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1. Root Systems: The Origin
The purpose of this article is to discuss the role played by
root systems in the theory of Lie algebras and related ob-
jects in representation theory, with focus on the combina-
torial description and properties.
1.1. Semisimple Lie algebras. The study of Lie algebras
began toward the end of the 19th century. They emerged
as the algebraic counterpart of a purely geometric object:
Lie groups, which we can briefly define as groups that ad-
mit a differentiable structure such that multiplication and
the function that computes inverses are differentiable. Lie
algebras appeared as some algebraic structure attached to
the tangent space of the unit of this group.

Initially Lie algebras were only considered over complex
or real numbers, but the abstraction of the definition led
to Lie algebras over arbitrary fields.

Definition 1.1. Let 𝕜 be a field. A Lie algebra is a pair
(𝔤, [, ]), where 𝔤 is a 𝕜-vector space and [, ] ∶ 𝔤 × 𝔤 → 𝔤 is
a bilinear map (called the bracket) such that the following
equalities hold for all 𝑥, 𝑦, 𝑧 ∈ 𝔤:

[𝑥, 𝑦] = −[𝑦, 𝑥], antisymmetry,
[𝑥, [𝑦, 𝑧]] = [[𝑥, 𝑦], 𝑧] + [𝑦, [𝑥, 𝑧]], Jacobi identity.

There is a subtle difference when the field is of charac-
teristic two: the antisymmetry is replaced by [𝑥, 𝑥] = 0 for
all 𝑥 ∈ 𝔤 (which implies the former one). From now on
all Lie algebras considered here are assumed to be finite-
dimensional.

An easy example is to pick a vector space 𝔤 together with
trivial bracket [𝑥, 𝑦] = 0 for all 𝑥, 𝑦 ∈ 𝔤; these Lie algebras
are called abelian.
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There is a general way to move from an associative al-
gebra 𝐴 to a Lie algebra: take 𝔤 = 𝐴 as vector space and
set [𝑎, 𝑏] ≔ 𝑎𝑏 − 𝑏𝑎 for each pair 𝑎, 𝑏 ∈ 𝐴. A prominent
example of this construction is the general linear algebra
𝔤𝔩(𝑉), which is the set of linear endomorphisms of a finite-
dimensional vector space 𝑉 . Other classical examples ap-
pear as Lie subalgebras (that is, subspaces closed under the
bracket) of 𝔤𝔩(𝑉):
• 𝔰𝔩(𝑉), those endomorphisms whose trace is zero; if 𝑉 =
𝕜𝑛, then we simply denote 𝔰𝔩(𝑉) by 𝔰𝔩(𝑛, 𝕜), or 𝔰𝔩(𝑛)
when the field 𝕜 is clear from the context.

• The orthogonal and symplectic Lie subalgebras 𝔰𝔬(𝑉, 𝑏),
respectively 𝔰𝔭(𝑉, 𝑏), of those endomorphisms 𝑇 such
that

𝑏 (𝑇(𝑣), 𝑤) + 𝑏 (𝑣, 𝑇(𝑤)) = 0 for all 𝑣, 𝑤 ∈ 𝑉,
where 𝑏 is a symmetric, respectively antisymmetric, non-
degenerate bilinear form on 𝑉 .

Analogously, wemay start with𝐴 = 𝕜𝑛×𝑛, the algebra of 𝑛×
𝑛matrices, and take some subalgebras, as the subspaces of
upper triangular matrices, those of trace 0, the orthogonal
matrices, between others.

Once we have a notion of algebra, it is natural to ask
for ideals: in the case of Lie algebras, these are subspaces
ℑ ⊆ 𝔤 such that [ℑ, 𝔤] ⊆ ℑ. This leads to consider simple
Lie algebras, those Lie algebras 𝔤 such that dim𝔤 > 1 and
the unique ideals are the trivial ones: 0 and 𝔤. In addition,
we say that a Lie algebra 𝔤 is semisimple if 𝔤 is isomorphic
to the direct sum of simple Lie algebras.

For the rest of this section we fix 𝕜 = ℂ. We know that
a Lie algebra 𝔤 is simple if and only if 𝔤 is (isomorphic to)
𝔰𝔩(𝑉), 𝔰𝔬(𝑉, 𝑏), 𝔰𝔭(𝑉, 𝑏), and a few exceptional examples
𝐸𝑘, 𝑘 = 6, 7, 8, 𝐹4, 𝐺2. That is, up to 5 exceptions, all the
complex simple Lie algebras are subalgebras of matrices.
Thus one may wonder if some properties of the algebras
of matrices still hold for simple Lie algebras. We will re-
call some of them by the end of this section, following
[Hum78].

As for associative algebras, we can study modules over
Lie algebras. A 𝔤-module is a pair (𝑉, ⋅), where 𝑉 is a
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𝕜-vector space and ⋅ ∶ 𝔤 ⊗ 𝑉 → 𝑉 is a linear map such
that

[𝑥, 𝑦] ⋅ 𝑣 = 𝑥 ⋅ (𝑦 ⋅ 𝑣) − 𝑦 ⋅ (𝑥 ⋅ 𝑣), 𝑥, 𝑦 ∈ 𝔤, 𝑣 ∈ 𝑉.
For example, the bracket gives an action of 𝔤 over itself,
called the adjoint action.

For each 𝑥 ∈ 𝔤 we look at the inner derivation

ad 𝑥 ∶𝔤 → 𝔤, ad 𝑥(𝑦) = [𝑥, 𝑦], 𝑦 ∈ 𝔤,
associated to the adjoint action. These endomorphisms
induce a symmetric bilinear form on 𝔤, called the Killing
form:

𝜅 ∶ 𝔤 × 𝔤 → 𝕜, 𝜅(𝑥, 𝑦) ≔ Tr(ad 𝑥 ad 𝑦), 𝑥, 𝑦 ∈ 𝔤.
The Killing form and the 𝔤-modules give other charac-

terizations of semisimplicity: 𝔤 is semisimple if and only if
𝜅 is nondegenerate if and only if every module is semisim-
ple, i.e., every 𝔤-submodule admits a complement which
is a 𝔤-submodule.

When 𝔤 is one of the Lie algebras of matrices above,
the action of diagonal matrices is, in fact, diagonalizable.
Mimicking this fact we look for subalgebras such that the
action of their elements is diagonalizable, called toral sub-
algebras.

