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Abstract In this paper, we study the behavior of a pair of co-orbital planets, both orbiting
a central star on the same plane and undergoing tidal interactions. Our goal is to investigate
final orbital configurations of the planets, initially involved in the 1/1 mean-motion resonance
(MMR), after long-lasting tidal evolution. The study is done in the form of purely numerical
simulations of the exact equations of motions accounting for gravitational and tidal forces.
The results obtained show that, at least for equal mass planets, the combined effects of the
resonant and tidal interactions provoke the orbital instability of the system, often resulting in
collision between the planets. We first discuss the case of two hot-super-Earth planets, whose
orbital dynamics can be easily understood in the frame of our semi-analytical model of the
1/1 MMR. Systems consisting of two hot-Saturn planets are also briefly discussed.

Keywords Hot Saturns · Hot super Earths · Two-planet systems · Planetary systems
disruption · Tides · Exo-Trojans

1 Introduction

In contrast with strong mean-motion resonances (MMRs), such as 2/1 and 3/2 MMR
(see Beaugé et al. 2012) there are no known pairs in co-orbital configuration, despite the
continuously increasing number of discovered exoplanets. This intriguing fact can be inves-
tigated in the context of a past large-scale planetary migration and capture due to, for instance,
interactions with the gaseous protoplanetary disk. Several theories about the formation, dis-
sipative evolution and possible detection of exo-Trojans have been developed and will be
discussed later in this section.
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60 A. Rodríguez et al.

The first detailed analysis of hypothetical co-orbital exoplanets was done in Laughlin and
Chambers (2002), focusing the difficulties in fitting of the RV data of these systems. More
recently, Hadjidemetriou et al. (2009) studied the topology of the phase space and the long
term evolution of two-planet systems in the vicinity of the exact 1/1 MMR in the conservative
case and for several planetary mass ratios. Hadjidemetriou and Voyatzis (2011) included a
drag force and simulated the dynamical evolution of a two-planet system initially trapped in a
stable 1/1 resonant periodic motion. Under this drag force the system migrates along the fami-
lies of periodic orbits and is finally trapped in a satellite orbit. Giuppone et al. (2010) analyzed
the stability regions and families of periodic orbits of two planets locked in a co-orbital con-
figuration using a semi-analytical method. They found two new asymmetric solutions which
do not exist in the restricted three-body problem. These solutions were also obtained by Robu-
tel and Pousse (2013), who developed an analytical Hamiltonian formalism adapted to the
study of the motion of two planets in co-orbital resonance for near coplanar and near circular
orbits.

Another kind of dissipative evolution in planetary systems is due to tidal interactions of
short-period planets with the central star, which originate changes in orbital elements and rota-
tional periods of the planets. For a planet orbiting a slow rotating star, the tidal effects lead to
orbital decay, orbital circularization and rotation synchronization on timescales which depend
on physical parameters and initial orbital configurations of interacting bodies (see Dobbs-
Dixon et al. 2004; Ferraz-Mello et al. 2008; Rodríguez and Michtchenko 2011a; Michtchenko
and Rodríguez 2011, and references therein). Some recent studies address the problem of tidal
interaction in two-planet resonant systems (see Papaloizou 2011; Delisle et al. 2012). They
show that, as tides tend to circularize the planetary orbits, the planets repel each other, in such a
way that the period ratios at the end of the evolution are slightly larger than the corresponding
nominal low-order resonant values. This feature seems to be a natural outcome of slow dissipa-
tive evolution (Lithwick and Wu 2012; Delisle et al. 2012; Batygin and Morbidelli 2013) and
is in agreement with close-in planetary configurations detected by the Kepler mission among
KOI’s candidates. It should be noted that these works focus the attention on first order MMR
(e.g. 2/1, 3/2, 4/3), while the case of co-orbital tidal evolution of exoplanets has not been still
explored in the context of the general three-body problem. This is the main task of the present
paper.

1.1 Review of stable co-orbital configurations

In the following, we describe the most important results concerning the equilibrium points
of the co-orbital configurations in the general three-body problem. The reader is referred to
Giuppone et al. (2012) for a summary of previous works.

Particularly, Hadjidemetriou et al. (2009) studied the motion close to a periodic
orbit by computing the Poincaré map on the surfaces of sections. For this task, the
symmetric families of stable and unstable motions were constructed and a previously
unknown stable configuration was discovered, referred to as the Quasi-Satellite (QS)
solutions.

Giuppone et al. (2010) constructed the families of periodic orbits in the vicinity of the 1/1
MMR using a semi-analytical method. The authors identified two separate regions of stability,
symmetric and asymmetric, defined by the behavior of the resonant angles (σ,Δ�) ≡
(λ2 − λ1,�2 − �1), where λi and �i are mean longitudes and longitudes of pericenter of
the planets, respectively. Summarizing:
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Tidal evolution of close-in exoplanets 61

• L4 and L5 (asymmetric). Are the classical equilateral Lagrange solution associated to
local maxima of the averaged Hamiltonian function. Independently of the mass ratio
m2/m1, where m1, m2 are the masses of the planets, and eccentricities e1, e2, these solu-
tions are always located at (σ,Δ�) = (±60◦,±60◦). The size of the stable domains
around these points decreases rapidly for increasing eccentricities and is practically neg-
ligible for ei > 0.7.

