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Fragility of superposition states evaluated by the Loschmidt echo
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We consider the degradation of the dynamics of a Gaussian wave packet in a harmonic oscillator under the
presence of an environment. This last is given by a single nondegenerate two-level system. We analyze how
the binary degree of freedom perturbs the free evolution of the wave packet producing decoherence, which is
quantified by the Loschmidt echo. This magnitude measures the reversibility of a perturbed quantum evolution.

In particular, we use it here to study the relative “fragility” of coherent superpositions (cat states) with respect to
incoherent ones. This fragility or sensitivity turns out to increase exponentially with the energy separation of the

two components of the superposition.
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I. INTRODUCTION

Control and manipulation of coherent quantum systems is
a major task for both nanotechnology [1,2] and fundamental
physics [3]. Specifically, quantum information processing
(QIP) operates with superposition states, which constitute
the heart of quantum weirdness [4]. Since these states have
an intrinsic nonlocal nature, their characterization becomes a
nontrivial problem [5]. Moreover, the prediction and control
of their time evolution are restricted by the unavoidable
interactions with an environment that degrades the unitarity
of quantum dynamics [6]. This process, called decoherence,
involves the progressive and smooth destruction of the quan-
tum interferences [7].

Among the general expectations within the field quantum
open systems [8] is the claim that the more nonlocal and
complex a superposition state is, the more fragile it becomes
under the effects of decoherence. If indeed general, this might
preclude scalability of QIP implementations. The magnitude
of such fragility seems to be intimately related to the number
of correlated qubits and the way in which they evolve. In
particular, nuclear magnetic resonance (NMR) experiments
with large arrays of interacting spins [9-11] have shown that
these can exhibit an intrinsically unstable dynamics. Inspired
by the NMR experiments, the Loschmidt echo (LE) [12-14]
arises as a natural way to quantify fragility. The LE is defined in
terms of the revival that occurs when a slightly imperfect time-
reversal procedure is applied to a quantum evolution. Such
imperfection accounts for the presence of uncontrolled degrees
of freedom, which play the role of an environment [15-17].
Quite remarkably, it has been proved that even in the presence
of simple perturbations, chaotic systems can become their own
environment [18]. Furthermore, in such classically chaotic
systems, dynamics leads to highly nonlocal superpositions that
have already been related to the formation of sub-Planck-scale
structures associated with a boost of decoherence [19,20].

The standard theoretical strategy to address decoherence
and dissipation relies on defining a simple system S that
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interacts with a large and complex environment £ [21,22].
While the former has a few degrees of freedom, the latter
typically has a dense spectrum, at least within the experimental
time scales shorter than the Heisenberg time, in which meso-
scopic echoes would show up [23,24]. Within this framework,
the spin-boson model (SBM) turns out to be one of the
most employed paradigms [25]. This corresponds to a single
two-level system (TLS) S interacting with a large reservoir € of
bosonic field modes, i.e., a spin 1/2 coupled to an environment
of harmonic oscillators (HO). This model has also found wide
application in the fields of chemical and biological physics,
providing a rationale for the electron-transfer process. There,
the role of the spin is played by a charge that can fluctuate
between two reaction centers [26,27].

In this article, we switch the spin and boson rolesas S and £,
using a HO as S and a single TLS as £. This crucially different
point of view seeks to assess how states with controllable
complexity are degraded by a simple £. Specifically, only
when this binary degree of freedom flips its state is the mixing
among the states of S enabled. This approach allows us to test
the above assumption about the fragility of specific nonlocal
superpositions, or cat states. Here, these highly nonlocal
superpositions are not obtained as dynamically prepared initial
states on a chaotic system [19,20] but are built as specific
initial states of the HO. In the particular case analyzed here,
coherent superpositions of two semiclassical states associated
with different energies show an enhanced fragility with respect
to the incoherent superpositions.

This paper is organized as follows. In Sec. Il we describe our
version of the SBM and summarize its theoretical background.
In Sec. III we define the semiclassical and the superposition
states built with them. The incoherent superposition is de-
scribed in detail in the Appendix. In Sec. IV we describe
how the LE is evaluated for mixed states without resorting to
the evaluation of the density matrix, i.e., just from the wave
function in the Fock space. This LE evaluation is explained
in some detail in the Appendix. In Sec. VA we show that
the dynamics can be analyzed in terms of the Landau-Zener
(LZ) theory [28-30]. In Sec. V B we quantify the fragility of
different initial states. Finally, a brief discussion of the results
and conclusions is presented in Sec. VI.
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II. THE SPIN-BOSON MODEL

