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Abstract. Hard and soft exudates are the main signs of diabetic macular edema (DME). The 

segmentation of both kinds of exudates generates valuable information not only for the 

diagnosis of DME, but also for treatment, which helps to avoid vision loss and blindness. In 

this paper, we propose a new algorithm for the automatic segmentation of exudates in ocular 

fundus images. The proposed algorithm is based on ensembles of aperture filters that detect 

exudate candidates and remove major blood vessels from the processed images. Then, logistic 

regression is used to classify each candidate as either exudate or non-exudate based on a vector 

of 31 features that characterize each potensial lesion. Finally, we tested the performance of the 

proposed algorithm using the images in the public HEI-MED database.  

1. Introduction 

Exudates are one the main signs of diabetic macular edema (DME), which occurs when the retina 

swells as a complication of diabetic retinopathy. There are two kinds of exudates, hard and soft. Hard 

exudates are composed of lipid and protein deposits that are leaked from the bloodstream into the 

retina. Soft exudates are superficial retinal microinfarcts. Both hard and soft exudates are direct 

consequences of the obstruction of the ocular blood vessels due to elevated blood sugar levels. The 

presence of exudates within the central macula, where the majority of photoreceptors are concentrated, 

can cause vision loss or even blindness in diabetic patients. In fundus ocular images of the retina, 

exudates appear as yellowish structures with well defined edges and variable shapes [1-4]. 

 

Diabetic retinopathy, and consequently DME, can be inhibited by early diagnosis and appropriate 

treatment. However, since diabetic retinopathy is asymptomatic in early stages, many people remain 

undiagnosed until they start losing their vision due to the increasing amount of hard and soft exudates 

and other pathologies that accompany diabetic retinopathy such as mycroaneurysms and new blood 

vessels. In the ideal case, a mass screening of all diabetic patients, even of those experiencing no 

vision issues, would help to diagnose DME early enough for optimal treatment [1]. At this time, such 

an undertaking would be too work and time intensive because each image must be analyzed by a 

specialist, making the early diagnosis of this pathology difficult. On the other hand, for those cases 

when diabetic retinopathy has been already diagnosed, the detection of exudates in fundus ocular 
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images generates valuable information for treatment planning. Namely, the position of exudates is 

important for laser treatment, which is the photocoagulation of the lesions to stop their progress and 

prevent blindness [3]. 

 

Several issues must be addressed when applying computer aided methods for the segmentation of 

exudates in fundus ocular images. First, hard and soft exudates have similar attributes to those of the 

optic disk in terms of color, brightness, contrast, and texture. Second, hard exudates have well defined 

structures; whereas, soft exudates have unclear boundaries. Third, in fundus ocular images, variations 

in illumination, contrast, and color in regions within the images (intra-image variability) as well as 

among the images (inter-image variability) occur. Intra-image variations are caused by differences in 

light diffusion inside the eye, lesions, and variations in reflectivity and thickness of the retina. Inter-

image variations are caused by differences in the acquisition conditions of the images (e.g., 

illumination and acquisition angle), materials (e.g., cameras), and the ethnic group from which the 

screened patients come [1,3]. 

 

Because of the aforementioned issues, the automatic segmentation of exudates is still an open field of 

research, especially when we want to develop algorithms that perform well in a broad spectrum of 

application. In the present work, we combine tools from digital image processing, pattern recognition, 

and machine learning to propose a new algorithm for the automatic segmentation of both hard and soft 

exudates. It is important to mention that in this work, we make no distinction between hard and soft 

exudates. One reason is because differentiating between them is problematic even for specialized 

ophthalmologists. Additionally, both kinds of exudates are direct consequences of diabetic 

retinopathy, and their differentiation poses no significant clinical advantage for the diagnosis of DME 

[1-4]. Therefore, hard and soft exudates will be referred to simply as exudates from now on. 

 

This paper is organized as follows. In Section 2, we describe both the source of the images as well as 

the methodology used in this work. In Section 3, we present the proposed algorithm for automatically 

segmenting exudates. Section 4 contains the results obtained and compares them with the results 

presented in recent works published in the scientific literature. Finally, in Section 5, we summarize the 

main contributions of this work and outline future possible developments. 