• AL4 and AL5 (asymmetric). Anti-Lagrangian solutions which correspond to local min-
imum of the averaged Hamiltonian function. For low eccentricities, they are located
at (σ,Δ�) = (±60◦,∓120◦). One anti-Lagrangian solution ALi is connected to the
corresponding Li solution through the σ -family of periodic orbits in the averaged sys-
tem (the solutions with zero-amplitudes of the σ–oscillation; for detail, see Giuppone
et al. 2010). Contrary to the classical equilateral Lagrange solution, their locations on
the plane (σ,Δ�) depend on the planetary mass ratio and eccentricity values. Although
their stability domains also shrink with increasing values of ei , these solutions survive at
eccentricities as high as ∼0.7.

• Quasi-Satellite (symmetric). Are characterized by oscillations around a fixed point which
is always located at (σ,Δ�) = (0, 180◦), independently of the planetary mass ratio and
eccentricities. In contrast with the L4 and L5 configurations, the domain of these orbits
increases with increasing eccentricities and it fills a considerable portion of the phase
space in the case of moderate to high eccentricities.

1.2 Formation of exo-Trojans

There is a vast literature trying to explain the formation of co-orbital planets and different
mechanisms have been proposed. Here we only highlight some of the proposed scenarios:
planetesimal and planet–planet scattering (Kortenkamp 2005; Morbidelli et al. 2008), direct
collisional emplacement (Beaugé et al. 2007), in situ accretion (Chiang and Lithwick 2005)
and migration in multiple protoplanet systems (Cresswell and Nelson 2006; Hadjidemetriou
and Voyatzis 2011; Giuppone et al. 2012).

Particularly, Giuppone et al. (2012) analyzed whether co-orbital systems may also be
formed through the interaction of two planets with a density jump in the protoplanetary disk.
The authors considered two planets, initially located farther than the 2/1 MMR (beyond 1
AU, where tidal interaction with the central star is almost negligible) and involved in the
inward migration process, which is ended by the capture in the 1/1 MMR. Assuming an
isothermal and not self-gravitating disk, the capture of massive planets into the resonance
is obtained when the mass ratio is sufficiently close to unity and the surface density of
the disk is sufficiently high. Multiple planetary systems with Earth-like planets produced
co-orbital configuration after some scattering between them. The final outcome showed co-
orbital configurations producing more easily solutions around L4 and L5, and less probably
the AL4 and AL5 configurations. If the planets has large mass ratios, the smaller planet was
either pushed inside the cavity or trapped in another mean-motion commensurability outside
the density jump.

In view of the results regarding the formation of co-orbital configurations, we restrict our
investigation to the case of equal mass planets, considering super-Earth and Saturn exam-
ples. We will investigate which is the subsequent evolution under tidal effects after the 1/1
resonance capture.
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2 Dynamics of the conservative problem

2.1 Phase space of the 1/1 MMR

The 1/1 MMR can be analyzed through a Hamiltonian formalism as it has been done for
other mean motion resonances (see Michtchenko et al. 2006, 2008a,b). Basically, it requires a
transformation to adequate resonant variables and a numerical averaging of the Hamiltonian
with respect to short-period terms. The reader is referred to Giuppone et al. (2010) for a
detailed description of our semi-analytical approach.

Using a semi-analytical model we can visualize the phase space of the 1/1 MMR.
For this task, we calculate level curves of the Hamiltonian which are plotted on the
(σ, n1/n2) representative planes in Fig. 1. Hereafter, we call ai , ei , ni , for i = 1, 2, the
semi-major axes, eccentricities and mean orbital motions of the planets, respectively. In
the construction of the top panel we adopted e1 = e2 = 0.0001 and Δ� = 60◦, and,
for the bottom panel, e1 = e2 = 0.04 and Δ� = 180◦; in each case, the planet masses
were m1 = m2 = 5m⊕, while the mass of the star was m0 = 1m�. The interpretation
of the obtained portraits is simple, after some initial considerations. Since the averaged
resonant system has two degrees of freedom, the phase space of the problem is four-
dimensional and the intersection of one planetary path with the representative plane is
generally given by four points belonging to the same energy level. However, for the cho-
sen small values of the planet eccentricities, two degrees of freedom interact weakly each
with other; in other words, they are nearly separable. This means that each energy level
represents, with a good approximation, one nearly circular planetary path on the (σ, n1/n2)
plane.

