1) allows quantifying the effect of
the recombination losses represented by J0 and A, and the
resistance losses represented by rs and rp, on the fill factor
Copyright © 2012 John Wiley & Sons, Ltd.
(FF) and efficiency. Alternatively, Equation (1) helps to
predict the potential to increase the efficiency when reducing
each loss mechanism. At the maximum power point (MPP)
of the J(V) curve, the corresponding current density
JMPP and voltage VMPP yield the maximum power density
PMPP = JMPP�VMPP, defining the FF as follows [5]:

FF ¼ VMPPJMPP

VOCJSC
(2)

Where VOC is the open-circuit voltage and JSC the short
circuit current density. With the incident power density
Pph, the power conversion efficiency � reads [5]:

� ¼ VOC JSCj jFF
Pph

(3)

Despite its simplicity, Equation (1) requires a numerical
solution to obtain a J(V) curve. This reduces the power of
analysis that would deliver a single equation of the efficiency
as a function of the involved parameters. This restriction to
numerical solutions motivated approximate models that
led to a number of analytical expressions of the fill factor
and efficiency of solar cells. In the review by Sánchez and
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Araújo, several analytical models for the efficiency of solar
cells are compared, aiming at concentrator solar cells [6].
Because the mentioned approaches neglect parallel
resistance losses, such approximations are of great help
mainly in the evaluation of high performance and concentra-
tor solar cells, where the parallel resistance losses are
normally negligible [1,7]. Obviously, rp is not negligible in
general: for example, in solar cells with much higher area
than typical laboratory scale cells or photovoltaic modules,
where rp is much smaller, or in state-of-the-art organic solar
cells [8–10], where parallel resistance losses cannot be
neglected in order to explain the measured J(V) curves—even
at a superficial level. Additionally, under low light intensity
conditions (e.g., indoor illumination), parallel resistance losses
play also a key role even in highly efficient Si [11] and
Cu(In,Ga)Se2 (CIGS) solar cells [12,13].

In this contribution, we deduce analytical expressions for
JMPP and VMPP assuming series as well as parallel resistance
losses in solar cells obeying Equation (1), enabling the
analytical computation of the fill factor and, hence, of the
efficiency. The final equations are expressed in terms of
basic algebraic operations and elementary functions, such
as exponential and logarithm functions. In Section 2, we
present the theoretical lineout of the model, obtaining first
the equations for fill factor and efficiency without resistance
effects and then the equations considering resistance losses.
The specific mathematical steps needed to arrive at the final
equations are detailed in the Appendix. Section 3 gives brief
application examples in the following: (a) the optimization
of organic solar cells under sunlight operation; and (b) resis-
tance effects in CIGS cells under low-irradiance conditions.
2. THEORY

Recently, Equation (1) has been reformulated into an
explicit form by incorporating the Lambert W-function
[14–16], being J(V) given by [16]:

J Vð Þ ¼ V � rp J0 þ Jph
� �

rp þ rs

þAVt

rs
W

rprsJ0
AVt rp þ rs
� � exp rp rs J0 þ Jph

� �þ V
� �
AVt rp þ rs
� �

 !" #

(4)

Where W is the Lambert W-function, defined by the
solution to the equation z =W(z)exp[W(z)]. The inverse
form of Equation (4), namely the V(J) curve, is given by
[14]:

Jð Þ ¼ rp J0 þ Jph
� �þ rs þ rp

� �
J

�AVtW
rpJ0
AVt

exp
rp J þ J0 þ Jph
� �

AVt

� �� � (5)

Using these expressions, we obtain equations for the
short-circuit current density JSC = J(0), and the open-circuit
voltage VOC =V(0). Let us briefly show that both equations
allow to express the current–voltage curve as a function of
only three not directly measurable parameters, rs, rp, and A,
eliminating the unknowns J0 and Jph. Indeed, when Equa-
tions (4) and (5) are equated to J(0) = JSC and V(0)=VOC,
respectively, we obtain a system of two equations, which
yield the exact solutions