 

2. Images and Methodology 

 

2.1. Images 

We used the public Hamilton Eye Institute Macular Edema database (HEI-MED) [2]. This database is 

composed of 169 fundus ocular images (color images) with their associated ground truth images 

(binary images). These images, color and binary, are formed by 2196x1958 pixels. The binary images 

correspond to manual segmenetations of the regions containing exudates. Small lesions were clustered 

together for those cases in which the individual ones were not clearly discernible. The database 

contains images from a mixture of ethnicities and stages of diabetic retinopathy and includes images 

without any pathology. For this work, we randomly divided the 169 images into 3 subsets: 1TrS , 2TrS  
and TtS . 1TrS  and 2TrS  are composed of 30 images each and are used for the training stage of the 

proposed algorithm. TtS  contains the reamining 109 images, which were used for testing. 

 

2.2. Methodology 

In this subsection, we explain some theoretical aspects of the methods that compose the different steps 

of the proposed algorithm. 
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2.2.1. Color to Grayscale Transformation 

Let the function LG E:  be a grayscale image. Ε  is a nonempty subset of Z
2
, and ],0[ lL  , with 

l  Z
+
, represents a gray-level interval. For usual applications we consider 255l . The set of all 

possible images from Ε  to L  is denoted by 
ΕL . A color image is modeled as a function 

][: BGR LLLH E , usually ],0[ lLLL BGR  , such that ),,( BGR HHHH  , with 

ΕLHHH BGR ,, , where RH , BH  and GH  are the channels of the image H . In the particular case of 

RGB images, RH , BH  and GH  are the red, green and blue channels, respectively. The set of possible 

color images from Ε  to ][ BGR LLL   is denoted by 
Ε][ BGR LLL  . A pixel t  of the image H  is a 

coordinate in Ε  of the form ),( yxt   that takes the triplet ))(),(),(()( tHtHtHtH BGR , where 

],0[)(),(),( ltHtHtH BGR  . 

 

Given an RGB image H  and an arbitrary point Ht , the function EE LLLL BGR  ][:  is a 

transformation of RGB into grayscale images, such that 

 

 )()()())(()(
321

tHαtHαtHαroundtHtG
BGR

 ,    (1) 

 

where 1321  ααα , and )(round
 
rounds to nearest integer. 

 

2.2.2. Aperture Filters 

Formally, let a spatial window  nwwwW ,...,, 21 , with iw  Z
2
 and ni ,...,2,1 , be a small subset of  

Z
2
, centered at the origin of W)0,0(:Ε . The number of points of  W  is denoted by ||Wn  . 

Moreover, let consider a range window ],[ kkK  , with k Z
+
 and lk  , be an interval that 

represents the number of input gray-levels for filtering. Finally, let an aperture KW   be the 

Cartesian product of a spatial window  nwwwW ,...,, 21  and a range window ],[ kkK  . Therefore, 

given the grayscale image O  and the aperture KW  , an aperture configuration (also called 

observation) is a function KW :v , so that )( n1,...,vvv  with ||Wn  . We obtain an aperture 

configuration v  from the image O  by applying the following two steps: 1. The spatial translation of 

O  by t : )'( ttOO
t




, being Ε', tt , and then the observation of the pixel values of 
t

O


 within the 

spatial window W . This step returns the vector     .,...,1)( twOtwO ntO u
 
For simplicity of 

notation, we will refer to vector )(tOu  with u  from now on. 2. The range translation of u  by a scalar 

z Z
+
: ))(,...,)((

1
ztwOztwO

nz



u , followed by the projection of points of 

z
u  outside 

],[ kkK   to either k  or k . Formally, and denoting the projection operation by 
)( , each point 

viv , with ni ,...,2,1 , is obtained from a given observation )( n1 u,...,uu  as follows: 

 

)),,min(max()( kzukuv
iii
  .    (2) 

 

Given the definitions above, let an aperture filter 
EE

Ψ {0,1}: L  be a function that maps grayscale 

images into binary images. That is, given the grayscale image O , then )(OI Ψ  is a binary image so 

that  1,0: ΕI . Aperture filters are characterized by functions of the form  1,0: WKψ , called 

characteristic functions, so that for each Εt : 

 

)()))((,...,))((())(()(
)(1 tOn

ψztwOztwOψtOtI vΨ   ,    (3) 
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where z   is a function LLz W :  that allows us to place the aperture KW   vertically in the pixel 

Ot . In this work, we chose z  to be )(
n1

u,...,umedianz  . 