We propose that the system S under consideration is a HO
which is coupled to a TLS, which constitutes the environment
E. This TLS enables mixing and produces decoherence,
causing a loss of control over S. The total Hamiltonian which
contains all these physical processes is

A =Hs® Ig + Is ® As + Vse, (1)
where the first term represents S:
As = hoo (575 + 1) )

with b and b being the bosonic raising and the lowering
operators, respectively. The second term in Eq. (1) represents
the TLS, which corresponds to &,

He = Eq&fey + E\éfe, + Vy(éfe, +efen, ()

where & and &, (s € {1,]}) are the creation and destruction
operators for fermions. Within an electron-transfer model, E4
and E are the nondegenerate electron’s energies at states 1
and |, respectively. Since the Wigner-Jordan transformation
allows for a precise correspondence between spinless fermions
and spin states, the hopping amplitude V4 (i.e., the electron’s
tunneling between the centers 1 and | ) also describes a spin-
flip process. As the interaction between S and € we adopt the
standard linear electron-phonon interaction, used to describe
the Franck-Condon effect and electron transfer processes [31]:

Vse = =V (b + b)ete,, (4)

where V, gives the scale for the S-£ interaction, which s strong
enough to regard the S spectrum as quasicontinuous (V, >
hiw,). In this model, it is clear that the state of the HO S and
its dynamics depend on the spin state. Indeed, Eq. (4) implies
an explicit displacement in the harmonic potential which is
evidenced when the total Hamiltonian A is written in terms of
the two canonical coordinates p and §:
AD l

A 5 p o
Hs + Vse = > + zma)(z)qz —

2mawy
h

Vegeie,, ()
5w (bt +b) and p =i [5=(b* —b). In
terms of the canonical coordinate ¢, the Hamiltonian given
in Eq. (5) makes the potential surface shifted with respect
to the one corresponding to the usual HO. The model is
schematized in Fig. 1, where in Fig. 1(a) the interactions
are represented in the Fock space. In Fig. 1(b) we show a
semiclassical representation of the perturbed potential, where
we can notice the energy gap of width 2V, induced by He,
with parameters

where § =

h E,
= —, 6
qgc 2man V, (6)
710)0 Ei 2
Ec=—"\-) . 7
¢ 4 (Vg) ( )

In order to simplify the analysis we define an energy refer-
ence which shifts the perturbed harmonic potential, producing
E, — E~¢ = 0 with E¢ =FE, - ng/ha)o. This means that the
parabolas in Fig. 1(b) are symmetrical with respect to the
crossing point g¢. Thus, similar energies in the HO are mixed
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FIG. 1. (a) Fock space representation of H = I:IS —I—ﬁg + \755.
Vertical hoppings enable the mixing processes among the HO
eigenbasis. (b) Semiclassical representation of H in terms of the
HO’s canonical coordinate §. The energy is expressed in units of
hwy, and the space coordinate is in units of /% /(mw,)). Each parabola

corresponds to a different spin state while the spin-flip process V;,
produces an anticrossing (energy gap).

up by the dynamics of the environment. In fact, the HO energy
density 1/hwy constitutes the quasicontinuous spectrum that
can be easily mixed up by the dynamics of the TLS. This would
require that Vy| > hay.

III. INITIAL STATES

Within the tight-binding representation of the Fock space
shown in Fig. 1(a), any wave function for the whole S + £ can
be written as

)= > Y cinlkon), ®)

k=1,4 n=0

where the probability amplitudes ¢, have the k index that
labels the spin states |1) and || ) and the n index that labels the
HO eigenstates. We consider three different initial states, all
restricted to the TLS state |1). The first one, a Gaussian wave
packet usually called a coherent state, is

Vn!

In order to avoid confusion, from now on we will refer to
such states as semiclassical since they exhibit a minimum
uncertainty. Its energy is given by E, = hoo(la)? + 1 /2), and
its evolution under the unperturbed Hamiltonian H is a trivial
semiclassical oscillation. The second case for the initial state
is a nonlocal or cat state, i.e., a coherent superposition of two
Gaussians,

) =T 32 ). ©)
n=0

’wgal) — |Ol]) + |O[2> , (10)
V2

where |«,) is a semiclassical state as in Eq. (9), associated with
a complex number «,. Notice that we consider «; and o, with
different signs, but they may not have equal modulus. Since
the energy is proportional to |a,|?, the cat states introduced
here can involve the superposition of two Gaussians with
different energies as in Ref. [32]. The third case considered is
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FIG. 2. Time evolution of the probability distribution as a function of the space coordinate, which is expressed in units of /i /(mwy).
(a) Unperturbed case for an initial semiclassical state with £ = 400/, (b) Unperturbed case for an initial cat state with the same energy. The
perturbed dynamics for the same initial states are shown in (c) and (d), respectively.