From now on assume that 𝔤 is also semisimple. It can
be shown that toral algebras are abelian, and we pick a
maximal one 𝔥. Thus 𝔤 decomposes as the direct sum of
the 𝔥-eigenspaces:

𝔤 = ⊕𝛼∈𝔥∗𝔤𝛼, where 𝔤𝛼 ≔ {𝑥 ∈ 𝔤|[ℎ, 𝑥] = 𝛼(ℎ)𝑥}.
As 𝔥 is abelian, we have that 𝔥 ⊆ 𝔤0: one can show that

we have an equality, 𝔥 = 𝔤0. Thus, if we set Δ ≔ {𝛼 ∈
𝔥∗|𝛼 ≠ 0, 𝔤𝛼 ≠ 0}, thenΔ, a finite set called the root system of
𝔤, gives a decomposition of 𝔤 into 𝔥-eigenspaces as follows:

𝔤 = 𝔥 ⊕ (⊕𝛼∈∆𝔤𝛼) .
This decomposition is compatible with the bracket,

[𝔤𝛼, 𝔤𝛽] ⊆ 𝔤𝛼+𝛽 for all 𝛼, 𝛽 ∈ 𝔥∗,
and the Killing form

𝜅𝔤𝛼×𝔤𝛽 = 0 if 𝛼 + 𝛽 ≠ 0.
We can derive that 𝜅𝔥×𝔥 is nondegenerate, thus it induces a
symmetric nondegenerate bilinear form (⋅, ⋅) ∶ 𝔥∗×𝔥∗ → ℂ.
Example 1.2. If 𝔤 = 𝔰𝔩(4), the Lie algebra of 4 × 4 matri-
ces with trace 0, then 𝔥 is the subspace of diagonal matri-
ces, with basis ℎ𝑖 ≔ 𝐸𝑖𝑖 − 𝐸𝑖+1,𝑖+1, 𝑖 = 1, 2, 3. Here, 𝐸𝑖𝑗 is
the matrix with 1 in the (𝑖, 𝑗)-entry and 0 otherwise. Let

𝐴 ≔ [ 2 −1 0
−1 2 −1
0 −1 2

], and set 𝛼𝑗 ∈ 𝔥∗ as the element such that

𝛼𝑗(ℎ𝑖) = 𝑎𝑖𝑗. Then
• 𝑒𝑖 ≔ 𝐸𝑖,𝑖+1 ∈ 𝔤𝛼𝑖 , 𝑖 = 1, 2, 3;
• 𝐸13 ∈ 𝔤𝛼1+𝛼2 , 𝐸24 ∈ 𝔤𝛼2+𝛼3 , 𝐸14 ∈ 𝔤𝛼1+𝛼2+𝛼3 ;
• for all 𝑖 < 𝑗, if 𝐸𝑖𝑗 ∈ 𝔤𝛼, then 𝐸𝑗𝑖 ∈ 𝔤−𝛼. In particular,
𝑓𝑖 ≔ 𝐸𝑖+1,𝑖 ∈ 𝔤−𝛼𝑖 , 𝑖 = 1, 2, 3.

Thus, if we set 𝛼𝑖𝑗 ≔ ∑𝑗
𝑘=𝑖 𝛼𝑘, 𝑖 ≤ 𝑗, then

Δ = {±𝛼𝑖𝑗|1 ≤ 𝑖 ≤ 𝑗 ≤ 3}.
This example has a straightforward generalization to 𝔰𝔩(𝑛)
for any 𝑛 ≥ 2.

1.2. Root systems for Lie algebras. Wemay derive strong
properties of the root system Δ using the representation
theory of 𝔰𝔩(2), we refer to [Bou02,Hum78] for more de-
tails.

(i) 𝔥∗ is spanned by Δ.
(ii) If 𝛼 ∈ Δ, then −𝛼 ∈ Δ. Moreover, for each 𝛼 ∈ Δ,

Δ ∩ ℂ𝛼 = {±𝛼}.
(iii) For each 𝛼 ∈ Δ, the eigenspace 𝔤𝛼 is one-

dimensional. Moreover, 𝑆𝛼 ≔ 𝔤𝛼 ⊕ 𝔤−𝛼 ⊕ [𝔤𝛼, 𝔤−𝛼]
is a subalgebra isomorphic to 𝔰𝔩(2). Notice that
[𝔤𝛼, 𝔤−𝛼] ⊂ 𝔥.

(iv) If 𝛼, 𝛽, 𝛼 + 𝛽 ∈ Δ, then [𝔤𝛼, 𝔤𝛽] = 𝔤𝛼+𝛽.
(v) Let 𝛼, 𝛽 ∈ Δ be such that 𝛼 ≠ ±𝛽. Then there exist

𝑞, 𝑟 ∈ ℕ0 such that

{𝑖 ∈ ℤ|𝛽 + 𝑖𝛼 ∈ Δ} = {−𝑟 ≤ 𝑖 ≤ 𝑞}.

Moreover, 𝑟 − 𝑞 = 2(𝛽,𝛼)
(𝛼,𝛼)

. That is, the root string over

𝛽 in the direction of 𝛼 has no holes.

By (i) there exists a basis 𝐵 of 𝔥∗ contained in Δ. We
can check that all the coefficients of any 𝛽 ∈ Δ, written in
terms of𝐵, are rational numbers, sowemay consider theℚ-
linear subspace 𝔥∗ℚ generated by Δ and take the extension
to ℝ: we get a finite-dimensional ℝ-vector space 𝑉 which
contains all the information and the geometry of Δ.

Remark 1.3. 𝑉 becomes an Euclidean vector space with the
scalar product induced by the Killing form.

For each 𝛼 ∈ Δ set 𝑠𝛼 ∶ 𝑉 → 𝑉 ,

𝑠𝛼(𝛽) = 𝛽 − 2(𝛽,𝛼)
(𝛼,𝛼)

𝛼, 𝛽 ∈ 𝑉.

Then 𝑠𝛼 is a linear automorphism of the Euclidean space
𝑉 such that 𝑠2𝛼 = id, and by (v), 𝑠𝛼(Δ) = Δ.

2. Classical Root Systems
From the information above one may wonder if there ex-
ists an abstract notion of root system. The answer is yes,
and we will recall it following [Bou02], see also [Hum78].
We can classify all finite root systems in terms of so-called
finite Cartan matrices. We will also recall a way to come
back from (abstract) root systems to complex Lie algebras.
2.1. Abstract definition.

Definition 2.1 ([Bou02]). Let 𝑉 be a finite-dimensional
ℝ-vector space. A finite subset ∆ ⊂ 𝑉 is a root system in 𝑉
if

(RS1) 0 ∉ ∆ and 𝑉 is spanned by ∆.
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(RS2) For each 𝛼 ∈ ∆, there exists 𝛼∨ ∈ 𝑉∗ such that
𝛼∨(𝛼) = 2 and the reflection

𝑠𝛼 ∶ 𝑉 → 𝑉, 𝑠𝛼(𝛽) = 𝛽 − 𝛼∨(𝛽)𝛼, 𝛽 ∈ 𝑉,
satisfies that 𝑠𝛼(∆) = ∆.