 

Moreover, in the language of pattern recognition, the characteristic function ψ  can be seen as a 

classifier that maps observations  m1 ,...,vvv  to labels from the set  1,0 . Based on this 

assumption, the segmentation of a grayscale image O  is reduced to a classification of its pixels within  

KW  . Finally, aperture filters fulfill three important properties: 1. spatial translation invariance: 

tt OO )()( ΨΨ   for each pixel Ot ; 2. range translation invariance: ztOztO  )()( )()( ΨΨ  for 

any z Z
+
; and 3. local definition within KW  : )))((())(( tKWOtO ΨΨ  [5,6]. 

 

2.2.3. Statiscal Design of Aperture Filters 

In the section above, we reduced the segmentation of an image to a classification of its pixels. Based 

on this fact, the statistical design of aperture filters is reduced to the well known problem of designing 

classifiers in the field of pattern recognition. In this context, we model the images to be processed as 

random realizations of the two processes O and I, which are stochastic, discrete, stationary, and joint. 

Process O produces observed images, and process I produces ideal images [6,7]. Observed images 

represent the problem to be solved; whereas, ideal images represent the desired output of the 

processing. 

  

Thus, given a pair of images (O,I) drawn from the processes (O,I), the goal of the statistical design is 

to find an aperture filter Ψ  so that )(OΨ  is as close as possible to I . If the measure of closeness 

between )(OΨ  and I is the mean square error (MSE), then the cost function to be minimized is 

 




E
ΨEΨ

t
tOtIEMSEε ])))(()((|)|/1[()( 2 ,   (4) 

 

where E is the expectation operator and t  is an arbitrary point of Ε , which is possible because (O,I) 

are stationary processes. When Ψ  is characterized by ψ ; the processes are stationary; and the 

observation )( n1,...,vvv
 
is an n-upla of random variables, iv , then equation 4 yields 

 

  


KtWO
ψtIψεε

)(:
)Pr())()(Pr()()(

vv
vvvΨ ,   (5) 

 

where ))()(Pr( vvψtI   represents the probability of misclassifying an observation v  seen by KW   

placed at Εt , and )Pr(v  represents the probability of the occurrence of v . Therefore, the statistical 

design of an aperture filter Ψ  reduces to find its optimal characteristic function optψ  (classifier), 

which minimizes equation 5 through the following decision rule: 

 

 


 


otherwise0

)1)(Pr(if1 τtI
ψopt

v
v .    (6) 

 

In the equation above, if 0.5τ , then optψ  is the Bayes classifier. However, for practical applications, 

we select the value for the threshold τ  based on a tradeoff between the false positive and false 

negative rates of optψ . 
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Finally, the size ||  of the space of hypothesis,  ,  for the statistical design of aperture filters grows 

exponentially as a function of both the size |W| of the spatial window W  and the size |K| of the range 

window K , according to 
||||2||

WK . 

 

2.2.4. Automatic Design of Aperture Filters using Logistic Regression 

From equation 6, we can conclude that the statistical design of an aperture filter Ψ  consists of 

estimating the value of )1)(Pr( vtI  for each observation v  that can be seen by KW  . In this work 

we model the probability )1)(Pr( vtI , which we will refer to simply as )1Pr( vI  from now on, 

with the following logistic function: 

 

))),(exp(1/(1),1Pr( βvβv fI  ,    (7) 

 

where WKf :  is definded by 
nn

vβvββf  ...),(
110

βv . Furthermore, we used ),1Pr( βvI  

to denote the dependence of )1Pr( vI  on β . In the language of machine learning, equation 7 is 

called logistic regression [9,10]. We chose logistic regression because it is a low complex model that 

can be easily trained, avoids overfitting, and has good capabilities of prediction [10]. 