an incoherent superposition, which is written as

N i0; i
. eViloy) + e'%az)
lim )" , (11)
VA

where 6; and ¢; are random variables uniformly dis-
tributed in [0,277) and the normalization factor A = 2N?(3 +
exp[—|a; — az|?])is explicitly computed in the Appendix. The
random phase relation of this state leads to two local proba-
bility distribution functions with the same statistical weights.
It is the analog to the random superpositions employed in spin
systems to simulate high-temperature states [33,34]. Notice
that in these three cases we restricted the initial state to a
definite spin projection |1).

In Fig. 2 we illustrate the evolution in space for an initial
semiclassical state [Fig. 2(a)] and an initial cat state [Fig. 2(b)]
under the action of the unperturbed Hamiltonian ﬁg, while in
Figs. 2(c) and 2(d) we show the evolution of the same initial
states under the action of the total Hamiltonian H. In the last
two cases, it can be noticed how the oscillatory dynamics is
perturbed by successive passages through the avoided crossing
region around g = g¢. Notice that the amplitude of the
semiclassical oscillations remains unaffected at least during
several cycles, which means that there is no considerable loss
of energy due to the interaction. The splittings of the wave
packet trajectories will be analyzed within the LZ theory in
Sec. V A. The coherent and incoherent superpositions defined
here constitute the trial states which will be employed to
evaluate the fragility in Sec. V B.

|‘~I’(l)nc) - N—oo <
Jj=1

IV. LOSCHMIDT ECHO

We employ the LE as a decoherence quantifier, and our
specific purpose relies on analyzing the fragility of the states
introduced in Sec. III. In fact, the LE measures the sensitivity of
a quantum evolution to noncontrolled perturbations [12—-14].
It relies on a time-reversal procedure within & degrees of
freedom, which filters out S dynamics and allows us to address
the degradation induced by the £ degrees of freedom. For an

initial state |¥) that describes the whole S + &, the standard

LE formula is [18]
2

M) = ’<w0| exp {%(Flg + 2);} exp {—%ﬁgt} [Wo)
(12)

Here, the perturbation operator 3 represents Hg + Vse as
defined in Sec. II. The state |¥,) evolves forward in time with
Flg, i.e., without interacting with &£, which remains frozen.
This evolution can be written in an analytically closed form.
At time ¢, an imperfect time-reversal procedure is applied
within S that nevertheless is unable to decouple S from €&.
Further evolution during a symmetric backward period occurs
under the full Hamiltonian. Thus, the uncontrolled degrees of
freedom lead to the degradation of the overlap between the
initial and the time-reversed wave functions.

The LE as defined in Eq. (12) is not appropriate since it
implies a raw overlap of both the S and the £ components of
two wave functions. As discussed above, we are specifically
interested in evaluating how the HO (S) is perturbed by the
binary degree of freedom (£). Thus, it is necessary to perform
a partial trace over the £ degrees of freedom [16,17]. Let us
define two states of the whole S + £ from which the LE is
evaluated, in the explicit form of Eq. (8):

(W(0) = e 75 1Wo) = 3" ey u(0)] 1.m),
= (13)
@) = e TP W) = 37 N dpy(0)lkn).

n=0 k=1,

Now we trace over the £ degrees of freedom to build the
reduced density operators,

0§ = Tre((W) (W) = Y [epalt)ct, (Olin)im,

m,n=0
05ie = Tre( D) (@) = Y [Z dk,na)d,f,m(r)} In) {m|,
m,n=0 Lk=1,]
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where the spin index is no longer present in the bra-ket basis.
The LE is now defined as the overlap of these reduced states
and can be explicitly written as

M(t) = Te{(05) 05 ¢} (14)

3 1dy (O, () + dy (D], (ONep a1, O],

m,n=0

15)

Here, one can notice that in spite of the formal use of density
matrices, an actual LE computation can avoid any matrix
manipulation at all. Indeed, the equality in Eq. (14) gives a
direct recipe to evaluate the LE from specific components
of the wave function |®) in the Fock space, explicitly given
in Eq. (13). Even though the LE in Eq. (15) is written in
terms of products of complex amplitudes, we stress that by
construction, it is in fact a real and positive quantity.