(RS3) For all 𝛼, 𝛽 ∈ ∆, 𝛼∨(𝛽) ∈ ℤ.
The elements of ∆ are called roots, and dim𝑉 is the rank
of ∆. The (finite) subgroup𝒲 of Aut(𝑉) generated by 𝑠𝛼,
𝛼 ∈ ∆, is theWeyl group of ∆.

In [Hum78] one also requires that for each 𝛼 ∈ ∆, ∆ ∩
ℝ𝛼 = {±𝛼}. In other references, root systemswith this extra
property are called reduced.

The reflections 𝑠𝛼, 𝛼 ∈ ∆ are univocally determined and
there exists a symmetric invariant nondegenerate bilinear
form (⋅|⋅) ∶ 𝑉 ×𝑉 → ℝ, which is moreover invariant by𝒲
and positive definite. Now, the elements 𝛼∨ are recovered
using this form:

𝛼∨(𝛽) = 2(𝛽,𝛼)
(𝛼,𝛼)

for all 𝛼, 𝛽 ∈ ∆.

Also, the set ∆∨ ≔ {𝛼∨ ∶ 𝛼 ∈ ∆} is a root system of 𝑉∗,
with (𝛼∨)∨ = 𝛼. There are four examples of reduced root
systems in rank 2: 𝐴1 ×𝐴1, 𝐴2, 𝐵2 and 𝐺2, with 2, 6, 8, and
12 roots, respectively. The third one is depicted in Figure 1.

𝛼1

𝛼2

Figure 1. Root system of type
𝐵2.

Let 𝛼, 𝛽 ∈ ∆ be such that
𝛼 ≠ ±𝛽. One may check
that 𝛼+𝛽 ∈ ∆ (respectively,
𝛼 − 𝛽 ∈ ∆) if (𝛼, 𝛽) < 0
(respectively, (𝛼, 𝛽) > 0).
This is the starting point,
together with (RS2) and
(RS3), to check that an ana-
logue of (v) holds for (ab-
stract) root systems.

Another key point is the
existence of a base of a root
system. It means a subset
𝐵 ⊂ ∆ such that 𝐵 is a ba-

sis of 𝑉 (as a vector space), and every 𝛽 ∈ ∆ is written, in
terms of 𝐵, as a linear combination whose coefficients are
all nonnegative integers, or all nonpositive integers.

The proof of existence of bases gives the geometric fla-
vor behind root systems. We take a vector 𝛾 such that the
orthogonal hyperplane 𝑃 to 𝛾 does not contain any root.
Indeed 𝛾 belongs to 𝑉 − ∪𝛼∈∆𝐻𝛼, where 𝐻𝛼 is the kernel
of 𝛼∨, i.e., the hyperplane orthogonal to 𝛼: the connected
components of 𝑉 − ∪𝛼∈∆𝐻𝛼 are called the Weyl chambers.
Thus ∆ = ∆+(𝛾) ∪∆−(𝛾), where

∆±(𝛾) = {𝛽 ∈ ∆| ± (𝛽, 𝛾) > 0}.
A base is made by those indecomposable roots in ∆+(𝛾):
those 𝛽 ∈ ∆+(𝛾) which cannot be written as a sum 𝛽 =
𝛽1 + 𝛽2, with 𝛽𝑖 ∈ ∆+(𝛾). Moreover every base can be
constructed in this way.

For example, in Figure 1 we take the green hyperplane:
the positive roots are the red ones, the negative are the blue
ones, and 𝐵 = {𝛼1, 𝛼2} is a base.

TheWeyl group𝒲 permutes bases (andWeyl chambers
as well), and the action is simply transitive. We check then
that any root 𝛼 ∈ ∆ belongs to a base, and for each base
𝐵, 𝒲 is generated by 𝑠𝛼, 𝛼 ∈ 𝐵 (we reduce the number of
generators of𝒲 to the rank of the root system). This leads
to the study of groups generated by reflections and Coxeter
groups considered in [Bou02], which became an important
subject of research on its own, and remains active until
now.
2.2. The classification. As for algebraic objects, we may
ask for irreducible root systems: those which cannot split
into two orthogonal subsets (otherwise each subset is it-
self a root system). Every root system ∆ of 𝑉 decomposes
uniquely as a union of irreducible root systems ∆𝑖 corre-
sponding to the subspaces 𝑉 𝑖 of 𝑉 spanned by ∆𝑖. Thus,
in order to classify root systems, we can restrict to the irre-
ducible ones.

Assume now that∆ is an irreducible root system of rank
𝜃. Set 𝐴∆ ∈ ℤ𝜃×𝜃 as the matrix with entries

𝑎𝑖𝑗 ≔ 𝛼∨𝑖 (𝛼𝑗) =
2(𝛼𝑗 ,𝛼𝑖)
(𝛼𝑖,𝛼𝑖)

, 1 ≤ 𝑖, 𝑗 ≤ 𝜃,

where 𝐵 = {𝛼𝑖}1≤𝑖≤𝜃 is a base. One can check that 𝐴∆ is
well-defined; i.e., it does not depend on the chosen base.
In addition, 𝐴 is indecomposable: for all 𝑖 < 𝑗 there exist
𝑖𝑘 ∈ {1,⋯ , 𝜃} such that 𝑎𝑖𝑖1𝑎𝑖1𝑖2 ⋯𝑎𝑖𝑡𝑗 ≠ 0. Moreover,

(GCM1) 𝑎𝑖𝑖 = 2 for all 1 ≤ 𝑖 ≤ 𝜃,
(GCM2) 𝑎𝑖𝑗 = 0 if and only if 𝑎𝑗𝑖 = 0,
(GCM3) for all 𝑖 ≠ 𝑗, 𝑎𝑖𝑗 ≤ 0.
Any 𝐴 ∈ ℤ𝜃×𝜃 satisfying (GCM1)–(GCM3) is called a gen-
eralized Cartan matrix (GCM) [Kac90]. The information
of GCM is encoded in a graph called the Dynkin diagram:
it has 𝜃 vertices, labelled with 1, 2, … , 𝜃, and for each pair
1 ≤ 𝑖 < 𝑗 ≤ 𝜃,
• if 𝑎𝑖𝑗𝑎𝑗𝑖 ≤ 4, then we add max{|𝑎𝑖𝑗|, |𝑎𝑗𝑖|} edges between
vertices 𝑖 and 𝑗, with an arrow from 𝑗 to 𝑖 (respectively
𝑖 to 𝑗) if |𝑎𝑖𝑗| > 1 (respectively, |𝑎𝑗𝑖| > 1); in particular,
if 𝑎𝑖𝑗 = 0 (so 𝑎𝑗𝑖 = 0 as well) then we draw no edges
between 𝑖 and 𝑗, and if 𝑎𝑖𝑗 = 𝑎𝑗𝑖 = −1, then we draw just
a line;

• if 𝑎𝑖𝑗𝑎𝑗𝑖 > 4, then we draw a thick line between 𝑖 and 𝑗
labelled with (|𝑎𝑖𝑗|, |𝑎𝑗𝑖|) .