The stable stationary orbits of the planets in 1/1 MMR are represented by two fixed
points in Fig. 1 (top panel); they correspond to the Lagrangian solutions L4 and L5 of the
circular problem. Their locations in the phase space are given by n1/n2 = 1 and σ = ±60◦.
The oscillations around L4 and L5 points are frequently referred to as tadpole orbits. Their
domains are bounded by the separatrix shown by the thick black curves in Fig. 1, which pass
through the unstable saddle-like L3 solution with coordinates n1/n2 = 1 and σ = ±180◦.
Outside the separatrix, there is a zone of horseshoe orbits (large amplitude oscillations of σ

around 180◦, encompassing both L4 and L5), which is extended up to the second separatrix,
which contains the Lagrangian saddle-like points L1 and L2 (not shown in Fig. 1) located
on the vertical axis at σ = 0. Configurations leading to close encounters between the planets
are represented with cyan curves. Such configurations are of special interest; indeed, we will
show that the width of the regions of close approaches between both planets is correlated with
the individual masses and that the short-term mutual interactions inside this region provoke
imminent disruptions of the system. However, when the two planets are sufficiently close to
each other, they form a specific dipole-like configuration known as quasi-satellite stable orbit.
The domain of QS is close to the origin of the plane and can be clearly seen in the amplified
frame in Fig. 1 (bottom panel). Finally, the origin is a singular point which corresponds to
collision between the planets.

It is worth noting that the orbits L4 and L5 correspond to the maximal values of the
energy of the conservative 1/1 resonant system. This fact should be kept in mind when
dissipative forces are introduced in the system. In this case, the variation of the energy
will dictate the evolution of the resonant system: for slowly increasing energy, the system
will converge to one of the L4 and L5 solutions, while, for slowly decreasing energy, its
trajectory will be a spiral unwinding from L4 (or L5) solution. In the case of a dissipative
evolution, the system starting nearly the L4 equilibrium point will cross the domains of tadpole
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Fig. 1 Energy levels of the conservative Hamiltonian system composed of the Sun-like star and two co-planar
planets of equal masses, m1 = m2 = 5m⊕, on the (σ, n1/n2) plane. Top panel: initial values of the planet
eccentricities are e1 = e2 = 0.0001 and Δ� = 60◦. Bottom panel: same plane (enlarged around the origin),
obtained with e1 = e2 = 0.04 and Δ� = 180◦. Values of Δ� and eccentricities were chosen for a better
comparison with further results

and horseshoe orbits, approaching the close encounters region, where it probably will be
disrupted.

2.2 Amplitude maps

In this section, we present dynamical maps of the 1/1 MMR on the (σ,Δ�) represen-
tative plane. For this task, we construct grids of initial conditions varying both σ and Δ�

between zero and 360◦. Each point in the grid was then numerically integrated over 5000 years
(roughly orbital 450 000 periods) using a Bulirsch–Stoer based N-body code. We calculated
the amplitudes of oscillation of each angular variable. Initial conditions with zero amplitude
in σ correspond to σ -family periodic orbits of the co-orbital system, while solutions with zero
amplitude in Δ� correspond to periodic orbits of the Δ� -family (see Michtchenko et al.
2008a,b). Stationary solutions of the averaged problem are the intersections of both families.

Figure 2 shows results obtained for a system composed of a Sun-like star and two hot-
super-Earths with masses of 5m⊕ and semi-major axes of 0.04 AU. The top and bottom
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Fig. 2 Amplitude maps for the resonant angle σ (top panels) and the secular angle Δ� (bottom panels) on the
(σ, Δ�)-plane of initial conditions. Results were obtained for a two super-Earth planets orbiting a Sun-like
star with a1 = a2 = 0.04 AU (orbital periods around 2.9 d); the initial eccentricities were chosen as ei = 0.1
(left column) and ei = 0.0001 (right column). Light-blue domains correspond to nearly zero amplitudes (σ -
and Δ� -families of periodic orbits), darker regions indicate oscillation amplitudes smaller than ∼ 180◦,
while red color indicates collision orbits. For ei = 0.1 (left column), the phase space clearly shows σ -families
as light-blue vertical strips on the top panel, and Δ� -families as horizontal strips on the bottom panel. The
domains of unstable motion (in red) associated to close encounters between the planets surround the region
of QS located at σ = 0◦ = 360◦. For nearly circular orbits, with ei = 0.0001 (right column), the domains of
instability cover the region of QS orbits. The location of the σ–families remains almost unaltered (top panel),
in contrast with Δ� -familie, which almost disappear

frames show the oscillation amplitude of σ and Δ� , respectively. Left and right frames were
constructed with eccentricities ei = 0.1 and ei = 0.0001, respectively. The domains in light-
blue color correspond to orbits with small amplitudes (<5◦), thus indicating the location of
the families of periodic orbits. The σ -families defined by nearly zero amplitudes of oscillation
of the resonant angle σ are located on the top frames. The Δ� -families defined by nearly zero
amplitudes of oscillation of the secular angle Δ� can be observed on the bottom panels. For
example, at the initial condition with ei = 0.1 located at (σ,Δ�) = (120◦, 40◦), σ oscillates
with amplitude 100◦, while Δ� oscillates with very small amplitude around 40◦. Darker
regions correspond to increasing amplitudes and denote initial conditions with quasi-periodic
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Fig. 3 Equilibrium values of σ

and Δ� for the periodic families
as function of the eccentricity for
m2/m1 = 1
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motion. The unstable orbits (collisions) parameterized by amplitudes equal to 180.1◦, are
shown by red color.