 

Using logistic regression to estimate the value of )1Pr( vI  for each observation v
 
that can be seen 

by KW   poses a constraint in the space of search   of the optimal aperture filter Ψopt . In fact, the 

new space of search ' , being ' , is composed by only linear classifiers. Although the use of 

constraints yields a suboptimal filter suboptΨ  with increased error compared to the unconstrained 

optimal operator, )(>)( optsubopt εε ΨΨ , using constraints produces lower estimation error. In general, a 

constraint is beneficial if the reduction in the error of estimation is larger than the error induced by the 

constraint [5-7]. 

 
Finally, by using logistic regression, the design of aperture filters is reduced to the task of estimating 

the vector ),...,( 0 nβββ  by maximizing the likelyhood Pr(D )β
 
given by equation 8. This task is 

performed using a set of examples D  )),1(),,0(,(
iii

IfreqIfreq vvv  , where mi ,...,2,1 , and

),0(
i

Ifreq v  is the frequency with which the label 0 is seen given the observation iv  (a similar rule 

applies for ),1(
i

Ifreq v ). Observation iv  and frequencies ),0(
i

Ifreq v  and ),1(
i

Ifreq v  are 

obtained by translating KW   through the images in the training set   ii IO ,D , being pi ,...,2,1 . 

 

Pr(D )β  




m

i

Ifreq

i

Ifreq

i

ii

II
1

),1(),0(

),1Pr(),0Pr(
vv

βvβv .  (8) 

 

The maximization of the equation above is equivalent to minimizing (Pr(ln D ))β
 
[10]. 

 

2.2.5. Aperture Filter Design with Imbalanced Datasets 

Imbalanced datasets are characterized by a high number of examples from one class (majority class), 

and only few, or even no examples, from the other class (rare class). Assuming that the majority class 

is labeled with 1, an imbalanced dataset is characterized by 





 






  

m
i i

m
i i IfreqIfreq 11 ),0(>>),1( vv . If we 

train a classifier using imbalanced datasets, then the classifier will usually underestimate the 
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conditional probabilities of the rare class, because they tend to be biased towards the majority class. 

Several approaches have been proposed to address this issue, including undersampling examples from 

the majority class, or oversampling the examples from the rare class [11]. One important drawback of 

the former approach is the elimination of some examples from the majority class. In this work, we 

increased artificially (oversample) the frequency ),1(
i

Ifreq v  of each example 
i

v D from the 

minority class using the following expression: 

 

,))),1(/),0()(,1((),1( 11    

m

i i

m

i iiibalanced
IfreqIfreqIfreqroundIfreq vvvv   (9) 

  

where ),1(
ibalanced

Ifreq v  is the new frequency with which the example iv  influences the 

maximization of equation 8. 

 

2.2.6. Ensemble of Aperture Filters 

Even though we are using a low complex model for classification (i.e., logistic regression), the 

estimation of β  using all the triplets  )),1(),,0(,( vvv IfreqIfreq D is highly time and memory 

consuming. To circumvent this issue, we used an ensemble of aperture filters [8]. Under the ensemble 

approach, instead of designing a single aperture filter using all the m  triplets from the set D, we 

designed as many aperture filters ΨΨ p,...,1  (called base aperture filters) as number of training pairs 

of images we had in set
 

D , where Ψi  was designed using the pair D),( ii IO , being  pi ,...,2,1 . 

Then, to process a new image 'O , we weighted and then combined the predictions of all the p  base 

aperture filters using the Shannon entropy. Formally, the prediction of an ensemble of aperture filters, 

ΨE , is given by a weighted sum of the predictions of the base aperture filters ΨΨ p,...,1 : 

 

 


p

i iiE
IPeI

1
)1Pr()1Pr( vv .    (10) 

 

In the equation above, EI )1Pr( v  is the probability predicted by the ensemble ΨE  
that the 

observation v  will be assigned label 1. iI )1Pr( v  is the probability predicted by the base aperture 

filter Ψi  that the observation v  will be assigned label 1. The weight 
i

Pe  controls the influence of the 

prediction of Ψi  
in the final prediction of the ensemble and is computed by 

 

)))((/()))((1()(
1 


p

j jii ψHpψHPe vvv .   (11) 

 

In the equation above, 
  


1,0 2

))(Pr()Pr())((
j iii

jILogjIψH vvv  is the Shannon entropy of the 

prediction of Ψi  
regarding the observation v . 