Jph ¼
VOC � rp þ rs

� �
JSC eVOC=AVt � 1
� �� 	

eJSCrs=AVt � VOC

rp e JSCRsþVOCð Þ=AVt � 1ð Þ
(6)and

J0 ¼
rp þ rs
� �

JSC þ VOC

rp e�JSCRs=AVt � eVOC=AVtð Þ (7)

In the following, we shall obtain expressions of VMPP

and JMPP from the explicit equations for J(V) and V(J),
Equations (4) and (5), respectively. Although the Lambert
W-function is well embedded in modern computational
software, we are interested in finding expressions in terms
of elementary functions, which are desirable in order to
simplify the analysis by direct inspection of the equations,
and also to enable their computation by non-specific
software such as spreadsheets or curve-plotting software.
For these purposes, we will make use of asymptotic approx-
imations to W(z), which are given by [17–19]:

W zð Þ ¼ z for z < e
ln zð Þ � ln ln zð Þ½ � for z≥ e



(8)

Where we use the definition e= exp(1). Both approximations
are asymptotically accurate in the specified ranges of the
argument z.

2.1. Resistance-free solar cell

In order to obtain reference solutions and be introduced to
the mechanics of using Equation (8), let us first solve the
simplest case where no resistance losses occur, that is,
setting rs = 0 and letting rp!1 in Equation (1). We
obtain the open circuit voltage

VOC ¼ AVt ln 1þ Jph=J0
� �

(9)

and the short-circuit current density JSC=�Jph. Because
VOC and JSC are directly measurable quantities, one might
use Jph=�JSC and, from Equation (9), we obtain the satura-
tion current density J0 =� JSC[exp(VOC/AVt)� 1]� 1. This
allows rewriting the resistance-free current–voltage
equation as follows:

J Vð Þ ¼ JSC 1� exp V=AVtð Þ � 1
exp VOC=AVtð Þ � 1

� �
(10)

When computing the power density P=V� J(V), we
find the maximum delivered power point at the voltage
VMPP given by the following exact expression:
Prog. Photovolt: Res. Appl. (2012) © 2012 John Wiley & Sons, Ltd.
DOI: 10.1002/pip



Figure 1. Sample normalized current–voltage curves of solar cells
having the following: (1) no resistance effects, (2) a series resis-
tancewhich satisfies 3Jphrs=VOC, (3) a shunt resistance satisfying
2
3 Jphrp ¼ VOC , and (4) a series and shunt resistance satisfying
simultaneously the conditions of both (2) and (3). The approx-
imate equations for the fill factor presented in the text cover
curves (1)–(4) within a relative error between 1 and 5%.
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VMPP ¼ AVt W exp 1þ VOC=AVtð Þ½ � � 1f g (11)

The exact current density JMPP at the MPP is calculated
replacing VMPP in Equation (10). Equation (11) is readily
simplified as it is sufficient that VOC>AVt to turn the
argument of the Lambert W-function greater than e. This
allows to use the second asymptotic approximation (case
z≥ e) of the Lambert W-function from Equation (8),
yielding:

VMPP ffi VOC � AVt ln 1þ VOC=AVtð Þ (12)

This expression agrees with textbook equations [20] that
use simplifications not relying on the exact expression of
VMPP involvingW given by Equation (11). The error of VMPP

calculated with Equation (12) relative to the exact VMPP

delivered by Equation (11) is between 5 and 10% for a wide
practical range of VOC/AVt=25–10, respectively.

With VMPP given by Equation (12), the approximate
current–density at the MPP evaluated from Equation
(10) yields

JMPP ffi JSC
1� exp �VOC=AVtð Þ½ � 1þ AVt=VOCð Þ (13)

which correctly gives JMPP= JSC in the limit VOC/AVt!1.
The fill factor is obtained evaluating Equation (2) using
Equations (12) and (13), which, neglecting the exponential
term in Equation (13), yields

FF ffi VOC=AVt � ln 1þ VOC=AVtð Þ
1þ VOC=AVt

(14)

which agrees with well known textbook formulas [20]. In the
range VOC/AVt=10–25, this equation gives FF with a rela-
tive error of 12–4%, respectively.