Notice that if the initial state is a superposition (both
cat or incoherent) the linearity of the evolution operators
can be employed to evaluate the probability amplitudes as
a sum of two contributions. This is explicitly used in the
LE computation for the incoherent superposition shown in
the Appendix. There, the phase averaging is performed, and
a particular version of Eq. (15) is derived. Additionally, a
naive version of the LE is obtained by averaging independent
realizations of the echo procedure for each of the single
semiclassical states, |«1) and |a»).

V. RESULTS

A. The Landau-Zener picture

Since the initial states given by Egs. (9), (10), and (11) are
explicitly defined with the spin state |1), then the transitions
among the HO eigenstates are forbidden unless the spin
flips to || ). This is explicitly shown by the tight-binding
representation in Fig. 1(a) and the harmonic potential in
Fig. 1(b). As already pointed above, the term Hg in the
total Hamiltonian H produces an avoided level crossing. A
semiclassical wave packet evolving in the presence of the
harmonic potential does not degrade unless it goes through
such an energy gap. In fact, decoherence processes induced
by Vse are enabled only if a passage takes place, which
means that they are restricted to a specific region in space and
time.

In all cases considered here, we fix the parameters of
the model in such a way that the potential energy parabolas
are at the same height. We choose parameters satisfying the
assumptions discussed above: V, = 10hiw),. Thus, with E4 =0
one gets E, = 100hw, and Ec = 25kw,, which is always
much smaller than the energy Ej of the initial state. Also,
we choose o € R, so that the initial wave packet velocity is
zero. In Fig. 3 we show the LE decay for an initial semiclassical
state, which consistently evidences a discrete set of steps that
are associated with each passage through the avoided crossing.

In order to quantitatively analyze the LE decay in our
quasicontinuous system we follow Marcus [26] by identifying
it with the LZ problem. This involves the evaluation of the
transition probability within a two-level system under the
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FIG. 3. Loschmidt echo (black curve) of an initial semiclassical
state with energy Eo = 200hw,. The dotted curve represents a
Markovian approximation by means of an exponential decay, and
the gray curve represents a Gaussian fitting to the decay (see text).
The parameters used in the LE dynamics are Ey = 0, E, = 100hw,,
Ve = 10hw,, Vi, = 2haw,.

action of a time-dependent bias. We have already shown in
Fig. 2 that the wave packet splits every time that it crosses the
gap, which occurs at ¢ = g¢, given by Eq. (6). Attime r = f¢
the wave packet goes through the region of avoided crossing
with an approximately constant velocity g¢. If S is in the spin
state |1), the LZ asymptotic probability to remain in the spin
state |1) is given by

2 Vi l?
dt

where €;(q) and €;(g) are the potential energies de-
scribed by linear approximations for their g dependence,
ie., ep & mwlql/2 + mwiqce(q — qc) and €, ~ mwlql /2 —
mwéqc (g — g¢)- In turn, this becomes a dependence on time
t if one assumes that near the crossing point the wave packet
behaves linearly as g = (q(?)) =~ qc + ¢c(t — t¢). Thus, at
least in a single passage, we can map the conservative problem
of the SBM with a quasicontinuous spectrum to the LZ
nonconservative TLS as described by Eq. (16). In completing
the mapping, the time derivative yields the mentioned velocity
factor ¢g¢ in the denominator,

Pir(t — 00) = e p|: 21Vl ] (17)
—exp| —— . .
" /) 2ma)5chc

Here, the velocity ¢¢c can be estimated with a classical
calculation of energy conservation: gc = /2/m[Ey — Ec].
In Fig. 4 we compare the theoretical value of the LZ
probability, given by Eq. (17), with the numerical value
obtained by the evaluation of the first drop of the LE. The
comparison is performed as a function of V; | for three different
values of energy (and hence three different velocities at the
crossing). The excellent agreement between them implies the
accuracy of the LZ physical picture. This is quite remarkable
since the LZ formula gives an asymptotic transition probability
and relies on the linear approximation for the energies
described above. As discussed in the literature [30], the
exact dynamics through a nonlinear crossing might evidence

032102-4



FRAGILITY OF SUPERPOSITION STATES EVALUATED ...

15 20

10
v, /(o)

FIG. 4. Comparison between the LE evaluated in the first step
and the LZ probability (solid curves) as a function of V;, for
different wave-packet energies. From top to bottom, light gray
triangles correspond to £ = 400.5hw,, gray squares correspond to
E = 225.5Nw,, and black circles correspond to £ = 100.5%iw,.

transient oscillations that are not described by the LZ formula.
These fluctuations occur within a time scale [35] given, in the
sudden limit, by 7, ~ v/A[limy,, o % (e; — €,)]7"/%, where
€4 and € are the actual instantaneous eigenenergies, without
any linear approximation. In our case, fluctuations at such a
small scale t,w, ~ 0.05 would manifest as noise. However,
this effect is not observed in the well-defined first step of Fig. 3.
Thus, the linear LZ provides a good description of this first
transition.