We observe the domains around the Lagrangian equilateral solutions (L4/L5) at
(σ,Δ�) = (±60◦,±60◦), the anti-Lagrangian solutions (AL4/AL5) at (σ,Δ�) �
(±60◦,∓120◦), and the QS solution (σ,Δ�) = (0, 180◦).

For low eccentricities (ei = 0.1, left frames), we observe the asymmetric solutions con-
nected with the σ -family of periodic orbits (vertical cyan strips) and their intersection with
the horizontal Δ� -family (sinusoidal strip at bottom frame). The unstable orbits are very
thin regions (in red) that separate the two regimes of motion (symmetric from asymmetric).

For initially almost circularized orbits (ei = 0.0001, right frames), the QS region disap-
pears (vertical red strips at σ = 0), meanwhile the low amplitude oscillations for the σ -family
in top frame remains almost unaltered as vertical strips. In the bottom right frame, the Δ� -
family shrinks into a concentrated region around the exact location of periodic families.
Outside these small domains, Δ� oscillates with high-amplitude (>160◦).

The results of the maps show that, during the process of tidal eccentricity damping, we
expect an increase in the oscillation amplitude of the angles around the equilibrium points of
the 1/1 MMR. This feature will be confirmed through analysis of the numerical simulations
of the exact equations of motion.

Using the semi-analytical Hamiltonian model we constructed the families of periodic
orbits following Giuppone et al. (2010). Figure 3 shows the dependence of the angular
coordinates of the equilibrium points on the eccentricities from quasi-circular orbits to ei =
0.9. This figure will serve us as a guide in the choice of the initial conditions for the numerical
simulations of the exact equations of motion (see next section).

The results shown in this section are qualitatively the same for hot-Saturn planets.

3 The equations of motion of the dissipative problem

We consider a system composed by a central star and two close-in co-orbital and rotating
planets. Due to the short astrocentric distances, we suppose that both planets are deformed by
the tides raised by the central star, which is also assumed distorted by the tides raised by the
planets. The orbital planes of motion are supposed to be coincident with the reference plane
(i.e, zero inclinations). In addition, we assume that the rotation axes are normal to the orbital
planes (i.e, zero obliquities). For close-in planets, it is also convenient to consider the forces
arising form general relativity, in addition to the mutual gravitational interaction and tidal
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forces. Remember, we call m0, m1 and m2 the masses of the star and planets, respectively;
whereas the radii are denoted by R0, R1 and R2.

In a reference system centered in the star, where the positions and velocities of the planets
are ri and vi , with i = 1, 2, the equations of motion are given by

r̈1 = −G(m0 + m1)

r3
1

r1 + Gm2

(
r2 − r1

|r2 − r1|3 − r2

r3
2

)

+ (m0 + m1)

m0m1
(f1 − f01 + g1) + f2 − f02 + g2

m0
, (1)

r̈2 = −G(m0 + m2)

r3
2

r2 + Gm1

(
r1 − r2

|r1 − r2|3 − r1

r3
1

)

+ (m0 + m2)

m0m2
(f2 − f02 + g2) + f1 − f01 + g1

m0
. (2)

On one hand, gi are the general relativity contributions acting on the planets, which for
i = 1, 2 are given by

gi = Gmi m0

c2r3
i

[(
4

Gm0

ri
− v2

i

)
ri + 4(ri · vi )vi

]
(3)

where vi = ṙi and c is the speed of light (see Beutler 2005). On the other hand, fi are the
tidal forces raised by the star acting on the masses m1 and m2 due to their deformations,
respectively. We use the expression for tidal forces given by Mignard (1979):

fi = −3kiΔti
Gm2

0 R5
i

r10
i

[2ri (ri · vi ) + r2
i (ri × �i + vi )], (4)

where �i is the rotation angular velocity of the i-th planet, for i = 1, 2. It is worth noting
that Mignard’s force is given by a closed formula and, therefore, is valid for any value of
eccentricity.1 k2i is the second order Love number and Δti is the time lag, which can be
interpreted as a delay in the deformation of the tidally affected body due to its internal
viscosity. The total tidal force on the star is f0 = f01 + f02, where f0i are the individual tidal
forces raised by each planet and for i = 1, 2 are given by

− f0i = −3k0Δt0
Gm2

i R5
0

r10
i

[2ri (ri · vi ) + r2
i (ri × �0 + vi )], (5)

where the subscript “0” stand for star quantities. Note that are the forces −f0i which act on
the planets and must be considered in the equations of motion of the bodies.