2.2. Real solar cell

In order to proceed to calculate the MPP, we make
three simplifying assumptions, A1, A2, and A3, which
read as follows:

A1. the photocurrent satisfies Jph>> J0,
A2. the parallel resistance is larger than the series

resistance, rp> rs, and
A3. the open circuit voltage satisfies 3Jphrs < VOC <

2
3 Jphrp.

Note that A2 is valid for both non-optimized solar cells as
well as optimized solar cells, which certainly will satisfy rp>>
rs. The limits of A3 are shown in Figure 1, where we find the
following J(V) curves normalized to the resistance-free
values of VOC and -JSC: reference with no resistance effects
(curve 1), series resistance satisfying 3Jphrs=VOC (curve 2),
shunt resistance satisfying 2

3 Jphrp ¼ VOC (curve 3), and series
Prog. Photovolt: Res. Appl. (2012) © 2012 John Wiley & Sons, Ltd.
DOI: 10.1002/pip
and parallel resistance where the conditions of both curves 2
and 3 are satisfied, that is, 3Jphrs ¼ VOC ¼ 2

3 Jphrp (curve 4).
All curves in Figure 1 were calculated with A=1.5.

In the following, assumptions A1–A3 are introduced in
the solution process to obtain the MPP. Taking A1, Equation
(4) becomes as follows:

J Vð Þ ¼ V � rpJph
rp þ rs

þ AVt

rs
W f Vð Þ½ � (15)

Where the argument of the Lambert W-function f(V) is
given by:

f Vð Þ ¼ J0rs
AVt 1þ rs=rp
� � exp Jphrs þ V

AVt 1þ rs=rp
� �

 !
(16)

Let us express P(V)=V� J(V) and differentiate with
respect to V. In the derivation procedure, we must take
into account the property dW(z)/dz= z� 1W(z)/[1 +W(z)],
obtaining:

dP Vð Þ
dV

¼ 2V � Jphrp
rp þ rs

þ AVt

rs
W f Vð Þ½ �

þV

rs

rp
rp þ rs

W f Vð Þ½ �
1þW f Vð Þ½ �

(17)

The voltage VMPP corresponding to the MPP is the
solution of dP(V)/dV=0. In the Appendix, we show that
around VMPP, the “2V” in the first quotient of Equation (17)
turns negligible, and also that assumptionA2 leads to neglecting
the second term of Equation (17). The resulting final approxi-
mate expression for VMPP is given by:



VMPP ffi 1þ rs=rp
� �

VOC � AVt ln
VOC

AVt
� 2Jphrs
AVt 1þ rs=rp
� �

" #( )
� Jphrs (18)
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The current density JMPP at the MPP results as follows:

JMPP ffi VMPP � Jphrp
rp þ rs

þ J0rp
rp þ rs

exp
Jphrs þ VMPP

1þ rs=rp
� �

AVt

 !
(19)

These equations allow to calculate the FF (Equation (2))
and conversion efficiency (Equation (3)) of real solar cells
that satisfy assumptions A1–A3. We notice that both
expressions are consistent with the “resistance-free” case,
because with rs=0 and rp!1, Equation (18) correctly
yields Equation (12) when VOC/AVt≫ 1, and Equation (19)
yields JMPP=� Jph+ J0exp(VMPP/AVt), which by replacing
VMPP from Equation (18) and letting VOC/AVt≫ 1, yields
JMPP =� Jphffi JSC.