For example, the Dynkin diagrams of [ 2 −2
−2 2 ] and [ 2 −3

−2 2 ]
and [ 2 −1 0

−1 2 −1
0 −1 2

] are, respectively

∘ ks +3 ∘ ∘
(3,2)

∘ ∘ ∘ ∘ .
One reason to differentiate between 𝑎𝑖𝑗𝑎𝑗𝑖 ≤ 4 and 𝑎𝑖𝑗𝑎𝑗𝑖 >
4 is all finite and affine Dynkin diagrams satisfy the first
condition, and these are probably the most studied cases.
We refer to [Bou02, Hum78] for the definition of affine
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𝐴𝑚 ∘ ∘ ∘ ∘ ∘
𝐵𝑚 ∘ ∘ ∘ ∘ +3 ∘
𝐶𝑚 ∘ ∘ ∘ ∘ ks ∘

𝐷𝑚

∘

∘ ∘ ∘ ∘ ∘

𝐸𝑚, 𝑚 = 6, 7, 8

∘

∘ ∘ ∘ ∘ ∘
𝐹4 ∘ ∘ ks ∘ ∘
𝐺2 ∘ _jt ∘

Figure 2. Finite connected Dynkin diagrams.

Dynkin diagrams while finite ones are depicted in Figure 2,
in connection with finite-dimensional complex Lie alge-
bras.

One may define the Weyl group𝒲𝐴 of a GCM 𝐴 as the
subgroup of Aut(𝑉) generated by reflections 𝑠𝑖 ∶ 𝑉 → 𝑉 ,
𝑠𝑖(𝛼𝑗) = 𝛼𝑗 − 𝑎𝑖𝑗𝛼𝑖, where (𝛼𝑖)1≤𝑖≤𝜃 is the canonical basis
of 𝑉 = ℝ𝜃: if 𝐴 is the Cartan matrix of a Lie algebra as
above, then the Weyl group of ∆ is generated by these 𝑠𝑖’s.
Analogously, we can define

∆𝐴 = {𝑤(𝛼𝑖)|𝑤 ∈ 𝒲𝐴, 1 ≤ 𝑖 ≤ 𝜃}.
Then one can prove that 𝒲𝐴 is finite if and only if ∆𝐴

is finite, which is equivalent to the notion of finite GCM.
Finite GCM are parametrized by finite Dynkin diagrams,
i.e., those in Figure 2.

Theorem 2.2. Reduced irreducible root systems are
parametrized by Dynkin diagrams in Figure 2.

Up to now we deal with three notions:

(i) Simple Lie algebras over ℂ,
(ii) Irreducible root systems,
(iii) Finite Cartan matrices, or the corresponding Dynkin

diagrams.

We moved first from (i) to (ii), and then state a correspon-
dence (ii)⟷ (iii). Now we need to come back to (i). We
can check that 𝔰𝔩(𝑛 + 1) has Cartan matrix of type 𝐴𝑛 (see
Example 1.2), while matrices of types 𝐵𝑛, 𝐶𝑛 and 𝐷𝑛 ap-
pear for orthogonal and symplectic Lie algebras. For each
one of the exceptional finite Cartan matrices 𝐴 in Figure 2
we can construct by hand a simple Lie algebra with Cartan
matrix 𝐴. The natural question is if there exists a systematic
way to build these Lie algebras. We will recall it in the next
subsection, i.e., a correspondence (iii)⟶(i).
2.3. Back to Lie algebras: Kac-Moody construction.
Looking at Example 1.2, the Cartan matrix of 𝔰𝔩(4) can be
recovered from the action of the Cartan subalgebra 𝔥 on
eigenvectors of a base of the root system ∆. In addition
the decomposition ∆ = ∆+ ∪∆− into positive and nega-
tive roots for the chosen base corresponds in this case to

the upper and lower triangular matrices 𝔫± of 𝔰𝔩(4) (recall
that 𝔥 is spanned by the set of all the diagonal matrices in
𝔰𝔩(4)).

As for associative algebras, we have a notion of a Lie al-
gebra presented by generators and relations as the appropiate
quotient of a free Lie algebra. We will attach a Lie algebra
𝔤 ≔ 𝔤(𝐴) to each matrix 𝐴 ∈ ℂ𝜃×𝜃; these algebras were in-
troduced by Serre in 1966 for finite matrices 𝐴, and by Kac
and Moody in two independent and simultaneous works
in the late sixties, see [Kac90] and the references therein.
For the sake of simplicity of the exposition we assume that
det 𝐴 ≠ 0.

Let ̃𝔤 ≔ ̃𝔤(𝐴) be the Lie algebra presented by generators
𝑒𝑖, ℎ𝑖, 𝑓𝑖, 1 ≤ 𝑖 ≤ 𝜃, and relations

[ℎ𝑖, ℎ𝑗] = 0, [ℎ𝑖, 𝑒𝑗] = 𝑎𝑖𝑗𝑒𝑗 ,
[𝑒𝑖, 𝑓𝑗] = 𝛿𝑖𝑗ℎ𝑖, [ℎ𝑖, 𝑓𝑗] = −𝑎𝑖𝑗𝑓𝑗 .

(1)

Let 𝔥 be the subspace spanned by (ℎ𝑖)1≤𝑖≤𝜃, �̃�± the subalge-
bra generated by (𝑒𝑖)1≤𝑖≤𝜃, respectively (𝑓𝑖)1≤𝑖≤𝜃. We have
the following facts:

(a) �̃�± is a free Lie algebra in 𝜃 generators.
(b) As a vector space, ̃𝔤 = �̃�+ ⊕ 𝔥⊕ �̃�−.
(c) The adjoint action of 𝔥 on �̃�± is diagonalizable.
(d) Among all the ideals of ̃𝔤 intersecting trivially 𝔥, there

exists a maximal one 𝔯, which satisfies

𝔯 = (𝔯 ∩ �̃�+) ⊕ (𝔯 ∩ �̃�−).
Definition 2.3. The contragredient Lie algebra 𝔤(𝐴) associ-
ated to 𝐴 (sometimes called the Kac-Moody algebra) is the
quotient 𝔤(𝐴) ≔ ̃𝔤(𝐴)/𝔯.

