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ASYMPTOTIC INSIGHTS FOR PROJECTION, GORDON–LEWIS AND SIDON CONSTANTS

IN BOOLEAN CUBE FUNCTION SPACES

A. DEFANT, D. GALICER, M. MANSILLA, M. MASTYŁO, AND S. MURO

ABSTRACT. The main aim of this work is to study important local Banach space constants for Boolean

cube function spaces. Specifically, we focus on BN
S

, the finite-dimensional Banach space of all real-

valued functions defined on the N -dimensional Boolean cube {−1,+1}N that have Fourier–Walsh ex-

pansions supported on a fixed family S of subsets of {1, . . . , N }. Our investigation centers on the projec-

tion, Sidon and Gordon–Lewis constants of this function space. We combine tools from different areas

to derive exact formulas and asymptotic estimates of these parameters for special types of families S

depending on the dimension N of the Boolean cube and other complexity characteristics of the sup-

port set S . Using local Banach space theory, we establish the intimate relationship among these three

important constants.

1. INTRODUCTION

We study important Banach space invariants such as projection, Sidon and Gordon–Lewis con-

stants of certain natural subspaces of the Banach space of all real-valued functions defined on the

N-dimensional Boolean cube {−1,+1}N . Recall that every function f : {−1,+1}N → R has a Fourier–

Walsh expansion of the form

f (x) =
∑

S⊂{1,...,N}
f̂ (S)xS ,

where for each (x1, . . . , xN ) ∈ {−1,+1}N , xS :=
∏

k∈S xk is a Walsh function. The set of all S for which

f̂ (S) 6= 0 is called the spectrum of f .

More precisely, given a set S of subsets in {1, . . . , N }, we consider the space BN
S

of all functions

f : {−1,+1}N → R with Fourier–Walsh expansions supported on S , that is, f̂ (S) 6= 0 only if S ∈ S .

Endowed with the supremum norm on {−1,+1}N , this is a finite dimensional Banach space. Our

main goal then is to find asymptotically correct estimates for the projection constant λ
(
BN

S

)
, and

to link this invariant with other important invariants from Fourier analysis and local Banach space

theory like the Sidon, unconditional basis or Gordon–Lewis constants.
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We note that the Fourier analysis of functions on Boolean cubes is essential in theoretical com-

puter science, and plays a key role in combinatorics, random graph theory, statistical physics, Gauss-

ian geometry, the theories of metric spaces/Banach spaces, learning theory, or social choice theory

(see, e.g., [33] and [34] and the references therein). Moreover, the last decades show growing interest

for applications of Boolean functions in the context of quantum algorithms complexity and quan-

tum information [2]. For recent important developments and applications in this direction see also

[1, 5, 10, 14, 15, 38, 42, 47] .

We mainly focus on the Banach space BN
≤d

:=BN
{S : |S|≤d}, that is all real-valued functions f on the

compact abelian group {−1,+1}N with Fourier transforms f̂ supported on all subsets of [N ] with

cardinality ≤ d , and similarly on the Banach space BN
=d

:=B{S : |S|=d}.

The study of complemented subspaces X of a Banach space Y and their projection constants

has a long history going back to the beginning of operator theory in Banach spaces. For a general

overview of the state of art of the theory of projection constants in Banach spaces, we refer to the

excellent monograph [45] by Tomaczak-Jaegermann and references therein.

We recall that if X is a subspace of a Banach space Y , then the relative projection constant of X in

Y is defined by

λ(X ,Y ) = inf
{
‖P‖ : P ∈L (Y , X ), P |X = idX

}
,

where idX is the identity operator on X , and the (absolute) projection constant of X is given by

(1) λ(X ) := sup λ(I (X ), Z ) ,

where the supremum is taken over all Banach spaces Z and isometric embeddings I : X → Z . The fol-

lowing straightforward result shows the intimate link between projection constants and extensions

of linear operators: For every Banach space Y and its subspace X one has

λ(X ,Y ) = inf
{

c > 0 : ∀T ∈L (X , Z ) ∃ an extension T̃ ∈L (Y , Z ) with ‖T̃‖ ≤ c ‖T ‖
}

.

