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The last few years have seen some dramatic developments in artificial 
intelligence research. What implications might these have for neuro-
science? Investigations of this question have, to date, focused largely 
on deep neural networks trained using supervised learning, in tasks 
such as image classification. However, there is another area of recent 
AI work which has so far received less attention from neuroscientists, 
but which may have more profound neuroscientific implications: deep 
reinforcement learning. Deep RL offers a rich framework for studying 
the interplay among learning, representation and decision-making, 
offering to the brain sciences a new set of research tools and a wide 
range of novel hypotheses. I’ll provide a high-level introduction to 
deep RL, discuss some recent neuroscience-oriented investigations 
from my group at DeepMind, and survey some wider implications for 
research on brain and behavior.
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Visual attention selects only a tiny fraction of visual input information 
for further processing. Selection starts in the primary visual cortex 
(V1), which creates a bottom-up saliency map to guide the fovea to 
selected visual locations via gaze shifts. This motivates a new frame-
work that views vision as consisting of encoding, selection, and decod-
ing stages, placing selection on center stage. It suggests a massive loss 
of non-selected information from V1 downstream along the visual 
pathway. Hence, feedback from downstream visual cortical areas to 
V1 for better decoding (recognition), through analysis-by-synthesis, 
should query for additional information and be mainly directed at the 

foveal region. Accordingly, non-foveal vision is not only poorer in spa-
tial resolution, but also more susceptible to many illusions.
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In recent years it has become increasingly clear that (Shannon) infor-
mation is a central resource for organisms, akin in importance to 
energy. Any decision that an organism or a subsystem of an organism 
takes involves the acquisition, selection, and processing of informa-
tion and ultimately its concentration and enaction. It is the conse-
quences of this balance that will occupy us in this talk.
This perception-action loop picture of an agent’s life cycle is well 
established and expounded especially in the context of Fuster’s sen-
sorimotor hierarchies. Nevertheless, the information-theoretic per-
spective drastically expands the potential and predictive power of the 
perception-action loop perspective.
On the one hand information can be treated - to a significant extent 
- as a resource that is being sought and utilized by an organism. On 
the other hand, unlike energy, information is not additive. The intrin-
sic structure and dynamics of information can be exceedingly complex 
and subtle; in the last two decades one has discovered that Shan-
non information possesses a rich and nontrivial intrinsic structure 
that must be taken into account when informational contributions, 
information flow or causal interactions of processes are investigated, 
whether in the brain or in other complex processes.
In addition, strong parallels between information and control theory 
have emerged. This parallelism between the theories allows one to 
obtain unexpected insights into the nature and properties of the 
perception-action loop. Through the lens of information theory, one 
can not only come up with novel hypotheses about necessary condi-
tions for the organization of information processing in a brain, but 
also with constructive conjectures and predictions about what behav-
iours, brain structure and dynamics and even evolutionary pressures 
one can expect to operate on biological organisms, induced purely by 
informational considerations.
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Neuronal oscillations are ubiquitous in the brain and emerge from the 
combined activity of the participating neurons (or nodes), the connec-
tivity and the network topology. Recent neurotechnological advances 
have made it possible to interrogate neuronal circuits by perturbing 
one or more of its nodes. The response to periodic inputs has been 
used as a tool to identify the oscillatory properties of circuits and 
the flow of information in networks. However, a general theory that 
explains the underlying mechanisms and allows to make predictions is 
lacking beyond the single neuron level.
Threshold-linear network (TLN) models describe the activity of con-
nected nodes where the contribution of the connectivity terms is lin-
ear above some threshold value (typically zero), while the network is 
disconnected below it. In their simplest description, the dynamics of 
the individual nodes are one-dimensional and linear. When the nodes 
in the network are neurons or neuronal populations, their activity can 
be interpreted as the firing rate, and therefore the TLNs represent fir-
ing rate models [1].
Competitive threshold-linear networks (CTLNs) are a class of TLNs 
where the connectivity weights are all negative and there are no self-
connections [2,3]. Inhibitory networks arise in many neuronal systems 
and have been shown to underlie the generation of rhythmic activity 
in cognition and motor behavior [4,5]. Despite their simplicity, TLNs 
and CTLNs produce complex behavior including multistability, peri-
odic, quasi-periodic and chaotic solutions [2,3,6].
In this work, we consider CTLNs with three or more nodes and cyclic 
symmetry in which oscillatory solutions are observed. We first assume 
that an external oscillatory input is added to one of the nodes and, by 
defining a Poincaré map, we numerically study the response proper-
ties of the CTLN networks. We determine the ranges of input ampli-
tude and frequency in which the CTLN is able to follow the input 
(1:1 entrainment). For this we define local and global entrainment 
measures that convey different information. We then study how the 
entrainment properties of the CTLNs is affected by changes in (i) the 
time scale of each node, (ii) the number of nodes in the network, and 
(iii) the strength of the inhibitory connections. Finally, we extend our 
results to include other entrainment scenarios (e.g., 2:1) and other net-
work topologies.
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Orientation selectivity (OS) is a key feature of neurons in the mam-
malian primary visual cortex. In rodents and rabbits, these neurons 
are randomly distributed across V1 while in cats and all primates, cells 
with similar OS preferences cluster together into cortical columns. 
Could it be that mammals with smaller primary visual cortices, rela-
tively undifferentiated cortices or poor-resolution vision are restricted 
to having salt-and-pepper OS maps? This is not true, because in gray 
squirrel, a highly visual rodent with good spatial resolution and a V1 
that is highly differentiated, no clear functional organisation of OS 
preferences exists in V1. We do not know yet why the maps coding OS 
preferences are so radically different in rodents/rabbits compared to 
the clear similarities across other mammalian visual systems.
Several models of cortical OS maps have been created incorporat-
ing Hebbian plasticity, intracortical interactions and the properties of 
growing axons. But these models mainly focus on maps arising from 
intracortical interactions. Here we focus on two factors contributing to 
map formation: the topography of retina and phylogeny. One promis-
ing method of predicting whether or not a species has pinwheel maps 
is to look at the central-to-peripheral ratio (CP ratio) of retinal cell den-
sity. We have found that animals with high CP ratios (>7) have orien-
tation columns while those with low CP ratios (<4) have random OS 
maps. We also investigated whether the development of OS maps is 
influenced by a genetic factor related to phylogeny. A problem with 
the existing literature is that OS maps have been investigated in only 
a small subset of mammals. We suggest that the rodents and rabbits 
might have lost the genetic capacity to develop OS maps, but that the 
mammalian line may have originally evolved with the genetic capacity 
to create orientation columns.
We studied a highly visual marsupial, the Tammar wallaby (Macropus 
Eugenii), which represents a phylogenetically distinct branch of mam-
mals for which the orientation map structure is unknown. The topog-
raphy of RCC’s in wallabies is very similar to cats and primates. They 
have a high density of RGC in the retinal specialization, indicated by 
a high CP ratio of 20. If orientation columns are the mammalian norm 
and if species with high CP ratios have OS maps, we would predict the 
existence of orientation columns in wallaby cortex. We used intrin-
sic optical imaging and multi-channel electrophysiology methods to 
examine the functional organization of the wallaby cortex. We found 
robust OS in a high proportion of cells in the primary visual cortex and 
clear orientation columns similar to those found in cats and primates 
but with bias towards vertical and horizontal preferences, suggesting 
lifestyle-driven variations. The findings suggest that orientation col-
umns are the norm and it might be that the rodents and rabbits are 
unusual in terms of mammalian cortical architecture.
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