Notice that, at a given size of the gap (V;, fixed), the
transition probability is greater when the speed at the crossing
is higher. For V;| > 5hw, we observe a strong decoherence,
i.e., almost half of the wave packetflips its spin projection. As a
consequence, S will rapidly reach a mixed state irrespective of
the initial state being a cat or an incoherent superposition. This
may hinder the relative fragility of these states. For such reason
we consider a V;, 2 hiwy which is still the nonperturbative
regime.

Just before the third step a revival shows up. Such revivals
repeat in every following step, as can be seen in Fig. 3. This can
be understood by the semiclassical picture of Fig. 1(b) since
the LE peak appears exactly at the crossing time between the
original wave packet and the one that escaped to the second
parabola. In other words, successive passages yield substantial
interferences between the |1) and ||) components of the
evolved wave packet. Such particular interferences yielding
the revivals is in fact a manifestation of the well-known
Stiickelberg phase commensuration [30], which appears in
a TLS when a periodic driving force leads to consecutive
passages through an avoided crossing.

It is also notable that the successive LE steps become
deeper as the phase coherence within each wave packet begins
to decay. In this regime, the single-passage formula (17) is
no longer expected to be valid. However, under the rough
assumption that every time the wave packet goes through the
avoided crossing a LZ process occurs [i.e., Eq. (17)], one
can compute a characteristic decay time 7y in a Markovian
approximation. This would be given by the fraction of HO
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cycles needed to reach a specific decay,
e = (P, (13)

since for every cycle the wave packet goes two times through
the gap. Then,

2 |Vyy 2

I/n==2In[P 7] = ——"—. (19)
h mwyqcqc

Since the period of oscillation is constant, Ty = n (27 /wp):

1 27 2
— =V P (20)
Ty h 27Tma)()chc
=My |2[ ! } @1
T Y 4n JEC(By = Eo)
1% 2
=‘i 27hN | (Eo) = (14)) 1. (22)

where Ej is the energy of the initial state and E¢ is the
gap energy, which is given by Eq. (6). Therefore, the decay
rate diverges as the difference between Ej and E¢ vanishes.
Additionally, initial states with high energies E( have lower
decay. The last line describes the Markovian decay rate in
terms of the density of directly connected states N;(E) and
in terms of the characteristic time scales t4), =#/|V; | and
T, = 27‘[hN1(E0).

The corresponding exponential decay may be seen as a
Markovian approximation to the LE degradation with respect
to the spin-flip process. As shown in Fig. 3, the comparison
with the actual LE decay is only valid during the first
cycle. Repeated passages would give rise to memory effects,
which are not contained in a successive application of the
single-passage LZ formula. Quite remarkably, we observe that
the LE turns out to be well fitted by a Gaussian M(¢) =
exp[—%(l /T¢)*]. Within a considerably large energy range,
the observed Gaussian time scale turns out to be about 1/3 of
the Markovian time, i.e., Tg 2 74/3.

In the context of a spin system interacting with a spin bath,
Zurek and coworkers [15] have argued that a Gaussian decay
of a LE can be identified with a random walk in the energy
space. In the Fock-space representation of our system, it is
clear that decoherence is a concatenated process: the spin flip
controlled by 7y, =#/|V;, | followed by quantum diffusion
along the energy coordinate [vertical chain in Fig. 1(a)]. This
last can be identified with such quantum random walk, with the
survival probability given by | Jo(21/nV, /h)|. For short times
this survival turns out to be a condition to maintain coherence
between both spin states, and it is essentially a Gaussian with a
time scale ) op(Ep) = %«/EOEC. Thus, it interesting to note
that in spite of a numerical factor, the non-Markovian Gaussian
decoherence rate is still described by Eq. (21). This feature
is also present in the Gaussian to exponential interpolation
formula proposed by Flambaum and Izrailev [36,37] for short
times, when memory effects are still effective. However, in
spite of the mentioned plausibility arguments, they are more
appropriate to describe the decay of single-energy eigenstates,
but they are not enough to provide a quantitative description of
the degradation of the subtle collective interferences involved
in the semiclassical wave-packet dynamics.
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FIG. 5. Comparison between the LE for a cat state (black line), the LE for an incoherent superposition (gray line) as given by Eq. (A18),
and the average LE of two independent evolutions of semiclassical states (dotted line) as given by Eq. (A19). The LE dynamics is given by
E = 150hwy, Ey =0, E|, = 100hw,, V, = 10hw,, V4, = 2hwy. (a) AE = 0 and (b) AE = 200hw.