Drawing from Rudin’s averaging technique from [39] for estimating the projection constant (dat-

ing back to the 1960s), an adapted technique for spaces of trigonometric polynomials on compact

abelian groups was devised in [7]. We apply this new perspective into the framework of functions on

Boolean cubes. As a consequence, we in Theorem 3.1 see that

λ
(
BN

S

)
=

1

2N

∑

x∈{−1,+1}N

∣∣ ∑

S∈S

xs
∣∣.

In principle, this integral can be calculated with a computer - at least for concrete well-structured

families S in [N ] := {1,2, . . . , N }. Nevertheless, if N is large or the set S is ’too big’, this might get

unfeasible. Therefore, it is important to study the asymptotic order of λ
(
BN

S

)
in the dimension N

and/or other parameters quantifying the complexity of S .
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Among others, we show in Theorem 4.1 that

lim
N→∞

N−d/2λ
(
BN

S

)
=

1
p

2π

∫

R

|hd (t )|
d !

exp(−t 2/2)dt ,

where hd is the d-th Hermite polynomial.

While this outcome can be derived from a very interesting identity by Beckner [3] from the mid-

seventies—utilizing it as a black box—alongside the central limit theorem, we derived it (without

prior knowledge of it) from a specific technique to study the combinatorial structure of the index set

S involved. This technique is grounded on ideas introduced in [16] and [31], where it was employed

to examine sets of monomial convergence of spaces of holomorphic functions in high dimensions.

We highlight that this combinatorial tool holds significant potential, extending its applicability to

diverse contexts. In this manuscript, we present both methods for obtaining the result.

The Sidon constant plays a pivotal role in Fourier analysis, providing crucial insights into the be-

havior and convergence properties of Fourier series and related transformations. Recall that, given

S ⊂ [N ], the Sidon constant of the characters (χS)S∈S in the group {−1,1}N is the best constant C > 0

such that for all f ∈BN
S

,

(2)
∑

S∈S

| f̂ (S)| ≤ C‖ f ‖∞ ,

and we in the following are going to denote this constant by Sid(BN
S

). In the context of spaces of

Boolean functions, this invariant establishes a connection between the Fourier coefficients and the

supremum norm of the function. Essentially, it quantifies how the distribution of the Fourier coef-

ficients across different frequencies influences the overall behavior of the function, as reflected by

its supremum norm. This relationship provides valuable insights into the harmonic structure and

complexity of Boolean functions, aiding in the analysis and understanding of their properties and

computational characteristics.

We demonstrate how to estimate the Sidon constant of spaces of Boolean functions for a specific

set S and the projection constant of another space associated with the ’reduced form’ of S . To

achieve this, we employ various techniques from local analysis of Banach spaces, including the con-

nection with the so-called Gordon–Lewis constant, tensorial techniques, and certain symmetriza-

tion/desymmetrization ideas.

The main result here is Theorem 5.1 (and more generally Theorem 5.2), where we show that in the

homogeneous case the Sidon constant of BN
=d

may be estimated by λ
(
BN

=d−1

)
up to a constant C d ,

where C > 0 is universal. The proof goes a detour relating first the Sidon constant with the Gordon–

Lewis constant (Theorem 5.4) and then in a second step the Gordon–Lewis constant with the pro-

jection constant (Theorem 5.7).
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Summarizing, we use local Banach space theory to show that the Sidon, Gordon–Lewis and pro-

jection constant of every Banach space BN
S

are intimately linked – a connection of which all three of

these fundamental constants benefit abundantly.

Using a recent variant of the Bohnenblust-Hille inequality for functions on Boolean cubes from

[10], we conclude the manuscript by relating the Sidon constant of the space BN
S

with the ’size’ of

the support set S .

2. PRELIMINARIES

Standard notation from Banach space theory as e.g., used in the monographs [12, 30, 37, 45, 48] is

going to be needed. In this note, we basically only consider real Banach spaces.

2.1. Functions on Boolean cubes. Throughout the paper we for N ∈N call {−1,+1}N the N-dimen-

sional Boolean cube. A Boolean function is any function f : {−1,+1}N → {−1,+1}, more generally,

functions f : {−1,+1}N →R are said to be ‘real valued functions on the N-dimensional Boolean cube’.