Next, we show the errormadewhen using the approximate
expressions (18) and (19) to calculate the efficiency. The
“exact” FFex is calculated using VMPP from the numerical root
of the derivative of the power density d(J�V)/dV=0, with
the expression of J(V) from Equation (4), which is then used
to compute JMPP. With the approximate FFapp obtained with
Equations (18), (19) and (3), we calculate the relative error
er=1�FFapp/FFex. In order to cover a broad range of possible
situations, we consider combinations of high and low VOC
solar cells having high and low JSC, across more than two
orders of magnitude in rs and rp. Figure 2 shows a contour
plot of the relative error er as a function of rs and rp for a cell
having VOC=0.5V and the short-circuit current densities
indicated in each plot. The hatched horizontal/vertical
areas belong to regions of the parameters where the r.h.s./l.
h.s. of assumption A3 are not satisfied. Figure 3 shows corre-
sponding contour plots of er in a solar cell with higher voltage
Figure 2. Contour curves of the relative error in the fill factor calculated
factor obtained by root finding of Equation (17). The parameters assum
voltage Vt=25mV, and the short-circuit current densities JSC=5, 15 an
VOC=0.75V, assuming the short circuit current densities
indicated in each plot. Both Figures 2 and 3 were obtained
considering an ideality A=1.5, a thermal voltage Vt=25mV,
and an incident power density Pph=100mW/cm2.
Collectively, both Figures 2 and 3 show that with realistic
combinations of low/high current and voltage solar cells and
low/high series and shunt resistance effects, the present model
yields values of the FF, and thus of the efficiency �, with a
relative error typically around 1% and always below 5%.
3. APPLICATION EXAMPLES

Here, we show two brief examples where the present model
is applied to practical solar cells. Both cases are aimed at
highlighting the use of the model in cases where both
series and parallel resistance losses have a non-negligible
effect on the FF.

3.1. Optimization of electron contact layer
thickness of organic solar cells

In organic photovoltaics, flexible organic solar panels are an
attractive application that is currently approaching industrial
status [21], despite the fact that research efforts towards
optimization are still required. Organic polymer solar cells
are typically prepared with indium-tin-oxide (ITO) as a
highly convenient transparent electron contact material
[22]. However, ITO seems not to be an optimum choice for
flexible applications, because bending induces microscopic
cracks in this layer—strongly reducing device efficiency.
Therefore, investigation efforts are directed towards
from the approximate equations (18) and (19) and the “exact” fill
ed are an open circuit voltage VOC=0.5V, ideality A=1.5, thermal
d 35mAcm�2 corresponding to graphs (a), (b) and (c), respectively.

Prog. Photovolt: Res. Appl. (2012) © 2012 John Wiley & Sons, Ltd.
DOI: 10.1002/pip



Figure 3. Calculation error in the fill factor calculated from the approximate equations (18) and (19) and the “exact” fill factor obtained
by root finding of Equation (17). The parameters assumed are the open circuit voltage VOC=0.75V, the ideality A=1.5, the thermal
voltage Vt=25, and the short-circuit current densities JSC= 5, 15 and 35mAcm�2 corresponding to graphs (a), (b) and (c), respectively.
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replacing ITO by alternative materials [23]. Recently, S. K.
Hau and coworkers replaced the ITO layer in inverted-
structure poly-3-hexylthiophene:[6,6]-phenyl-C61-butyric acid
methyl ester (P3HT:PCBM) bulk heterojunction solar
cells by a layer of the transparent polymer Poly(3,4-ethylene-
dioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) of
Figure 4. Illuminated current voltage curves of organic solar cells
prepared using four different PEDOT:PSS thickness (symbols),
fitted by the one-diode model (solid lines). The obtained solar cell
output parameters and diode fit parameters are listed in Table I.