The fact that Δt 	= 0 introduces energy dissipation in the system, resulting in orbital
and rotational evolution due to tidal torques. The tidal model here adopted is a classical
linear approach (Darwin 1880), since it is implicitly assumed that the resulting dissipation is
proportional to the tidal frequencies. This tidal model is frequently referred to as a constant
time-lag model and, despite that recent works have shown that it could not be appropriate for
the study of terrestrial planets, is expected to yield to the approximately correct results. For
a review of other tidal models, the reader is referred to Efroimsky and Williams (2009) and
Ferraz-Mello (2013).

1 Note however that, for a more accurate description, a large number of harmonics in the expansion of the
tidal potential should be considered when the star-planet distance is small enough (see Taylor and Margot
2010).
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4 Numerical simulations

In this section we show the result of the numerical integration of Eqs. (1)–(2) for some
particular systems. As shown in Giuppone et al. (2010), large-scale planetary migration
should favor the formation of co-orbital configurations more likely for nearly equal mass of
the planets (see Sect. 1.2). Hence, we restrict our investigation to the case m2/m1 = 1. We
start with the case of two super-Earth planets with m1 = m2 = 5m⊕ orbiting a Sun-like
star with m0 = m� and R0 = R�. The radii are such that the mean densities ρ satisfy
ρ1 = ρ2 = ρ⊕, so that R1 = R2 = 51/3 R⊕.

For sake of completeness we also explore the case of individual masses of mSat , where
mSat is the mass of Saturn, and the radii are computed as in the super-Earth case.

We are going to investigate the final outcome of a system originally evolving in a co-
orbital configuration when the tidal effect acts to change the orbital elements. Thus, we
choose the initial values of the angles (σ,Δ�) near to the equilibrium points. The initial
semi-major axes and eccentricities are a1 = a2 = 0.04 AU (orbital periods of �2.9 d) and
e1 = e2 = 0.1. The initial values of rotation periods are 16.7 h for both planets, however,
they are not important because the rotation rapidly encounters its stationary value which
only depends on the eccentricity within the adopted tidal model (Hut 1981). We set 19.4 d
as the initial value of the stars’ rotation period, noting that the stationary value in this case
is reached in a much larger timescale than for the planets. In addition, we need to know the
value of the moment of inertia around the rotation axis, which is given by ξm R2, where ξ

is the structure constant. For super-Earths, we adopt Earth values for ξ , namely, ξ = 0.33;
whereas for hot-Saturn and a Sun-like star we set ξ = 0.21 and ξ = 0.07, respectively.2

The linear model enable us to relate the time delay Δt with the quality factor Q through
1/Q = nΔt , where n is the mean orbital motion (see Correia et al. 2012). However, the
quality factor is poorly constrained even for Solar System bodies, although some previous
works have brought valuable information. For instance, for the solid Earth we have Q = 370
(Ray et al. 1996), and values of Q/k2 = 0.9 × 105, Q > 1.8 × 104 and Q/k2 = 4.5 × 104

were estimated for Jupiter, Saturn and Neptune, respectively (Lainey et al. 2009; Meyer and
Wisdom 2007; Zhang and Hamilton 2008). More recent investigations suggest that the hot
super-Earth CoRoT-7 b has Q = 100, whereas for a hot Jupiter of 2–3 mJup in a 5-d orbit,
Q ∼ 4.2 × 105 (Ferraz-Mello 2013).

In this work, we adopt Q = 20, k2 = 0.3 for hot super-Earths and Q = 1×104, k2 = 0.34
for hot-Saturn planets, whereas for Sun-like stars we adopt Q = 1 × 106, k2 = 0.34.
The corresponding values of k2Δt , where Δt is obtained through 1/Q = nΔt , are
(k2Δt)super-Earth = 600 s, (k2Δt)Saturn = 1.37 s and (k2Δt)Sun = 0.0137 s.

We chose initial values of the angles within 4 degrees around the exact equilibrium solu-
tions (see Fig. 3 for the locations of the exact solutions and Table 1 for initial values chosen).
The symmetric and asymmetric periodic solutions for mass ratio close to unity are such
that e1 = e2 (and also a1 = a2, see Hadjidemetriou et al. (2009); Giuppone et al. 2010).
Hence, we start our simulations with equal eccentricities, since we are assuming that the
system is evolving under the 1/1 MMR. However, we note that the global results would not
be affected by either the initial values of eccentricities or amplitudes of the angles, as long
the corresponding configuration is nearby to the exact 1/1 MMR.