B. Decoherence and fragility

In order to study the fragility of the cat state defined
in Eq. (10), we fix its mean energy E=(E + E»)/2 =
(0‘12 + a% + 1)/2 > E¢ and analyze the LE for a set of energy
differences AE = |E| — E»| = |ozf — a§|. Here, E; and E,
are the energies of all individual semiclassical wave packets
that compose the cat state. We summarize the observed
behavior by plotting M(¢) for two representative cases in
Fig. 5. There, we compare the LE for an initial cat state,
an initial incoherent superposition, and an average value of
the LEs corresponding to the independent dynamics of the
two individual semiclassical states [see Eq. (A19) in the
Appendix]. When AE =0 [Fig. 5(a)], there is almost no
difference between the behavior of the LE for the three
cases since the steps show up at the same time and have the
same depth. We assign this effect to a particularity of the
interaction used which, being energy dependent, produces an
equivalent change in quantum phases of each wave packet of
the superposition. Thus, only the adiabatic tunneling would
contribute to the decoherent process, and this has the same
effect for the cat state and for the incoherent superposition.
The difference between the two cases relies on the revivals
associated with the Stiickelberg phase, which occurs when
the wave packet components that remained with the same
spin state interfere with the ones that changed it. In fact, the
incoherent superposition state shows larger revivals. When
AE # 0 the situation changes. For E = 150hwy the cat state
degrades faster than the incoherent superposition as AE is
increased; i.e., the LE for the cat state tends to be lower. This
means that as AFE increases, the nonlocal (in energy) states
become more fragile [Fig. 5(b)]. The nonlocality in space is
not sufficient to ensure a difference in the behavior of different
initial states. In particular, if o) = || and o, = —|«/|, then
AE = 0but Ag # 0. As shown in Fig. 5(a), this case does not
show evidence of relative fragility.

In order to better quantify the previous observations, we

define the mean LE as M = 1/T fOT M()dt. At T =20/wy
we compute the difference AM = |M;,. — M|, where M,

and M., indicate the mean LE of the incoherent superposition
and the cat state, respectively. Thus, AM corresponds to the
area between the two curves, Mj,. and M.,. The magnitude
AM constitutes our fragility quantifier. In Fig. 6 we show
how AM increases with AE for different E provided that
AE 2 100%iwy. The scaling law turns out to be exponential on
the energy difference: AM ~ exp[(AE)/Fv], with v >~ 3.5.
This means that the fragility of the cat state increases as the
nonlocality in energy grows. Also, it can be noticed that AM
does not vanish even at AE = 0. Two observations contribute
to the interpretation of such an effect. On the one hand, AFE
must exceed the natural energy uncertainty of each of the
individual wave packets forming the initial state. On the other
hand, since many LZ processes contribute to A M, afinite value
for AE = 0 can be associated with the revivals that appear
immediately before LZ processes that define the LE steps. As
they originate in a precise phase commensuration, the more
fragile cat states always have smaller revivals than those of the
incoherent superposition of wave packets. Such an effect is
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FIG. 6. AM as function of AE. From top to bottom, E =
150hwy, E = 200hw,, E = 250hw,, and E = 300hw,. The inset
shows AM as a function of AE in log scale. The linear fittings
indicate an asymptotic exponential dependence for AE 2 1007w.
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more noticeable when E gets closer to E¢. Additionally, Fig. 6
shows that the fragility tends to disappear and the effects of
AE diminish as E increases. Indeed, if Eis very high, the LE
for the cat state does not present changes in its behavior even
when AE varies for a wide range of values. We can interpret
this fact as a consequence of theenergy dependence of the
perturbation, which for initial states with large E implies a LZ
factor of almost 1. Thus, the tunneling through the avoided
crossing is negligible, and the perturbation is less effective as
a decoherent process.

VI. CONCLUSIONS

In this article we employed the spin-boson model to
study decoherence of a harmonic oscillator produced by its
interaction with a simple nondegenerate binary environment.
Since here the system has many more allowed states than the
environment, the conceptual approach contrasts the standard
picture of quantum open systems. A particularity of our model
is that the spin-flip process only becomes effective when the
oscillator coordinate is such that the interaction energy makes
both spin states degenerate. Thus, spin-flip dynamics within
the environment is limited to occur only at a precise coordinate
of the harmonic oscillator. It is quite remarkable that this
situation, involving an unbounded set of discrete energies,
turns out to be well described in terms of the Landau-Zener
theory, which was developed for a two-level system evolving
under a time-dependent energy splitting.