Table I. Short-circuit current density JSC, open circuit voltage VOC, fill
and saturation current density of organic solar cells reported in Refere

shows the maximum deviation error obta

PEDOT:PSS thickness (nm) JSC (A cm�2) VOC (mV) FF [%]

40 92.6 619 40.4
130 93.7 614 54.6
170 84.8 613 58.4
220 82.5 609 60.0

Prog. Photovolt: Res. Appl. (2012) © 2012 John Wiley & Sons, Ltd.
DOI: 10.1002/pip
various thickness [24]. Although they obtained no
bending degradation, the lower conductivity of PEDOT:
PSS compared with ITO required an optimization of the
thickness of PEDOT:PSS, additionally taking into account
the lower optical transmittance with increasing thickness
[24]. Here, we analyze the data of Hau et al. using our model,
mainly aiming at the dependence of the FF on resistance
losses. Figure 4 shows the J(V) curves (data points) for
different PEDOT:PSS thickness values, as reported in
Reference [24], together with the corresponding fits (solid
lines) we obtained using Equation (1). Table I gives the
electrical output parameters JSCffi� Jph, VOC and FF of each
cell, as well as the fit parameters rs, rp, A, and J0, sorted
according to the PEDOT:PSS thickness. The rightmost
column shows themaximum fit error defined as the deviation
between data points and fit curve. Evidently, the one-diode
model is sufficient to accurately fit all of the J(V) curves,
enabling to deepen the analysis within our model.

On the right axis of Figure 5, we read the reported
PEDOT:PSS thickness (stars) as a function of the series
resistance, clearly revealing the correlation of increasing
resistance with decreasing PEDOT:PSS thickness. The left
axis of Figure 5 shows the values of FF (red symbols)
versus rs, showing the decrease of FF with rs. The
decrease in FF is well reproduced by the solid line, which
is calculated using Equations (18), (19) and (3) with the
parameters A= 3, Vt= 0.025mV, rp= 7.5� 102Ω cm2,
factor FF, series(parallel) resistance rs(rp), diode ideality factor A,
nce [24] for various PEDOT:PSS layer thickness. The last column
ined from the fits shown in Figure 4.

rs (Ω cm2) rp (Ω cm2) A J0 (A cm�2) Max. error (%)

2.6� 101 6.7� 102 3.07 3.9� 10�6 0.8
5.8� 100 6.7� 102 3.05 3.6� 10�6 0.6
2.8� 100 8.9� 102 3.02 3.0� 10�6 0.3
1.0� 10�1 7.8� 102 3.02 3.0� 10�6 0.7



Figure 5. Fill factor (FF) (left axis) as a function of the series resis-
tance rs of the PEDOT:PSS layers, and correlation between
PEDOT:PSS thickness with series resistance. The solid line over
the FF data is given by the present model, explaining the decrease
of FFwith rs, and the potential to increase FF by doubling the shunt
resistance rp (dashed line). The dotted line shows the limit to FF
obtained for the limit rp!1, with the remaining parameters set

equal to the solid line (see text for details).
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Jph = 8.8mAcm�2, VOC = 620mV. These values agree
with the corresponding averages of the individual
parameters extracted from the fits (Table I). The value of
the saturation current density J0= 2.08� 10�6 A cm�2

was calculated with Equation (7) using the above
parameters and rs = 10Ω cm2. This set of diode parameters
satisfies assumptions A1–A3. As we can see in Figure 5,
the model follows the observed behavior across two orders
of magnitude of rs. We notice that taking the shunt
resistance rp into account is critical to reproduce the FF
data. Moreover, when calculating FF with a twofold
parallel resistance, we obtain the dashed curve of Figure 5,
and with rp!1, we get the ideal curve shown by the
dotted curve. This allows to conclude that an optimization
of the parallel resistance, for example, towards a twofold
higher value, could increase the FF by 5% absolute (10%
relative), provided the series resistance is kept below 100Ω
cm2 using a PEDOT:PSS thickness above 170 nm.

3.2. Cu(In,Ga)Se2 solar cells operated under
indoor illumination

The high efficiency of 20.3% reached [25] by CIGS solar
cells makes CIGS an attractive material not only for
Table II. One-sun efficiency �, series(parallel) resistance rs(rp), diode
three solar cells. The values of the diode parameters correspond

whereas the values shown in parenthese

Cell designation � (1 sun) rs (Ω cm2)

Si 18.7 0.36(0.36)
CIGS-a 17.5 0.60(0.78)
CIGS-b 18.5 0.33(0.33)
outdoor but also for indoor applications [13]. Indoor
solar cells often work at very low irradiance conditions,
resulting in higher incidence of the parallel resistance
losses compared with standard outdoor conditions
[11,13]. Here, we apply our model to explain the resistance
losses under low intensity illumination of CIGS solar cells.