For our stability criterion, we use the critical distance given by d = κ(R1 + R2). Hence,
we assume that orbital instability would occur whenever the instantaneous mutual distance is
equal or smaller than d , that is, for |r2 − r1| ≤ d . We note that κ = 1 implies in the physical

2 http://nssdc.gsfc.nasa.gov/planetary/factsheet/.
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Table 1 Arbitrary initial conditions near the stable periodic solutions in the (σ,Δ�) plane, calculated with
the semi-analytical method (see Giuppone et al. 2010)

m2/m1 σ (deg) Δ� (deg) e1 e2

QS 1 4 184 0.1 0.1

L4 1 64 64 0.1 0.1

L5 1 296 296 0.1 0.1

AL4 1 65 245 0.1 0.1

AL5 1 295 115 0.1 0.1

All conditions have a1 = a2 = 0.04 AU. The same initial co-orbital configurations were chosen for both hot
super-Earth and hot-Saturn cases

collision between the planets.3 In this work, we use κ = 1 and κ = 2, however, we anticipate
that the final results are not sensitive (in the sense of collision timescale) to the choice of one
of the above values of κ .

4.1 Results

4.1.1 Hot super-Earths

We start with the case in which the individual planets are represented by a 5m⊕ super-Earth.
Figure 4 shows the time variation of the angles (σ,Δ�) around the symmetric and asym-

metric equilibrium points for κ = 1, whereas the evolution of the eccentricities is shown in
Fig. 5. A collision between the planets is the final outcome of all simulations.

For AL4/AL5 configurations, the angle Δ� oscillates with small amplitudes up to around
35 Myr. However, the amplitudes start to increase and, close to 45 Myr, a new regime of
oscillation appears, in which the angles seem to avoid the regions centered near 240◦ and
120◦. Note that these positions are the corresponding equilibrium points of Δ� for AL4/AL5
solutions in the circular case. Moreover, between 60 and 65 Myr, a circulation of Δ� appears
and, finally, an oscillation around 180◦ with increasing amplitude occurs before the collision
between the planets.

The evolutions of Δ� along L4/L5 during the first 20 Myr follow close to the stationary
values (60◦/300◦). After that, Δ� deviates and a time interval of oscillation and circulation
occurs, with the angle taking many values in the whole interval between 0◦ and 360◦ but
privileging the oscillation around 0◦. Finally, Δ� oscillates around 180◦ before collision.

Regarding to the resonant angle σ , we note in Fig. 4 a libration with increasing amplitude
around the equilibrium points. When the regime of oscillation/circulation of the angle Δ�

appears, σ librates around 180◦ with very high amplitude until the end of the simulation (for
all asymmetric configurations). We will return to this discussion later in this section.

The solution close to QS is the first to become unstable, around 6 Myr of evolution. In this
case, the amplitudes of the angles are close to 4◦ and e1 � e2 = 0.038 before destabilization.
Several runs for the QS case were carried out with different values of initial amplitudes
(even zero) and the collision was the final outcome in all cases in very similar timescales

3 The expression “collision” in this work can also be used in association with instabilities of the planetary
system (i.e, close encounters resulting in ejections or hyperbolic orbits, etc), thus, it is not restricted to impact
between the planets. However, close encounters with κ between 1 and 2, may result in tidal disruption of one
or both planets rather than ejection into hyperbolic orbit.
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Fig. 4 Time variation of Δ� and σ (in degrees) for the symmetric (QS) and asymmetric (L4/L5 and
AL4/AL5) co-orbital configurations, for starting values displayed in Table 1. Several regimes of libra-
tion/oscillation/circulation are present along the evolution (see text for detailed discussion). The planets
ultimately collide on timescales of tens of millions of years, except for the QS case in which the system
destabilizes at approximately 6 Myr

Fig. 5 Time variation of
eccentricities for the system with
two super-Earths planets. For L4
and AL4 co-orbital
configurations, the circularization
is obtained at the end of the
simulations, whereas for the QS
case, the final values are close to
0.038. In all cases, the evolution
follows close to the stationary
solution e1 = e2 (the values of
the eccentricities are
superimposed in the figure)
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(<10 Myr). Moreover, we tested a run without tides and the system becomes stable at least
up to 60 Myr (with constant amplitudes of the angles).

The evolution of eccentricities follows with e1 � e2 (and thus superimposed in Fig. 5),
according to the stationary solutions for equal mass planets. The final result of the tidal
evolution is an almost doubly orbital circularization except in the QS case, in which the
oscillation amplitude of eccentricities are larger than for other cases.

If we suppose that the time variation of the eccentricities follows an exponential law
(see right panel in Fig. 6), we can estimate the timescale for tidal damping as τe = ė/e.
Using a classical averaged expression for ė obtained from linear tidal models [see Eq. (3.5)
in Rodríguez and Ferraz-Mello 2010] we obtain τe � 6 Myr. This value gives an estimation
of the e-folding of the eccentricity damping. Therefore, the timescales for destabilization
shown in Fig. 4 correspond roughly to 10τe.