The degradation of the quantum phase produced by the
environment was quantified by the Loschmidt echo. In partic-
ular, we focused on the fragility of the coherent superposition
of wave packets (cat states) when compared with incoherent
superpositions of the same wave packets. This required the
evaluation of the dynamics of such states. A tool that made
such calculations even more handleable was a wave-function
treatment, which involves a chosen number N of states in the
Hilbert space, instead of a full density matrix, which would in-
volve dimensions of N x N. The results indicate that coherent
superpositions of semiclassical wave packets associated with
different energies are more fragile than incoherent ones. The
fragility increases with the energy difference, i.e., nonlocality
in the energy representation, between the individual wave
packets. In our model, there is no evidence of fragility strictly
related to spatial nonlocality. However, when nonlocality in
space is associated with nonlocality in energy, the system
becomes increasingly fragile towards the simple decoherence
process.

The exponentially increased fragility of cat states may be
related to the problem of thermalization in closed quantum
systems [38]. In Ref. [32] it was proposed to build a cat state
with two macroscopic (semiclassical) wave functions with
different energies for the purpose of analyzing the time average
of any particular observable. In such a situation, in order to
recover the standard (classical) microcanonical predictions for
such observables, the interferences between the wave functions
should be negligible. Our results constitute a step towards this
direction since we verified that the more separated in energy
these wave packets are, the more easily they decorrelate, i.e.,
the more fragile its phase coherence becomes.

PHYSICAL REVIEW A 88, 032102 (2013)

ACKNOWLEDGMENTS

We acknowledge financial support from CONICET, AN-
PCyT, SeCyT-UNC, and MinCyT-Cor. This work benefited
from discussions with A. D. Dente and L. J. Ferndndez-
Alcdzar. D.B. kindly acknowledges M. Castagnino for in-
troducing her to the decoherence problem and his constant
support during the first stages of this work.

APPENIDX: INCOHERENT STATES

1. Normalization

We summarize here the properties of the incoherent
superposition of two Gaussians given by Eq. (11),

N i0; ig;
~ . e ay) + e'% |ay)
W) — lim , (A1)
)= Jim 35
where the normalization is
A* =2N?[3 + exp(—|a; — o). (A2)

To find this value we employed an algebra that is useful also
for the calculation of the LE. It follows from the use of the
identities, which hold for N sufficiently large,

N N
> explif;l =) explig;] = 0. (A3)
j=1 j=1

N N
> expli@; —0;)1 =N+ Y _expli(6; — ;)] = N. (A4)
JJ' J#J

N N
> expli(¢; —d;)] =N+ Y _expli(p; — ¢;)] =N,

JJ' J#J
(A5)
and hence
N
> expli(0; — 0 + 60 — )] =0, (A6)
J.j'.s.s’

N N
> expli(0; +0;)1 = Y expli(py + @)1 =0, (A7)

JJ’

N
Y expli¥; — 0y + v — $0)]
JoJ'ss.s
N
= Y expli6; —0; + ¢y — )]l = N>, (A8)
Jj=J's=s'
N
D" expli®; — 0 + 60y — 6,)]
Jod'ss.s'
N N N
= X 2+
J=its=s  j=s#j'=s'  j=j'=s=s

x expli(0; — 0 + 6y — 6)]
=N(N—-1)+ NN —1)4+ N =2N* — N ~2N>.
(A9)
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Normalization can be then computed by writing

N
(wire|wime)* = A2 3" [ fon) P expli(8; — 6 + 6 — 6)] + (1 |ar) (o or2) expli(®; — 67 + dyr — 6]
Jiitss
+ {ory lor) (g lory) expli(0; — 0 + Oy — ps)] + (1 lorr) eta leta) expli(® — 00 + By — )]
+ (a1 o) (1 lay) expli(@; — 0 + 6y — )] + [{ay o) > expli (@ — 600 + Oy — )]
+ (o laa)? expli(@; — 6 + by — 0] + (@1 laa) (@2 laa) expli(p; — O + o — )]
+ (a2 or) (@1 lon) expli(8; — ¢y + 6y — )] + (@2 larr)* expli (0 — by + Oy — )]