The study of real valued functions on Boolean cubes is deeply influenced by Fourier analysis. Con-

sidering the N-dimensional Boolean cube {−1,+1}N as a compact abelian group endowed with the

coordinatewise product and the discrete topology (so the Haar measure is given by the normalized

counting measure), we may apply the machinery given by abstract harmonic analysis.

In particular, the integral or expectation of each function f : {−1,+1}N →R is given by

E
[

f
]

:=
1

2N

∑

x∈{−1,+1}N

f (x) .

The characters on {−1,+1}N are the so-called Walsh functions defined as

χS : {−1,+1}N → {−1,1} , χS (x) = xS :=
∏

k∈S

xk for x ∈ {−1,+1}N ,

where S ⊂ [N ] := {1, . . . , N } and χ;(x) := 1 for each x ∈ {−1,+1}N . This allows to associate to each

function f : {−1,+1}N →R its Fourier–Walsh expansion

f (x) =
∑

S⊂[N]
f̂ (S) xS , x ∈ {−1,+1}N ,

where f̂ (S) = E
[

f ·χS

]
are the Fourier coefficients.

Given d ∈N, we say that f has degree d whenever f̂ (S) = 0 for all |S| > d , and f is d-homogeneous

whenever additionally f̂ (S) = 0 provided |S| 6= d ; where, as usual, |S| stands for the cardinality of the

set S.
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For every set S of subsets S ⊂ [N ], we define the linear space BN
S

of all functions f : {−1,+1}N →R,

which have Fourier–Walsh expansions supported on S . Endowed with the supremum norm ‖ · ‖∞
on the N-dimensional Boolean cube, this space turns into a Banach space. We mainly concentrate

on the following special classes of functions on the N-dimensional Boolean cube:

• BN := all functions f : {−1,+1}N →R,

• BN
=d

:= all d-homogeneous f : {−1,+1}N →R,

• BN
≤d

:= all f : {−1,+1}N →R with degree less or equal d .

Obviously, we have the isometric identity

BN = ℓ∞
(
{−1,+1}N

)
, f 7→ ( f (x))x∈{−1,+1}N .(3)

2.2. Functions on Boolean cubes vs tetrahedral polynomials. As usual we call the elements α =
(αi ) in N

(N)
0 (all finite sequences in N0) multi indices, and |α| =

∑
αi is their so-called order. For N ∈N

and d ∈N0

Λ(d , N ) := {α ∈N
N
0 : |α| = d}, Λ(≤ d , N ) := {α ∈N

N
0 : |α| ≤ d}

denote the sets of multi indices which are d-homogeneous and of order ≤ d , respectively. A multi

index α = (αi ) ∈N
(N)
0 is said to be tetrahedral whenever each entry αi is either 0 or 1. We denote by

ΛT the subset of all tetrahedral multi indices in N
(N)
0 . For d ≤ N we let

ΛT (d , N ) :=Λ(d , N )∩ΛT , ΛT (≤ d , N ) :=Λ(≤ d , N )∩ΛT .

It turns out to be convenient to have an equivalent description of Λ(d , N ). We write

M (d , N ) = [N ]d ,

J (d , N ) =
{

j = ( j1, . . . , jd ) ∈M (d , N ) : j1 ≤ . . . ≤ jd

}
.

Then there obviously is a canonical bijection between J (d , N ) and Λ(d , N ). Indeed, assign to j ∈
J (d , N ) the multi index α ∈ Λ(d , N ) given by αr = |{k : jk = r }|, 1 ≤ r ≤ N , and conversely assign to

each α ∈Λ(d , N ) the index j ∈J (d , N ), where j1 = . . . = jα1 = 1, jα1+1 = . . . = jα1+α2 = 2, . . .

On M (d , N ) we consider the equivalence relation: i ∼ j if there is a permutation σ on {1, . . . ,d}

such that (i1, . . . , id ) = ( jσ(1), . . . , jσ(d)). The equivalence class of i ∈ M (d , N ) is denoted by [i], and its

cardinality by |[i]|. We write |[α]| := |[j]| provided that j is associated with α, and in this case have that

(4) |[α]| = |[j]| =
d !