Figure 6 shows the time variation of semi-major axes and eccentricities corresponding to
the evolution along AL4 (solid curves), noting that the condition of the equilibrium solution
is followed (a1 � a2). In addition, we also plot the same elements when only one planet
is present in the system (dashed curves). It is interesting to note that both results are in
good agreement. The explanation can be found in the fact that, since the system follows
an equilibrium configuration from the beginning provided by the resonant trapping, the tidal
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Fig. 6 Time variation of semi-major axes and eccentricities along the AL4 solution (solid curves) and the
comparison with the case of a single-planet (dashed curves), for the two super-Earths planet system. Both
results are in good agreement, indicating that the evolution around the 1/1 trapping leads the planets to follow
independent paths dictated by the tidal effect

Fig. 7 The evolution in the plane
(σ, n1/n2) for the two
super-Earth planets system
around the L4/L5 equilibrium
points. The structure of the
resonant motion is identified
through the domains of libration
of the angle σ , disconnected by
the corresponding separatrix.
Similar results can be obtained
for the AL4/AL5 equilibrium
points

evolution acts independently to damp the orbital elements.4 Moreover, the final value of semi-
major axis in the case of a single planet can be found through afin = aini exp(e2

fin−e2
ini), where

the subscripts “ini” and “fin” stand for initial and final values, respectively (see Rodríguez
et al. 2011b). Replacing numerical values, we obtain afin = 0.0396 AU, in good agreement
with the numerical simulations. The above analytical calculation only considers the effect of
planetary tides (tides on the planets), indicating that, in view of the agreement, the contribution
of stellar tides (tides on the star) can be safely neglected.5

Figure 7 shows the result of the numerical simulations for L4/L5 in the plane (σ, n1/n2).
Here, it is easy to identify the libration regimes of the resonant angle σ within the domain of
the 1/1 MMR. The initial small libration amplitude around (60◦, 1) and (300◦, 1) (red and
green points) increases as the orbit circularizes due to the tidal evolution. When the amplitude
is large enough, the motion occurs around σ = 180◦ (blue points) and encompasses both
equilateral Lagrangian points (see also Fig. 4, right panel). In analogy with the restricted
problem, these types of motion correspond to tadpole and horseshoe co-orbital configurations.
In Fig. 7, we clearly see that the tadpole and horseshoe oscillation regimes are disconnected
by the separatrix of the 1/1 resonant motion.

4 Pauwels (1992) mentioned that when two satellites are locked in MMR, the tidal effect will cause the orbits
to expand independently.
5 Indeed, the amplitude of stellar tides are proportional to mi /m0 (see Rodríguez and Ferraz-Mello 2010).
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Fig. 8 The analogous to Fig. 7
for the system with two
hot-Saturn planets. We can
identify the domains of libration
around the Lagrangian
equilibrium points (tadpole and
horseshoe) and also the
circulation of σ . The collision
takes place when σ becomes very
close to zero

We should note that the condition σ ∼ 0 is necessary for the collision to occur. However,
we do not observe in Fig. 7 a separatrix disconnecting the regimes of libration and circulation
of σ , and thus the angle seems never takes the zero value. To overcome this situation, we
performed a new short numerical simulation starting very close to the configuration in which
the collision occurs. We will illustrate these results in the next section in the application for
hot-Saturn planets, but the same can be applied for super-Earths.

It is interesting to compare the numerical results with those predicted by the semi-analytical
model (Sect. 2). Indeed, the curve which separates the domains of tadpole and horseshoe
motions (black curve on top panel of Fig. 1) agrees with the separatrix appearing in Fig. 7.
The oscillation amplitude of n1/n2 in both cases is approximately 0.12, while σ takes values
as small as 25◦ (for L4), until the horseshoe domain arises.

The numerical solution for the QS configuration indicates that n1/n2 � 1.02 and σ � 5◦
before destabilization. We thus note an excellent agreement of the above result through an
inspection of Fig. 1 (bottom panel), where the point (σ, n1/n2) = (5◦, 1.02) belongs to the
separatrix of the QS co-orbital configuration (note that Fig. 1 for QS was constructed taking
e1 = e2 = 0.04 for better comparison with the numerical results, in which the eccentricities
are close to 0.038 just before collision).

4.1.2 Hot Saturn

The numerical exploration of the system with two Saturn planets indicates that, as in the
previous system, collision between the planets results in all simulations for κ = 1 and κ = 2.
Moreover, all initial co-orbital configurations destabilize in timescales between 55–80 Myr,
except the one around QS in which the collision occurs near 430 Kyr.

In analogy to Fig. 7, Fig. 8 displays the results of the numerical simulations for κ = 1,
showing the libration of σ around the equilibrium Lagrangian points (tadpole and horseshoe
orbits). In this case, the motion in the horseshoe domain is quite unstable due to the strong
mutual interaction between the planets, and the system remains in that libration regime only
166 yr before collision (in the case of the two super-Earth system, the horseshoe regime lasted
around 8 Myr).