Three solar cells, two CIGS solar cells, labeled samples
(a) and (b), and a Si solar cell as reference sample, were
measured. The CIGS cells were prepared at the Institute
for Photovoltaics (IPV) by the three stage process,
which yields efficiencies up to 19% on a cell area of
0.5 cm2 [26]. The CIGS absorbers had Cu-poor composi-
tion, with an average Ga content Ga/(Ga + In) = 0.35.
Details about the thickness of each layer and further
deposition parameters are given in Reference [9]. The Si
solar cell is a monocrystalline cell with diffused emitter
and nitride anti-reflection coating. The cells were
illuminated by a halogen-lamp combined with gray filters
and variable distance between the source and the cells,
obtaining three orders of magnitude in variation of the
illumination intensity. For simplicity, we define a “1-sun”
condition as the illumination intensity that yields a short
current density of 36.4mAcm�2 in the Si cell, which is
the value measured at the IPE under standard 100mW
cm�2 illumination conditions [27]. A Keithley 2400
source-meter (Keithley Instruments, Inc., Solon, OH,
USA) scanned the current–voltage curves at each illumina-
tion level, being the temperature of the cells controlled at
28 �C during the runs. Table II lists the efficiency obtained
at 1-sun conditions, according to internal measurements
performed at the IPE [27], and the diode parameters rs,
rp, A, and J0 of each cell under illuminated and
dark (shown in parentheses) conditions, as explained later
in the text.

Figure 6 shows the dependence of the open-circuit
voltage VOC (left axis) and the short-circuit current density
JSC (right axis) as a function of the illumination intensity
given in suns, measured on the Si cell (diamonds), CIGS-
a cell (circles), and CIGS-b cell (squares). We see that
the VOC versus the logarithmic illumination data practically
follows a linear behavior, indicating that a single-diode
model is sufficient to characterize the cells in the studied
illumination range. Thus, we obtain the ideality factors
given in Table II from the slope of linear fits to the VOC

versus illumination data (shown by the solid lines over
the VOC data). Collectively, the worse fit had a regression
coefficient of R = 0.997, corresponding to the data of
sample CIGS-a. We also obtained the diode parameters
ideality factor A, and saturation current density J0 measured in
to the illumination-dependent analysis (see text for details),

s belong to dark current–voltage fits.

rp (Ω cm2) A J0 (A cm�2)

1 1.20(1.25) (6.0� 10�11)
7.2(16)� 103 1.65(1.69) (9.4� 10�9)
4.2(4.5)� 103 1.75(1.73) (2.0� 10�8)

Prog. Photovolt: Res. Appl. (2012) © 2012 John Wiley & Sons, Ltd.
DOI: 10.1002/pip



Figure 6. Open circuit voltage VOC (left axis) and short circuit
current density JSC (right axis) as a function of illumination level
for a Si solar cell (diamonds), CIGS-a cell (circles), and CIGS-b cell
(squares). The observed linearity (straight lines across VOC data)
allows to assume a one-diode model to investigate the cells in

the studied illumination range. See text for details.

Figure 8. Fill factor (FF) as a function of illumination, measured
on a Si solar cell (diamonds), and two CIGS cells (circles,
squares). The solid lines are model fits assuming the diode para-
meters given in Table II, whereas the dashed, dash-dotted and
dotted lines correspond to the case where no resistance effects
are present. Comparing the resistance-free case to the data and
model curves with resistance losses, the influence of shunt
resistance at low illumination and series resistance at higher

illumination levels is revealed.
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by fitting the dark current–voltage curves shown in Figure 7
for cells CIGS-a (circles) and CIGS-b (squares), fitted by
Equation (1) (solid lines). The corresponding fit parameters
are found in Table II, given in parentheses. The diode
parameters obtained by the illumination-dependent analysis
are very close to the values obtained from the dark fits,
further validating the analysis by the one-diode model.