α!
,

where α! :=α1! · . . . ·αN ! .
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We consider finite polynomials P : RN → R, i.e., polynomials of the form P (x) =
∑

α∈F cαxα, x ∈ R,

where F is a finite set of multi indices in N
(N)
0 . We write Pd (ℓN

∞) for all d-homogenous polynomi-

als, so polynomials of the form P (x) =
∑

α∈Λ(d ,N) cαxα, x ∈ R. The space Pd (ℓN
∞), together with the

supremum norm taken on the unit ball of ℓN
∞, forms a Banach space. A polynomial is said to be tetra-

hedral, whenever cα = 0 for all α ∉ΛT . The subspace of all tetrahedral d-homogeneous polynomials

is denoted by Td (ℓN
∞), that is, all polynomials of the form P (x) =

∑
α∈ΛT (d ,N) cαxα, x ∈R. Analogously,

we define the Banach spaces P≤d (ℓN
∞) and T≤d (ℓN

∞).

Obviously, for each f : {−1,+1}N → R there is a unique tetrahedral polynomial P f : RN → R for

which the following diagram commutes:

{−1,+1}N
R

N ,

R

f P f

and in this case

‖ f ‖∞ := sup
x∈{−1,+1}N

| f (x)| = sup
x∈{−1,+1}N

|P f (x)| = sup
x∈[−1,1]N

|P f (x)| =: ‖P f ‖∞.

Moreover, each subset S ⊂ [N ] may be identified with a tetrahedral multi index αS ∈ N
N
0 given by

αS (k) = 1,k ∈ S and αS (k) = 0,k ∉ S. Conversely, every tetrahedral multi index α ∈ N
N
0 defines the

subset S = suppα⊂ [N ]. We write

Λ(S ) = {αS ∈N
N
0 : S ∈S } ,

and PΛ(S )(ℓN
∞(R)) for the Banach space of all polynomials on ℓN

∞, which are generated by functions

f ∈BN
S

. This all together leads to the isometric identity

(5) BN
S =PΛ(S )(ℓ

N
∞) , f 7→P f .

In view of this identification, it from time to time is convenient to use the usual monomial notation,

that is, for S ⊂ [N ] we identify the Boolean function χS with xαS .

2.3. Sidon, unconditional basis and Gordon–Lewis constants.

• Recall that the unconditional basis constant of a basis (ei )i∈I of a Banach space X is given by

the infimum over all K > 0 such that for any finitely supported family (αi )i∈I of scalars and for any

finitely supported family (εi )i∈I with εi ∈ {−1,+1}, i ∈ I we have

(6)
∥∥∥

∑

i∈I

εiαi ei

∥∥∥≤ K
∥∥∥

∑

i∈I

αi ei

∥∥∥ .

We denote the unconditional basis constant of (ei )i∈I by χ((ei )i∈I ) = χ((ei )i∈I ; X ). We also write

χ((ei )i∈I ) =+∞, whenever (ei )i∈I is not unconditional, and say that (ei )i∈I is a 1-unconditional basis,
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whenever χ((ei )i∈I ) = 1. The unconditional basis constant χ(X ) of X is defined to be the infimum of

χ((ei )i∈I ) taken over all possible unconditional bases (ei )i∈I of X .

It should be noted that, from the Banach space point of view, the Sidon constant Sid(BN
S

) is noth-

ing else than the unconditional basis constant of the Walsh functions (χS)S∈S , that is

Sid(BN
S ) =χ((χS )S∈S ) .

• Given Banach spaces X , Y and 1 ≤ p ≤ ∞, an operator u ∈ L (X ,Y ) is said to be p-factorable

whenever there exist a measure space (Ω,Σ,µ) and operators v ∈ L (X ,Lp (µ)), w ∈ L (Lp (µ),Y ∗∗),

satisfying the following factorization κY u : X
v−→ Lp (µ)

w−→ Y ∗∗ ; here, as usual, κY : Y → Y ∗∗ is the

canonical embedding. In this case the γp -norm of the p-factorable operator u is given by

γp (u)= inf‖v‖‖w‖ ,

where the infimum is taken over all possible factorizations. We are mainly interested in the norms γp

for operators acting between finite dimensional Banach spaces X and Y . In this case, the infimum

in (2.3) is realized considering all possible factorizations of the more simple form

X Y ,

ℓn
p

v

u

w

where n is arbitrary.