In addition to these types of libration, we see the domain in which the angle σ circulates
(also in blue points). In the circulation regime, in which the orbits are no longer locked in
the 1/1 MMR, σ takes the zero value several times, favoring the orbital conditions for the
collision between the planets.
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5 Conclusions and discussion

We investigated the motion of a two-planet system which evolves under combined effects
of mutual and tidal interactions in the vicinity of a 1/1 mean motion resonance (i.e, co-
orbital configuration). We considered systems of equal mass planets (m2/m1 = 1) cor-
responding to super-Earth (5m⊕) and Saturn planets (�95m⊕). Numerical simulations
of the exact equations of motion indicate that the collision between the planets is the
final outcome of the tidal evolution for all initial co-orbital configurations tested in this
work.

We started our simulations considering initial conditions near the five stationary config-
urations of the co-orbital motion (namely, L4/L5, AL4/AL5 and QS). As tides continually
damp the eccentricities, the initially small oscillation amplitudes of the angles (σ,Δ�)

around the equilibrium points increases and, ultimately, the instability occurs.
We identified several libration regimes of the resonant angle σ , including the tad-

pole and horseshoe co-orbital configurations, in which the motion occurs around σ =
60◦/300◦ and σ = 180◦, respectively. In addition, the motion around the anti-Lagrangian
equilibrium points (AL4/AL5), located close to (σ,Δ�) = (60◦/300◦, 240◦/120◦) for
m2/m1 = 1 and small eccentricities, remains stable over a timescale about 1.5 larger
than for the Lagrangian points (L4/L5) for both types of systems. Moreover, the sta-
bility of the quasi-satellite (QS) co-orbital configuration (σ = 0◦,Δ� = 180◦) is
restricted to short timescales (<10 and <1 Myr, for super-Earth and Saturn individual masses,
respectively).

The interpretation of the tidal evolution of the 1/1 resonant planet pair and its ultimate
disruption is in the following. We know that the L4 and L5 stationary solutions correspond
to global maxima of the conservative Hamiltonian of the 1/1 MMR, at least for small and
moderate eccentricities. This is a consequence of the fact that a MMR, acting as a pro-
tection mechanism, implies the maximal possible mutual distance between two planets at
conjunction, where their closest encounters occur (Michtchenko et al. 2008b). When the
tidal interactions are introduced in the system, the energy of the system is dissipated through
tidal heating of the planets. In this way, starting near one of the L4 and L5 points, the system
evolving under dissipation will suffer the increase the oscillation amplitudes of the angles
around the exact positions of the equilibrium points. It will cross the domains of the tadpole
and horseshoe orbits, as described in Sect. 2. Thus, the system will ultimately tend toward a
collisional route.

Therefore, the results presented in this work suggest that the tidal evolution of close-
in planetary systems in the vicinity of the 1/1 MMR is globally unstable, constraining the
possible detection of hot exo-Trojans (particularly among KOI’s candidates). However, we
have to stress that the origin of such close-in systems is unknown. Indeed, as recently shown
in Giuppone et al. (2012), the formation of co-orbital configurations at distances of 1 AU is
possible, however, the question on how did they reach close-in configurations is still under
discussion. Also, it should be kept in mind that, for planets more distant from the central star,
we expect a timescale for tidal evolution much longer than the age of the systems, and thus
the possibility of radial velocity detections cannot be ruled out.

As a final consideration, some limitations of our model should be highlighted. First,
the applicability for rocky planets of the adopted linear tidal model has been recently
questioned in some works (see Efroimsky and Williams 2009; Ferraz-Mello 2013 and
references therein). However, we speculate that the adoption of a different tidal model
should change the timescales of the tidal evolution but the global result would not be
affected.
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Second, we neglected the polar and permanent equatorial deformations of the bodies (i.e,
J2, C22 and higher orders terms). Recently, Rodríguez et al. (2012) have shown that the
contribution of C22 can lead to temporary captures in spin-orbit resonances of rocky planets
(see also Correia and Rodríguez 2013 and Callegari and Rodríguez 2013 for a calculation
of J2 and C22 for a specific resonant rotation trapping). Moreover, the orbital decay and the
eccentricity damping are larger whenever the planet rotation is trapped in a resonant motion.
Hence, the tidal model and the consideration of the equatorial permanent deformation should
be taken into account in further investigations.

Finally, following the suggestion of Dr. M. Efroimsky (private communication), we per-
formed an additional simulation including an indirect tidal term which is described in the
following. The tidal effect on the star due to one of the planets creates a (dissipative) torque
which affects the orbital and rotational evolution of the tidal raising planet. The other planet
will also “feel” this tidal effect because the star deformation crates a potential in an arbi-
trary point in the space. The effect of this force may be important for planets trapped in
MMRs. In the co-orbital case, we have a “frozen” configuration in which the relative posi-
tions of the bodies are located in the vertices of an equilateral triangle of variable size.
We only consider the static tidal component (i.e., the instantaneous response, independent
on Δt0, see Ferraz-Mello et al. 2008), because it is orders of magnitude larger than its
dissipative counterpart. The result of the numerical simulation for the two Saturn planets
system have shown that the inclusion of these terms only slightly modifies the timescales
of the planet evolution, delaying the instability in approximately 10 % for a L4/L5 starting
configuration.
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