Because of the definition of 𝔯, 𝔤(𝐴) is generated by 𝑒𝑖, 𝑓𝑖,
ℎ𝑖, 1 ≤ 𝑖 ≤ 𝜃, has a triangular decomposition

𝔤(𝐴) = 𝔫+ ⊕ 𝔥⊕ 𝔫−,
where 𝔫± is the image of �̃�± under the projection 𝜋 ∶
̃𝔤(𝐴) ↠ 𝔤(𝐴), i.e., the subalgebra generated by (the image

of) (𝑒𝑖)1≤𝑖≤𝜃, respectively (𝑓𝑖)1≤𝑖≤𝜃, and any other Lie alge-
bra with a triangular decomposition as above, generated
by the same set of generators satisfying (1), projects onto
𝔤(𝐴).
Theorem 2.4. (A) Let 𝐴 be a finite Cartan matrix. Then

𝔤(𝐴) is a finite-dimensional simple Lie algebra, with Car-
tan matrix 𝐴.

(B) The list of Dynkin diagrams in Figure 2 provides a classi-
fication of all finite-dimensional simple Lie algebras over
ℂ.

When the generalized Cartan matrix 𝐴 is not of finite
type, the associated Kac-Moody Lie algebra 𝔤(𝐴) is infinite-
dimensional. Although for the purposes of this exposition
we are interested in the finite-dimensional examples, the
infinite-dimensional Lie algebras 𝔤(𝐴) (or at least some of
them, mainly the affine ones) are quite important since
they have appeared in connection either with other areas
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of mathematics, especially representation theory, or theo-
retical physics, for example in conformal field theory.

3. Root Systems for Other Kinds of Lie Algebras
Next we deal with contragredient Lie algebras over fields
of positive characteristic and later with Lie superalgebras
over any field. We will recall the main differences with the
picture of Lie algebras overℂwhich leads to amore general
notion of root system. This root system still captures the
combinatorics of these Lie theoretic objects.
3.1. Lie algebras over fields of positive characteristic.
Let 𝕜 be an algebraically closed field of characteristic 𝑝 > 0.
The study of simple Lie algebras becomes more and more
complicated as far as 𝑝 is smaller, see, e.g., [Str04]. A main
difference with the case of complex numbers is that not
all simple Lie algebras have a triangular decomposition as
above, and the Cartan subalgebra plays a weaker role in
the structure of the whole Lie algebra.

On the other hand, Definition 2.3 still holds over 𝕜, so
we may ask about the classification of finite-dimensional
contragredient Lie algebras. A subtle difference is that we
restrict to ℤ-homogeneous ideals intersecting trivially 𝔥,
where each 𝑒𝑖 has degree 1, each 𝑓𝑖 has degree -1 and each
ℎ𝑖 has degree 0. Thus, there exists a finer grading of the Lie
algebra 𝔤(𝐴) by ℤ𝜃, where deg 𝑒𝑖 = 𝛼𝑖 (the 𝑖-th element of
the canonical basis), deg 𝑓𝑖 = −𝛼𝑖 and deg ℎ𝑖 = 0 as well.
Let ∆𝐴 ⊂ ℤ𝜃 be the subset of all nonzero degrees whose
homogeneous components are nontrivial.

Remark 3.1. From the triangular decomposition,

∆𝐴 ⊂ ℕ𝜃
0 ∪ (−ℕ𝜃

0),
that is, the coefficients of each 𝛼 ∈ ∆ are all nonnegative,
or else all nonpositive. Also, there exists an involution 𝜔
of 𝔤(𝐴) (called the Chevalley involution) such that 𝑒𝑖 ↦ 𝑓𝑖,
𝑓𝑖 ↦ 𝑒𝑖, ℎ𝑖 ↦ −ℎ𝑖. As 𝜔 (𝔤(𝐴))𝛽 = 𝔤(𝐴)−𝛽 for all 𝛽 ∈ ℤ𝜃,
we have that

∆𝐴 = −∆𝐴.

For example we can consider the finite Cartan matrices
over 𝕜, since the entries of these Cartan matrices are in-
teger numbers, and show that the associated Lie algebras
are finite-dimensional. But, even for contragredient Lie al-
gebras, there are significant differences with the case of
complex numbers. As shown in [VK71], there are exam-
ples of finite-dimensional Lie algebras with diagonal en-
tries 𝑎𝑖𝑖 = 0, and two different matrices can give place to
isomorphic contragredient Lie algebras. The classification
shown in [VK71] was incomplete: there was a missing ex-
ample for 𝑝 = 3, the 29-dimensional Brown algebra 𝔟𝔯(3),
discovered by Brown in the eighties, whose realization as
contragredient Lie algebra with two different matrices was
shown in [Skr93]:

Theorem 3.2. Fix 𝑝 = 3. Let
𝐴 = [ 2 −1 0

−1 2 −1
0 1 0

] , 𝐵 = [ 2 −1 0
−2 2 −1
0 1 0

] .
Then there exists an isomorphism Φ ∶ 𝔤(𝐴) → 𝔤(𝐵) such that

Φ(𝑒1) = 𝑒1, Φ(𝑒2) = (ad 𝑒3)
2𝑒2, Φ(𝑒3) = 𝑓

3
,

Φ(𝑓1) = 𝑓
1
, Φ(𝑓2) = (ad 𝑓

3
)2𝑓

2
, Φ(𝑓3) = 𝑒3.

The expression of Φ is close to that for the action of
reflections of the Weyl group on complex Lie algebras, but
here Φ relates two “different” contragredient data.

Remark 3.3. We fix the following GCM

𝐶𝐴 = [ 2 −1 0
−1 2 −1
0 −2 2

] , 𝐶𝐵 = [ 2 −1 0
−2 2 −1
0 −2 2

] ,

and set 𝑠𝐴𝑖 , 𝑠𝐵𝑖 ∶ ℤ3 → ℤ3 as the corresponding reflections
defined by 𝐶𝐴, 𝐶𝐵, respectively, 𝑖 = 1, 2, 3. Notice that
𝑠𝐴3 = 𝑠𝐵3 and Φ (𝑔(𝐴)𝛽) = 𝑔(𝐵)𝑠𝐴3 (𝛽) for all 𝛽 ∈ ℤ3. Thus