• An operator u ∈ L (X ,Y ) is said to be 1-summing if there is a constant C > 0 such that for each

choice of finitely many x1, . . . , xN ∈ X one has

N∑

j=1
‖ux j ‖Y ≤C sup

{ N∑

j=1
|x∗(x j )| : ‖x∗‖X∗ ≤ 1

}
.

By π1(u : X → Y ) we denote the least such C satisfying this inequality.

• A Banach space X has the Gordon–Lewis property if every 1-summing operator u : X → ℓ2 is

1-factorable. In this case, there is a constant C > 0 such that for all 1-summing operators u : X → ℓ2

γ1(u) ≤C π1(u) ,

and the best such C is called the Gordon–Lewis constant of X and denoted by gl (X ).

A fundamental tool for the study of unconditionality in Banach spaces is the Gordon–Lewis in-

equality from [19] (see also [12, 17.7] or [8, Proposition 21.13]): For every Banach space X with an

unconditional basis (ei )i∈I one has

(7) gl (X ) ≤χ(X ) ≤χ((ei )i∈I ).
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In contrast to the unconditional basis constant, the Gordon–Lewis constant has the useful (ideal)

property that

(8) gl (X ) ≤ ‖u‖‖v‖ gl (Y ) ,

whenever idX = uv for appropriate operators u : X → Y and v : Y → X .

2.4. Projection constants. General bounds for projection constants of various finite dimensional

Banach spaces were studied by many authors (see again (1) for the definition).

The projection constant of a Banach space X can be formulated in terms of the ∞-factorization

norm of the identity operator idX . More precisely, if X is a Banach space and X0 is any subspace of

some L∞(µ) isometric to X , then

λ(X ) = γ∞(idX ) =λ(X0,L∞(µ)).(9)

Recall the following fundamental estimate due to Kadets-Snobar [24]: For every n-dimensional

Banach space Xn one has

(10) λ(Xn) ≤
p

n .

In contrast, König and Lewis [26] showed that for any Banach space Xn of dimension n ≥ 2 the strict

inequality λ(Xn) <
p

n holds, and this estimate was later improved by Lewis [29].

The exact values of λ(ℓn
2 ) and λ(ℓn

1 ) were computed by Grünbaum [20] and Rutovitz [40]: In the

complex case

λ
(
ℓn

2 (C)
)
= n

∫

S
C

n−1

|x1|dσ(x) =
p
π

2

n!

Γ(n + 1
2 )

,

where dσ stands for the normalized surface measure on the sphere S
C

n−1 in C
n , and

λ
(
ℓn

1 (C)
)
=

∫

Tn

∣∣∣
n∑

k=1
zk

∣∣∣d z =
∫∞

0

1− J0(t )n

t 2
d t ,

where d z denotes the normalized Lebesgue measure on the distinguished boundary T
n in C

n and J0

is the zero Bessel function defined by J0(t ) = 1
2π

∫∞
0 cos(t cosϕ)dϕ . The corresponding real constants

are different:

λ
(
ℓn

2 (R)
)
= n

∫

S
R

n−1

|x1|dσ=
2
p
π

Γ( n+2
2 )

Γ( n+1
2 )

and

λ
(
ℓn

1 (R)
)
=





λ
(
ℓn

2 (R)
)
, n odd

λ(ℓn−1
2 (R)), n even.

(11)
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Additionally, Gordon [18] and Garling-Gordon [17] determined the asymptotic growth of λ
(
ℓn

p

)
for

1 < p <∞ with p 6= 1,2,∞ showing that

λ
(
ℓn

p

)
∼ n

min
{

1
2 , 1

p

}
,

and König, Schütt and Tomczak-Jagermann [27] proved that for 1 ≤ p ≤ 2

(12) lim
n→∞

λ
(
ℓn

p

)
p

n
= γ ,

where γ =
√

2
π

in the real and γ =
p
π

2 in the complex case. For an extensive treatment on all of this

and more see [45].