 

3. Proposed Algorithm 

In this section, we describe the algorithm we propose to segment automatically exudates in fundus 

ocular images. 

 

a) Color to Grayscale Transformation: In this step, we transformed the color ocular image  
Ε][ BGR LLLH 

 
(Figure 1a) to a grayscale image ΕLH 1 (Figure 1b), with 256 gray-levels, using 

equation 1 with the weights 07.01 α , 9.02 α  and 03.03 α . We chose these weights because it 

was observed that the green channel GH  of the image H  has the highest contrast between exudates 
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and the other components of the eye fundus. The red, RH , and blue, BH , channels have low contrast 

and some level of noise [1,8].  

 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

 
(f) 

 
(g) 

 
(h) 

 
(i) 

Figure 1: Example of the automatic segmentation of exudates: (a) Original image (b) Grayscale 

image (c) Lesion probability map (d) Exudate candidate markers (Each marker is shown by a 

different color) (e) Image with blood vessels automatically segmented (f) Image without blood 

vessels and noise (g) Exudate candidates (Each candidate is shown by a different color) (h) 

Exudate candidate probability map (i) Edges of the segmented exudates superimposed on the 

original image 

 

b) Exudate Candidate Marker Detection: This step starts with the generation of a lesion probability 

map, in which we assigned a probaility of being part of an exudate region to each pixel 1Ht  (Figure 

1c). Each pixel from the image 1H  was processed using an ensemble of aperture filters (Section 

2.2.6). In this case, we used the aperture KW  , where W  is a 15x15-squared spatial window and 

]10,10[K  is a range window. The base aperture filters were trained using the training set 1TrS  

(Section 2.1) and the procedure described in Section 2.2.4. In the ocular images the number of pixels 

that belong to exudates is, in general, much less than the number of background pixels. For this 

reason, before designing the base aperture filters, we balanced the training triplets using the procedure 

described in Section 2.2.5. Then, we applied a threshold at 20.τ   and grouped pixels from the lesion 

probability map using a connectivity of 8, obtaining a binary image  Ε1,02 H  composed of clusters 

of pixels that belong to exudate candidate markers (Figure 1d). 
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c) Blood Vessels and Noise Removal: In this step, we started by removing the clusters from the binary 

image 2H  that are composed of pixels that belong to major blood vessels using an algorithm 

developed in our previous work [8]. The threshold we used to classify each pixel from image 1H  as 

either blood vessel or background was 50.τ   (Figure 1e). Then, we defined small clusters, those with 

fewer than 100 pixels, as noise and removed them to obtain the binary image 3H  
(Figure 1f).  

 

d) Exudate Candidate Detection: This step consists of obtaining a binary image 4H  composed by 

clusters of pixels that are potential exudates (Figure 1g). Image 4H  is obtained by morphological 

reconstruction [12] of the binary image 3H  (marker) from the binary image obtained by thresholding 

the lesion probability map from step b at 10.τ   (mask). 

 

e) Feature Extraction and Exudate Candidate Classification: Image 4H  
contains spurious clusters of 

pixels as consequence of false markers detected in step b. In this step, we classified each cluster from 

image 4H  as either exudate or non-exudate by using logistic regression. The parameters of the logistic 

regression were estimated maximizing equation 8 (Section 2.2.4) using the training pairs ),( ii yx , 

being that qi ,...,2,1 . q  denotes the total number of potential exudates detected in images from the 

training set 2TrS . Vector ix  is composed by 31 features, and iy  takes label 1 if the region covered by 

the exudate candidate in the ideal image belongs to an exudate or otherwise label 0. 