+ oz lan) 1> expli(0; — ¢ + by — 0] + (02 1) {2 lta) expli (6 — bjr + ¢y — $5)]
+ (o2 [o) (o1 |oer) expli(p; — @y + Oy — O)] + (02 [o2) (2 |orr) expli(P; — @y + Oy — @)l
+ (o2 o) (et ) expli(e; — djr + o — 0] + [tz loa) > expli(@j — djr + by — )] (A10)
and noticing that (o) 1) = (o2 |az) = 1 and (o) |a2)|2 = [{an |051)|2 = exp[— o) — oc2|2] . By Eq. (A6), the 2nd, 3rd, 5Sth,
8th, 9th, 12th, 14th, and 15th terms vanish, and by Eq. (A7) the 7th and 10th terms also vanish. Using Eqgs. (A8) and (A9),
normalization in Eq. (A10) finally yields
|(wire|wire) > = A2N? + 2N + 2N expl— |ay — o |*] + 2N?)
= ATP2N?{3 + expl—lon — o]},
=1,
which defines A as in Eq. (A2).

2. Time evolution and LE

In order to compute the LE as defined in Eq. (14), one shall consider two different cases. For single semiclassical states as in
Eq. (9) or cat superpositions as in Eq. (10), the LE can be straightforwardly evaluated by Eq. (15). However, for the incoherent
superpositions of Eq. (11), an appropriate manipulation is required. Thus, here we make explicit the time evolution and the LE
for such a state. With the purpose of simplifying notation, limy_, » is dropped everywhere.

First, notice that in the Fock basis |\IJ(")“°) can be written in a split form making explicit the random phases A and the amplitudes
cr.» needed to build each of the Gaussian coherent states:

o0

w5} = D[, + AP ] 1), (ALD)
n=0
where
N oit N it
AV =YY"= A®= , (A12)
Lx ML
2 n 2 n
W loeg |7 ] (err) o) o2 | (er2)
— = — = . Al3
CT n eXp [ 2 i| \/m ? CT,n exp 2 m ( )

Since any evolution operator is linear, the splitting of the probability amplitudes remains valid at any time. In fact, the evolution
under the Hamiltonian Hg can be exactly computed as

[ee]

et ) = 3 T [AVE @) + AP @] 11 n), (Al14)
n=0
where
2 n 2 n
oD loe|” . 1 (a1) @ loa|” . 1 (a2)
(t)—ep|: > —1<n+§ wot m, cM(t)_exp - —1 n+§ wot W (A15)
Analogously, the perturbed evolution under Hs + 3 yields
oo
e AN i) = 3 [ADE] (0) + AP O] A [,n)
n=0
oo
=> [ADG (1) + APd) (0)]lk.n). (A16)
n=0 k=1,|
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Even though we do not have a simple closed formula like Eq. (A15) for the time-dependent amplitudes dk ,)l(t) and d,fz,),(t)

they are well defined by the linearity of the evolution operator. Now we can translate the LE evaluation in Eq. (15) by identifying
em(®) = AV @)+ AP (1) and di (1) — AV (1) + APdL) (1),

M) = Tr{ (05) %)

= Y {[a%a)), @) + APd?), O][AVa () + APd) )] +
m,n=0

x[AV) )+ APd2, O H AV, @) + AP, O][AVE]), 1) + AP, (0]}

where the overline means complex conjugation. Equation (A17) has 32 terms, and after using the averaging rules given by
Egs. (A6), (A7), (A8), and (A9) for every product AW x A® x A© x A@D,

[AVd}) () + AP, ()]

(A17)

Z [2n2[d" 0d @) + d 0d D o] 0D, o)

m,n=0
+N[d) (0d ) +d}) (0d]) 0]l (1) + N[d), (Hdsh (0) + d ), (0d] ) (D]eD, (el ()
+N[d) (Hd2 ) +d) ()d P (0], 0 (O (0 + N2 [dD,(0d0 1) + dP, (0d D n)]e! 0 (O (1)
+2N[d) (1) () + d ), (Dd P (0)]e 2 (D0},

Minc(t) =

(A18)

Notice that since A=2 o« N2, the N dependence of Eq. (A18) disappears. This means that we do not need to compute an
infinite average of wave functions. Instead, it is only needed to evolve separately two individual semiclassical states |o;) and
|ap) and use their respective probability amplitudes (the complex coefficients in the Fock basis {|k,n)}) to compute M, (¢) at
any time. Additionally, the first and last terms in Eq. (A18) are proportional to the naive version of the LE for two independent

semiclassical states, defined as the mean value of the individual overlaps:

o0

—_

(1

Muie®) = = > {[d), 0@ @) +d})),0d) 0] 00, @) + [d0,0d, @) + d ), m)d ) n]e, e 1))

2

m,n=0

- %[M(“‘)(t) + M*(1)],

(A19)

where M@ and M@ are the corresponding LE for |a) and |a,), respectively, evaluated from Eq. (15).
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