∆𝐵 = 𝑠𝐴3 (∆𝐴).
In addition, there exist automorphisms

Φ𝐴
𝑖 ∶ 𝔤(𝐴) → 𝔤(𝐴), Φ𝐵

𝑖 ∶ 𝔤(𝐵) → 𝔤(𝐵), 𝑖 = 1, 2,
such that Φ𝐴

𝑖 (𝔤(𝐴)𝛽) = 𝔤(𝐴)𝑠𝐴𝑖 (𝛽), Φ
𝐵
𝑖 (𝔤(𝐵)𝛽) = 𝔤(𝐵)𝑠𝐵𝑖 (𝛽)

for all 𝛽 ∈ ℤ3. This implies that

∆𝐴 = 𝑠𝐴𝑖 (∆𝐴), ∆𝐵 = 𝑠𝐵𝑖 (∆𝐵), 𝑖 = 1, 2.
3.2. Lie superalgebras. Recall that a Lie superalgebra is a
ℤ2-graded vector space 𝔤 = 𝔤0⊕𝔤1 (𝔤0 is the even part and
𝔤1 is the odd part) together with a linear ℤ2-graded map
[, ] ∶ 𝔤 ⊗ 𝔤 → 𝔤 satisfying analogous versions of antisym-
metry and Jacobi identity:

[𝑥, 𝑦] = −(−1)|𝑥||𝑦|[𝑦, 𝑥],
[𝑥, [𝑦, 𝑧]] = [[𝑥, 𝑦], 𝑧] + (−1)|𝑥||𝑦|[𝑦, [𝑥, 𝑧]],

for all homogeneous elements 𝑥, 𝑦, 𝑧 ∈ 𝔤, see, e.g., [Kac77].
Here, |𝑥| ∈ {0, 1} denotes the degree of 𝑥. We have exam-
ples from associative algebras, analogous to those of Lie
algebras: given 𝔤 = 𝔤0⊕𝔤1 a ℤ2-graded associative algebra,
set

[𝑥, 𝑦] = 𝑥𝑦 − (−1)|𝑥||𝑦|𝑦𝑥.
In particular we have, for 𝑉 = 𝑉0⊕𝑉1, the Lie superalgebra
𝔤𝔩(𝑉) = End(𝑉), with

𝔤𝔩(𝑉)𝑖 = {𝑇 ∈ 𝔤𝔩(𝑉) ∶ 𝑇(𝑉 𝑗) ⊆ 𝑉 𝑖+𝑗}.
For each 𝑇 ∈ 𝔤𝔩(𝑉) set str(𝑇) ≔ tr (𝑇|𝑉0) − tr (𝑇|𝑉1), the
super trace of 𝑇. We can consider the subalgebra

𝔰𝔩(𝑉) = {𝑇 ∈ 𝔤𝔩(𝑉) ∶ str(𝑇) = 0} .
Here we consider contragredient data (𝐴, 𝐩), where 𝐴 =

(𝑎𝑖𝑗)1≤𝑖,𝑗≤𝜃 ∈ 𝕜𝜃×𝜃 is still the matrix of scalars determin-
ing the action of the generators ℎ𝑖 on the remaining gen-
erators, and 𝐩 = (𝑝𝑖)1≤𝑖≤𝜃 ∈ ℤ𝜃2 gives the ℤ2-grading:
𝑒𝑖, 𝑓𝑖 ∈ 𝔤(𝐴, 𝐩)𝑝𝑖 for all 𝑖. Notice that all ℎ𝑖 are necessar-
ily even.
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As observed in [Kac77] when 𝕜 = ℂ, different contra-
gredient data can give isomorphic Lie superalgebras. But,
similar to Lie algebras in positive characteristic, we can give
isomorphisms between some pairs 𝔤(𝐴, 𝐩), 𝔤(𝐴′, 𝐩′) with
formulas close to the action of theWeyl group for complex
simple Lie algebras. In this direction, Serganova [Ser96] in-
troduced the notion of odd reflection relating two different
pairs by a kind of reflection but on a simple odd root 𝑒𝑖
such that 𝑎𝑖𝑖 = 0 (called isotropic). This is consistent with
one of the differences with Lie algebras: there exists a sym-
metric bilinear form on 𝔥, but either the bilinear form can
have isotropic roots 𝛼 (i.e., (𝛼, 𝛼) = 0) or else the matrix
𝐴 ∈ ℂ𝜃×𝜃 can take nonintegral values. We have to distin-
guish the matrix 𝐴 from the GCM 𝐶𝐴 ∈ ℤ𝜃×𝜃 responsible
for the odd reflections.

Example 3.4. Let𝑉 = (ℂ2)0⊕ℂ1, that is aℤ2-graded vector
space with even component of dimension 2, and odd com-
ponent of dimension 1. Here 𝔰𝔩(𝑉) is denoted simply by
𝔰𝔩(2|1): as for Lie algebras we identify 𝔰𝔩(2|1)withmatrices
𝙰 ∈ ℂ3×3, here with zero supertrace, i.e., 𝚊11+𝚊22−𝚊33 = 0.
The Lie superalgebra 𝔰𝔩(2|1) is ℤ2-graded, with 𝔥 (the di-
agonal matrices) in degree 0, and one-dimensional com-
ponents of degrees ±𝛼1 (even roots, since the correspond-
ing spaces are 𝐸12 and 𝐸21), ±𝛼2, ±(𝛼1 + 𝛼2) (these four
roots are odd). The contragredient datum is 𝐴 = [ 2 −1

1 0 ],
𝐩2 = (0, 1). The odd reflection in 𝛼2 moves to the pair
𝐵 = [ 0 1

1 0 ], 𝐩12 = (1, 1). Thus we may apply the odd reflec-
tion in 𝛼1 to (𝐵, 𝐩12) and obtain (𝐶, 𝐩1), where 𝐶 = [ 0 1

−1 2 ],
𝐩1 = (1, 0). These are all the possible movements between
pairs whose associated Lie superalgebra is isomorphic to
𝔰𝔩(2|1).

We see that the set of ℤ2-degrees of the nontrivial com-
ponents is the same, the Cartan matrix is [ 2 −1

−1 2 ] for the
three pairs, but the parity of the elements is not the same.
For example, for (𝐵, 𝐩12), ±(𝛼1 + 𝛼2) are even roots while
±𝛼1, ±𝛼2 are odd.

If we study Lie superalgebras over fields of positive
characteristic, then we can have more and more excep-
tional examples. Finite-dimensional contragredient Lie al-
gebras over fields of prime characteristic were classified in
[BGL09]. The picture is the same: several pairs of contra-
gredient data (𝐴, 𝐩) give isomorphic Lie superalgebras.

The question is then how to handle uniformly all pos-
sible pairs giving isomorphic Lie superalgebras, and their
corresponding roots (i.e., the ℤ𝜃-degrees of the nontrivial
components). This will be done with a groupoid, i.e., a cat-
egory where all the morphisms are invertible. As we look
for a generalization of the Weyl group, we will consider a
groupoid generated by reflections.
3.3. Generalized root systems. There exist different no-
tions of generalized root systems in the literature. They
try to capture different situations, as for example the one
by Serganova in [Ser96] for complex finite-dimensional

Lie superalgebras. A nice axiomatic version was given in
[HY08], see also [HS20] for a refined version of these ideas.