 

The 31 features that compose the vector ix  represent the main characteristics of each exudate 

candidate as follows:  

  shape (extracted from image 4H ): area, perimeter, eccentricity, major and minor axis length;  

 texture (extracted from image 1H ): edge strength (mean pixel value within the candidate border 

detected by a morphological gradient using a disk-shaped structuring element of radius 1), 

mean and standard deviation of the pixels within the candidate, and local pixel contrast 

(mean/standard deviation pixel value within the candidate subtracted from the mean/standard 

deviation pixel value from a 6-pixels-border-wide around the potential lesion); and 

 color (extracted from image H ): median, mean and standard deviation from the LUV (U and V 

channels), RGB (all the three channels), and HSV (H and S channels) color spaces. 

Finally, we applied the trained logistic regression classifier to each lesion of the image 4H , assigning 

to each a probability of being an exudate (Figure 1h). Candidates having a probability equal to or 

greater than the threshold 70.τ   were classified as exudates (Figure 1i). 

 

4. Results and Discussion 

In this section, we present the results obtained by applying the proposed algorithm to each of the 109 

images that comprise the testing set TtS  (Section 2.1). The ultimate goal of the automatic 

segmentation of exudates is the diagnosis of the DME condition. Therefore, we evaluated the 

performance of our algorithm based on its ability to classify patients as either having or not DME. We 

defined a patient with DME as one in which at least one exudate was detected. In Figure 2, we show 

the receiver operating characteristic (ROC) curve [10] obtained, where )/( FNTPTPySensitivit   

and )/( FPTNTNySpecificit  . TP is the number of patients correctly classified as having DME. FN 

is the number of patients that our algorithm incorrectly classified as being healthy. TN is the number of 

patients correctly classified as healthy. FP is the number of patients wrongly classified as having 

DME. The area under the ROC curve (AUC) is 0.77. This value and the shape of the ROC curve 

indicate that our algorithm tends to detect exudates in some images that belong to healthy patients. 
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Figure 2: ROC curve of the proposed algorithm for the 

diagnosis of diabetic macular edema with AUC = 0.77. 

 

 
   

 
   

   
Figure 3: Examples of the segmentation of exudates applying the proposed 

approach to images from the HEI-MED public database: Each row contains a 

different test image. In the first column are the original images. The second 

column shows the results obtained by applying the proposed algorithm. The third 

column contains the ground truth images of the exudates. 

 

In the scientific literature several algorithms have been proposed to address automatic segmentation of 

exudates. However, in most of the cases the performance evaluation is done using either private 

databases with only a few images or public databases that have no ground truth images showing the 

borders of the exudates. Therefore, to perform a benchmarking between the different proposed 

algorithms is very difficult. To our knowledge, we only found that [2] and [3] evaluated their 

algorithms for the diagnosis of DME using the HEI-MED database. They obtained values for the AUC 

of 0.81 and 0.82, respectively. Although these algorithms perform better than the proposed algorithm 

in diagnosing DME, they do not perform exudate segmentation. Therefore, one potential issue 
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regarding these works can be the diagnosis of DME based on false positive exudates. Conversely, our 

algorithm provides information on the borders and positions of the exudates (Figure 3). 

 

5. Concluding Remarks 

In this work, we proposed a new approach for the automatic segmentation of exudates. The 

information generated by our approach is useful not only for the diagnosis of DME, but also for 

treatment and blindness prevention. The proposed method is based on ensembles of aperture filters 

that were used for both detecting exudate candidates and removing parts of the major blood vessels 

from the processed images. Finally, a logistic regression classifier was used to assign a probability of 

being an exudate to each candidate detected. 

 

We also treated the aperture filter design as a pattern recognition problem. Using this approach, we 

reduced the aperture filter design to a classifier design by basing it on logistic regression. Additionally, 

the practical complexity issue that occurs when designing aperture filters with large training sets of 

images was circumvented by using an ensemble method. The ensemble method allowed us to combine 

the predictions of several base aperture filters. Each base aperture filter was designed using only one 

training pair of images. 

 

Lastly, the results obtained in this paper and other publications demonstrate that automatic methods 

can be used to assist in the diagnosis of DME. However, we still need to improve the performance of 

such methods. In the case of our particular approach, future work includes the development of new 

methods for designing aperture filters to process color images directly without a color to grayscale 

transformation. 
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