Now, we proceed to explain the FF versus illumination
dependence shown in Figure 8 for the measured Si cell
(diamonds), CIGS-a cell (circles), and CIGS-b cell
(squares). The solid lines in Figure 8 correspond to FF
according to Equations (2), (18) and (19), using the
parameters listed in Table II. The values of rs and rp are
taken as parameters adjusting the FF curves, whereas the
values of the saturation current density J0 were calculated
using VOC and JSC at each illumination value according
to Equation (7), and are therefore not given in Table II.
The good agreement between the model curves (solid
Figure 7. Dark current–voltage characteristics obtained for cells
labeled CIGS-a (circles) and CIGS-b (squares), fitted by Equation
(1) (solid lines), using the parameters listed in Table II in parenthesis.

Prog. Photovolt: Res. Appl. (2012) © 2012 John Wiley & Sons, Ltd.
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lines) and the data confirm the validity of using the one-
diode model in this dataset. In order to quantify the inci-
dence of the resistance losses on FF, Figure 8 also shows
the FF versus illumination curves obtained for the resis-
tance-free case (rs = 0 and rp!1) of each cell (dashed:
Si cell, dash-dotted: CIGS-a, dotted: CIGS-b). Comparing
the resistance-free curves with the solid lines and the data,
we are able to conclude that the sharp decrease shown by
the CIGS cells below 0.1 suns is explained by the effect
of the shunt resistance alone, and that series resistance
losses limit the FF around 1 sun conditions. We stress
that the model is able to follow the shift between shunt to
series-limited FF in a continuous fashion.

Figure 8 further indicates that the CIGS cells operated
under indoor irradiation of, for example, 0.01 suns could
improve the FF by up to 15% absolute by increasing rp.
As explained by Virtuani et al. in Reference [11], it is
possible to explain the marked shunting behavior by the
occurrence of shunting paths along grain boundaries in
the CIGS absorber layer. A slightly smaller grain size
would, in principle, interrupt the shunting paths, yielding
a higher rp, and therefore a reduced sensitivity of the cells
to low intensity conditions—without sacrificing efficiency.
4. CONCLUSIONS

We obtained closed-form expressions for the FF of real
solar cells obeying a one-diode law with non-negligible
series and parallel resistance losses. The obtained equations
are expressed in terms of basic mathematical functions,
providing a more accessible analysis capability than
numerical solutions. This enables also to compute the
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formulas using spreadsheets or non-specific computa-
tional software. We have shown that the FF is accurately
computed by our equations, from very low efficiency solar
cells where FF suffers from shunt resistance losses to high
efficiency solar cells. For most practical cases, the equations
yield a relative error in FF below 1% and up to 5% in
cells highly dominated by either parallel or series
resistance losses.

The use of the equations is exemplified in two practical
cases: the optimization of the fill factor adjusting the thick-
ness of the transparent electron contact layer and parallel
resistance losses in organic bulk heterojunction solar cells,
and the investigation of resistance effects in CIGS cells under
low-irradiance conditions. Both examples show that the
inclusion of both series and parallel resistance losses are
mandatory to explain the experimentally observed behavior
and to estimate the improvement potential associated to
resistance losses.
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APPENDIX

We start by showing that around VMPP, f(VMPP)< e if
assumption A3 is valid, that is 3Jphrs < VOC < 2

3 Jphrp .
This condition, according to Equation (8), allows to
express W[f(V)] = f(V), as required. Evaluated at VMPP,
Equation (16) yields:

f VMPPð Þ ¼ J0rs
AVt 1þ rs=rp
� � exp Jphrs þ VMPP

AVt 1þ rs=rp
� �

 !
(A:1)