Fix 𝜃 ∈ ℕ, 𝕀 = {1,⋯ , 𝜃}. Let 𝒳 ≠ ∅ a set (which will
correspond to the different contragredient data). A semi-
Cartan graph 𝒢(𝕀, 𝒳, (𝐶𝑋)𝑋∈𝒳 , (𝜌𝑖)𝑖∈𝕀) (𝒢 for short) of rank
𝜃 over 𝒳 consist of

• functions 𝜌𝑖 ∶ 𝒳 → 𝒳, 𝑖 ∈ 𝕀, such that 𝜌2𝑖 = id𝒳 ,
• GCM 𝐶𝑋 = (𝑐𝑋𝑖𝑗)𝑖,𝑗∈𝕀 ∈ ℤ𝜃×𝜃, 𝑋 ∈ 𝒳,

such that 𝑐𝑋𝑖𝑗 = 𝑐𝜌𝑖(𝑋)𝑖𝑗 for all 𝑋 ∈ 𝒳, 𝑖, 𝑗 ∈ 𝕀.
As for Lie algebras, we set 𝑠𝑋𝑖 ∈ GL(ℤ𝜃) as the reflection

𝑠𝑋𝑖 (𝛼𝑗) = 𝛼𝑗 − 𝑐𝑋𝑖𝑗𝛼𝑖.
Let ℳ be a monoid. There exists a small category

𝒟(𝒳,ℳ) whose set of objects is 𝒳 and the set of mor-
phisms between any two objects is ℳ. Given 𝑓 ∈ ℳ and
𝑋, 𝑌 ∈ 𝒳 we write (𝑌, 𝑓, 𝑋) for 𝑓 viewed as an element of
Hom(𝑋, 𝑌), so the composition becomes

(𝑍, 𝑓, 𝑌) ∘ (𝑌, 𝑔, 𝑋) = (𝑍, 𝑓𝑔, 𝑋),
for any 𝑋, 𝑌, 𝑍 ∈ 𝒳, 𝑓, 𝑔 ∈ ℳ.

We are interested in the caseℳ = GL(ℤ𝜃), the group of
automorphisms of ℤ𝜃.
Definition 3.5. The Weyl groupoid of 𝒢 is the full subcat-
egory 𝒲(𝕀,𝒳, (𝐴𝑥)𝑥∈𝒳 , (𝜌𝑖)𝑖∈𝕀) of 𝒟(𝒳,GL(ℤ𝜃)) generated
by

𝜎𝑋𝑖 ≔ (𝜌𝑖(𝑋), 𝑠𝑋𝑖 , 𝑋), 𝑖 ∈ 𝕀, 𝑋 ∈ 𝒳.
Notice that𝒲 is indeed a groupoid, since

𝜎𝜌𝑖(𝑋)𝑖 𝜎𝑋𝑖 = (𝑋, id𝑋 , 𝑋) for all 𝑖 ∈ 𝕀, 𝑋 ∈ 𝒳.
Fix 𝑋 ∈ 𝒳. Then ∆𝑋,re is the set of all elements of

the form 𝑤(𝛼𝑖) ∈ ℤ𝜃, where 𝑖 ∈ 𝕀, 𝑌 ∈ 𝒳, (𝑋, 𝑤, 𝑌) ∈
Hom𝒲(𝑋, 𝑌). This is the set of real roots of 𝒢. As for roots
of Lie (super)algebras, we consider the subsets

∆𝑋,re
+ ≔ ∆𝑋,re ∩ ℕ𝜃

0, ∆𝑋,re
− ≔ ∆𝑋,re ∩ (−ℕ𝜃

0),
of positive and negative real roots, and set

𝑚𝑋
𝑖𝑗 ≔ |∆𝑋,re ∩ (ℕ0𝛼𝑖 + ℕ0𝛼𝑗)| ∈ ℕ ∪ {∞}.

If ∆𝑋,re is finite for all 𝑋 ∈ 𝒳 (equivalently, for some 𝑋 ∈
𝒳), then we say that 𝒢 is finite.

A semi-Cartan graph 𝒢 is a Cartan graph if the following
conditions hold for all 𝑋 ∈ 𝒳:

• ∆𝑋,re = ∆𝑋,re
+ ∪∆𝑋,re

− ;

• for all 𝑖 ≠ 𝑗 such that 𝑚𝑋
𝑖𝑗 < ∞, (𝜌𝑖𝜌𝑗)𝑚

𝑋
𝑖𝑗 (𝑋) = 𝑋 .

Mimicking what happens for Lie algebras, see Remarks
3.1 and 3.3, we introduce the following notion:

Definition 3.6. A root system over 𝒢 is a family ℛ =
(∆𝑋)𝑋∈𝒳 of subsets ∆𝑋 ⊂ ℤ𝜃 such that

0 ∉ ∆𝑋 , ∆𝑋 ⊂ ℕ𝜃
0 ∪ (−ℕ𝜃

0),
𝛼𝑖 ∈ ∆𝑋 , 𝑠𝑋𝑖 (∆𝑋) = ∆𝜌𝑖(𝑋),

for all 𝑖 ∈ 𝕀 and all 𝑋 ∈ 𝒳.
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We say thatℛ is reduced ifℤ𝛼∩∆𝑋 = {±𝛼} for all 𝛼 ∈ ∆𝑋 ,
𝑋 ∈ 𝒳. ℛ is finite if every ∆𝑋 is so.

Cuntz and Heckenberger obtained the classification of
finite root systems [CH15]. The proof involves the bijec-
tion between root systems of rank 𝜃 and crystallographic ar-
rangements (certain subsets of hyperplanes) in ℝ𝜃. About
the list of finite root systems, in rank 𝜃 = 2 there are in-
finitely many examples, in bijection with triangulations of
𝑛-gons for any 𝑛 ≥ 3. For 𝜃 ≥ 9 we only have families cor-
responding to Lie superalgebras and Lie algebras of types
𝐴, 𝐵, 𝐶, 𝐷, while for 3 ≤ 𝜃 ≤ 8 we have members of the
families of Lie (super)algebras and several exceptions.

The definition of a root system seems to carry the pos-
sibility to have several examples attached to the same Car-
tan graph 𝒢. But this is not the case when 𝒢 is finite. In-
deed, by [HS20, 10.4.7], if 𝒢 is a finite Cartan graph, then
ℛ = (∆𝑋,re)𝑋∈𝒳 is the only reduced root system over 𝒢.
Remark 3.7. In [HY08] the authors state the existence of
a Weyl groupoid for finite-dimensional complex Lie super-
algebras, the ones coming from the ℤ𝜃-grading as above.
Moreover, Andruskiewitsch and Angiono proved that the
same holds for Lie superalgebras over fields of arbitrary
characteristic, in a work in progress. In the same work
they derived the classification of finite-dimensional Lie su-
peralgebras from the classification of finite root system in
[CH15].