3. INTEGRAL FORMULA

The following integral formula for the projection constant of BN
S

, where S is an arbitrary family

of subsets in [N ], is fundamental for our purposes.

Theorem 3.1. For each family S of subsets in [N ]

λ
(
BN

S

)
= E

[∣∣ ∑

S∈S

χS

∣∣] .

This immediately follows from a result regarding arbitrary compact abelian groups as presented

in [7, Theorem 2.1], which finds its inspiration and roots in Rudin’s work [39] (also see [48, The-

orem III.B.13]). In fact, for a compact abelian group G (with Haar measure m) and a finite set

E := {γ1, . . . ,γN } ⊂ Ĝ of characters, we denote by TrigE (G) the finite dimensional Banach space of

all trigonometric polynomials formed by the span of E in C (G). Then the projection P : C (G)→C (G),

given by P f =
∑N

j=1 f̂ (γ j )γ j for all f ∈C (G), is a minimal projection onto TrigE (G) and

λ
(
TrigE (G)

)
=

∥∥P : C (G)→C (G)
∥∥=

∫

G

∣∣∣
N∑

j=1
γ j (x)

∣∣∣dm(x) .

Taking for G the N-dimensional Boolean cube {−1,+1}N and recalling that all its characters are given

by the functions χS , S ⊂ [N ], we see that Theorem 3.1 indeed is a very special case.

Clearly, by the Kadets-Snobar theorem (recall again (10)) one has

(13) 1 ≤ λ
(
BN

S

)
≤

√
|S | .

Note that this estimate is also a straight forward consequence of Theorem 3.1 and the orthogonality

of the Fourier–Walsh functions χS , since both imply

λ
(
BN

S

)
= E

[∣∣∣
∑

S∈S

χS

∣∣∣
]
≤

(
E

[∣∣∣
∑

S∈S

χS

∣∣2
])1/2

=
√
|S | .
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We show that the estimates of (13), the upper as well as the lower one, are attained. Indeed, the two

possible extreme cases for (13) are as follows: For the lower bound we take the family S consisting

of all possible subsets of [N ], and for the upper bound any family S of one-point sets only. In the

first case the identity from (3) gives that for all N

(14) λ
(
BN

)
= 1 ,

and in the second case by Kintchine’s inequality (as proved by Szarek in [43])

(15)
1
p

2

√
|S | ≤ E

[∣∣ ∑

{x}∈S

χ{x}
∣∣
]
≤

√
|S | .

For the latter case of one-point sets we have a more precise formula. Indeed, for each family S

of one-point sets of [N ] by Theorem 3.1 and an integral form of Rademacher averages proved by

Haagerup in [21] one has

(16) λ
(
BN

S

)
=

2

π

∫∞

0
t−2

(
1−

|S |∏

k=1
cos t

)
d t .

Moreover, if (SN )N∈N is a sequence of support sets which are finite and consists only of one-point

sets in N such that the cardinality |SN |→∞ as N →∞, then

(17) lim
N→∞

λ
(
BN

SN

)

√
|SN |

=
√

2

π
.

This follows by a standard duality argument, since the mapping

BN
SN

∋
∑

{ik }∈SN

αkχ{ik } 7→ (αk )N
k=1

is a linear isometric isomorphism of BN
SN

onto ℓ
|SN |
1 , and then the conclusion follows from the case

p = 1 in (12).

The following consequences of Theorem 3.1 collect a few extensions of (15). The substitute for

Kintchine’s inequality in the case d = 1 we need, is the following hypercontractivity estimate for

homogeneous functions on Boolean cubes due to Ivanisvili and Tkocz [23, Theorem 2] which shows

that, for d > 1 and every f ∈BN
=d

,

(18) ‖ f ‖L2({−1,+1}N ) ≤ e
d
2 ‖ f ‖L1({−1,+1}N ) .