Next, we show the conditions under which f(VMPP)< e,
considering the “resistance free” VMPP from Equation (12)
as a worst case approach that gives the highest f(VMPP).
This procedure yields conditions in terms of VOC that cover
f(VMPP)< e in excess, that is, conservatively. In Equation
(A.1), we replace J0 = Jph exp(�VOC/AVt) and also VMPP

by Equation (12), obtaining:
f VMPPð Þ ¼ rsJph exp �VOC=AVtð Þ
AVt 1þ rs=rp
� � exp

Jphrs þ VOC � AVt ln 1þ VOC=AVtð Þ
AVt 1þ rs=rp
� �

 !
(A:2)
neglecting rs/rp for simplicity and simplifying the expo-
nents yields:

f VMPPð Þ ¼ Jphrs
VOC þ AVt

exp
Jphrs
AVt

� �
(A:3)

With this expression, we find that the condition
f(VMPP)< e is fulfilled when
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VOC > Jphrsexp
Jphrs
AVt

� 1

� �
� AVt (A:4)

Because even in low efficiency, non-optimized solar
cells, the relations VOC> Jphrs and VOC>AVt are satisfied si-
multaneously, the condition Jphrs>>AVt is excluded. This
observation means that the exponent in Equation (A.4)
is not much larger than one. Additionally, if we bear in mind
that VOC in Equation (A.4) stems from the VMPP without
resistance effects, we realize that cells with high Jphrs
actually have a considerably smaller VMPP, satisfying
f(VMPP)< e with smaller values of VOC than the required by
Equation (A.4). Thus, we adopt VOC> 3Jphrs as practical
and compact variant to Equation (A.4), establishing the
l.h.s. of assumption A3 given in the main text. In the limit
VOC= 3Jphrs, a relative error of 5% is introduced by
Equations (18) and (19) in the fill factor, as shown in
Figures 2(c) and 3(c).

Next, we discuss the additional simplifications to
Equation (17) that lead to Equation (18). According to the
condition shown above leading to W[f(V)] = f(V), we rewrite
Equation (17) at the maximum power point as follows:

dP VMPPð Þ
dV

¼ 2VMPP � Jphrp
rp þ rs

þ AVt

rs
f VMPPð Þ

þVMPP

rs

rp
rp þ rs

f VMPPð Þ
1þ f VMPPð Þ ¼ 0

(A:5)

Because we are under the condition f(VMPP)< e, we
notice that the quotient containing f(VMPP) in the last term
of this expression tends asymptotically to f(VMPP) with
decreasing VMPP. Thus, the second term containing AVt is
neglected, because AVt<VMPP. We may now rewrite the
simplified Equation (A.5) in the more convenient form:

2VMPP

rp
� Jph þ VMPP

rs

f VMPPð Þ
1þ f VMPPð Þ ¼ 0 (A:6)

In this expression, we neglect the first term, but with the
condition that (2VMPP/rp)< Jph, that is avoiding the sign
reversal of the root (the last term is always positive).
Similarly to the analysis earlier, a more practical means of
establishing this condition comes into light when evaluating
VMPP using Equation (12), leading to the condition VOC <
2
3 Jphrp , that is the r.h.s. of assumption A3 in the main text.
After neglecting the term 2VMPP in Equation (A.6) and
replacing f(VMPP) by Equation (A.1), the approximate
expression of the voltage at the maximum power point is
given by:
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VMPP ffi Jphrs þ AVt 1þ rs=rp
� �

W
Jph
J0

exp
�2Jphrs

AVt 1þ rs=rp
� �

 !" # (A:7)

In this expression, it is possible show that with assumption
A3, the argument in the Lambert W-function is larger than e,
in which case, we resort to the asymptotic approximation
W(z)ffi ln(z)� ln[ln(z)] from Equation (8), and assuming
Jph/J0¼ exp(VOC/AVt), we immediately obtain VMPP given
by Equation (18) from the main text. It can be shown that
withVOC < 2

3 Jphrp, the error in assuming this approximation
of Jph/J0 is below 12% relative. Finally, we notice that it is
possible to show analytically the consistency of f(VMPP)< e
when VMPP is evaluated from Equation (18).
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