It should be noted that not all finite root systems come
from a Lie superalgebra.

Once we show the existence of a finite root system for a
Lie superalgebra, there are many strong properties derived
from the combinatorics of the Weyl groupoid. For exam-
ple:

• dim𝔤(𝐴, 𝐩)𝛼 = 1 for all 𝛼 ∈ ∆(𝐴,𝐩).
• There might exist roots 𝛼 ∈ ∆(𝐴,𝐩) such that 2𝛼 ∈
∆(𝐴,𝐩), which are the odd nonisotropic roots. All of
them are the image of simple odd nonisotropic roots
of some pair (𝐴′, 𝐩′) obtained up to odd reflections,
and dim𝔤(𝐴, 𝐩)2𝛼 = 1, as shown by Andruskiewitsch-
Angiono.

• The whole set ∆(𝐴,𝐩) is obtained up to reflections of the
simple roots, attaching 2𝛼 for each odd nonisotropic
root.

In the same line we may wonder if there exists a geometric-
combinatoric side on these Lie superalgebras (Weyl cham-
bers and so on) coming from the associated crystallo-
graphic arrangements.

Example 3.8. We continue with the study of 𝔟𝔯(3). Here
𝒳 = {𝐴, 𝐵}, with 𝜌3(𝐴) = 𝐵 and 𝜌1 = 𝜌2 = id. The as-
sociated GCM are those in Remark 3.3. Thus we get all
the roots applying repeatedly the reflections. For example,
𝑠𝐵2 (𝛼1) = 𝛼1 + 2𝛼2 ∈ ∆𝐵, so

𝑠𝐵3 (𝛼1 + 2𝛼2) = 𝛼1 + 2𝛼2 + 4𝛼3 ∈ ∆𝐴.

Using the notation 1𝑎2𝑏3𝑐 ≔ 𝑎𝛼1+𝑏𝛼2+𝑐𝛼3, we can check
that

∆𝐴
+ ={1, 12, 123, 122334, 12232, 12233, 12234,

12334, 1232, 2, 232, 23, 3},
∆𝐵
+ ={1, 122, 12, 1232, 12332, 122332, 12232,

123, 1223, 2, 232, 23, 3}.
Thus, dim𝔫± = 13, so dim𝔟𝔯(3) = 29. In addition one
can show that [𝔤𝛼, 𝔤𝛽] = 𝔤𝛼+𝛽 for every pair 𝛼, 𝛽 ∈ ∆𝐴

+
such that 𝛼 + 𝛽 ∈ ∆𝐴

+. Thus we can obtain recursively a
nonzero element 𝑒𝛼 ∈ 𝔤𝛼:

𝑒12 ≔ [𝑒1, 𝑒2], 𝑒123 ≔ [𝑒12, 𝑒3], 𝑒1232 ≔ [𝑒123, 𝑒3],
and so on.

4. Other Contexts and Problems
We finish by recalling other algebraic structures where
these generalized root systems appear, as Nichols algebras,
and posing some related problems where they could play
a key role: Lie algebras in a broad sense and their repre-
sentations. We are not going to introduce all the involved
concepts, we refer to the corresponding papers for more
information.
4.1. Nichols algebras. Quantized enveloping algebras
are certain deformations of enveloping algebras of
semisimple Lie algebras introduced in the eighties by
Drinfeld and Jimbo, depending on a parameter 𝑞. Later
on, Lusztig considered Hopf algebras obtained by evalu-
ation of 𝑞 at a root of unity, which lead to some finite-
dimensional examples, usually called Frobenius-Lusztig ker-
nels. These examples have a triangular decomposition
whose zero part is a group algebra of copies of finite cyclic
groups, and the positive (also, the negative) part is a kind
of Hopf algebra.

In the denomination currently used, these positive parts
are examples of Nichols algebras. Nichols algebras are
Hopf algebras in the category of Yetter-Drinfeld modules
over a group algebra (or more precisely, over a Hopf alge-
bra), which play a fundamental role in the classification
of finite-dimensional Hopf algebras. Following the line of
work of Andruskiewitsch and Schneider, joined by Heck-
enberger, one can define Hopf algebras with triangular de-
composition, whose positive part is a Nichols algebra and
which have generalised root systems, see the book [HS20],
and also [AHS10].

The list of all finite-dimensional Nichols algebras is
known when the group is finite and abelian, thanks to
the work of Heckenberger, and almost complete when
the group is finite but nonabelian, by Heckenberger-
Vendramin. Both works explode the existence of the gen-
eralized root system.

We can see that the list of all generalized root systems
appearing for someNichols algebras contains properly the
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list of all those appearing for Lie superalgebras, but there
are some root systems not attached to any Nichols alge-
bras.
4.2. Lie algebras in symmetric tensor categories and rep-
resentations. One can extend the definition of Lie algebra
to symmetric tensor categories. Indeed Lie superalgebras
are essentially Lie algebras in the category of super vector
spaces. When 𝕜 is of characteristic zero, Deligne proved
that any symmetric tensor category (under a mild condi-
tion) fibers over the category of supervector spaces, so any
Lie algebra over these symmetric tensor categories can be
considered as a Lie superalgebra. When 𝕜 is of charac-
teristic 𝑝 > 0, Coulembier-Etingof-Ostrik proved recently
[CEO23] that any symmetric tensor category (under amild
condition) fibers over the Verlinde category Ver𝑝. This cat-
egory is the semisimplification of the category of represen-
tations of ℤ𝑝 over 𝕜 and contains properly the category of
super vector spaces. Thus, in this case, the consideration
of Lie algebras in symmetric tensor categories essentially
reduces to Lie algebras in Ver𝑝. One may ask about the
existence of contragredient Lie algebras in Ver𝑝, and root
systems.

In the classical case (that is, over ℂ), the root system
controls the representation theory of simple Lie algebras,
or more precisely a quite interesting subcategory called the
category 𝒪. For example, finite-dimensional modules are
parametrized by nonnegativeweights associated to the root
system, and the Weyl group describes a character formula
for these simple modules. The situation is a bit more com-
plicated for Lie superalgebras, and a character formula ex-
ists for certain weights. Recently Sergeev and Veselov used
what they called a Weyl groupoid (which is not clearly re-
lated to the one considered here) to describe strong proper-
ties on the representations. Also, Yamane described very re-
cently character formulas for the so-called atypical weights
of quantized enveloping Lie superalgebras bymeans of the
Weyl groupoid. So one may wonder if the Weyl groupoid
plays a key role in the description of the representations of
Lie algebras in a broad sense.
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