More generally, in [13, Theorem 13] Eskenazis and Ivanisvili showed that for every f ∈BN
≤d

(19) ‖ f ‖L2({−1,+1}N ) ≤ (2.69076)d‖ f ‖L1({−1,+1}N ) .

The previous two inequalities are recent improvements of the classical hypercontractive Bonami-

Weissler inequality for the Boolean cube (see e.g., [34, Theorem 9.22]).

Combining Theorem 3.1 with (19) and (18) gives the following extension of (15).
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Corollary 3.2. Let S ⊂ 2[N]. If |S| = d for all S ∈S , then

1

e
d
2

√
|S | ≤ λ

(
BN

S

)
≤

√
|S | ,

and if |S| ≤ d for all S ∈S , then

1

(2.69076)d

√
|S | ≤ λ

(
BN

S

)
≤

√
|S | .

Calculating cardinalities, yields more concrete estimates for BN
=d

and BN
≤d

: For 1 ≤ d ≤ N

(20)
1

e
d
2

(
N

d

) 1
2

≤ λ
(
BN

=d

)
≤

(
N

d

) 1
2

(21)
1

(2.69076)d

(
d∑

k=0

(
N

k

)) 1
2

≤ λ
(
BN

≤d

)
≤

(
d∑

k=0

(
N

k

)) 1
2

,

and as a consequence

(22)
1

e
d
2

(N

d

)d
2 ≤ λ

(
BN

=d

)
≤ e

d
2

(N

d

)d
2

(23)
1

(2.69076)d

(N

d

) d
2 ≤ λ

(
BN

≤d

)
≤ e

d
2

(N

d

) d
2

.

Indeed, the preceding two estimates follow immediately from (20) and (21) taking into account the

elementary estimates

(N

d

)d
≤

(
N

d

)
,(24)

(25)

(
N

d

)
≤

d∑

k=0

(
N

k

)
≤

d∑

k=0

N k

k !
=

d∑

k=0

d k

k !

(N

d

)k
≤ ed

(N

d

)d
.

Note that applying a remarkable formula due to McKay [32], we have (see also [9, Lemma 5.7]): For

each N ∈ N and each 0 ≤ α < N with N −α being an odd integer, there exists 0 ≤ cα,N ≤
p
π/2 such

that
∑

k≤N−α−1
2

(
N

k

)
=
p

N

(
N −1
N−α−1

2

)
Y

(
α+1
p

N

)
exp

(
cα,Np

N

)
,

where Y is given by

Y (x) = e
x2
2

∫∞

x
e− t2

2 d t , x ≥ 0 .

In particular, taking α= 0, we obtain a nice asymptotic formula for
∑d

k=0

(N
k

)
, whenever N is odd and

d = N−1
2 .
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It worth noting that the following estimates hold (see [44, Proposition 3])

2

x + (x2 +4)1/2
≤ Y (x) ≤

4

3x + (x2 +8)1/2
, x ≥ 0 .

We conclude with an observation showing that the upper bound in (25) can be improved as follows

whenever 2d −1 < N :

(26)
d∑

k=0

(
N

k

)
≤

(
N

d

)
N − (d −1)

N − (2d −1)
.

In fact, we have

1
(N

d

)
((

N

d

)
+

(
N

d −1

)
+

(
N

d −2

)
+ ·· · +1

)
= 1+

d

N −d +1
+

d(d −1)

(N −d +1)(N −d +2)
+ ·· · .

Thus bounding the right-hand side from above by the geometric series

1+
d

N −d +1
+

(
d

N −d +1

)2

+ ·· · =
N − (d −1)

N − (2d −1)
,

we get the required estimate (26).

In view of the preceding estimates for the projection constants of BN
=d

and BN
≤d

, we add another

useful result comparing both constants.

Proposition 3.3. For every N ,d ∈N with d ≤ N

λ
(
BN

=d

)
≤ (1+

p
2)dλ

(
BN

≤d

)
.

Proof. Indeed, this follows from an important fact proved by Klimek in [25] (see also [10, Lemma1,(iv)]):

If f ∈BN
≤d

and fk =
∑

|S|=k f̂ (S)χS is the k-homogeneous part of f for 0 ≤ k ≤ d , then

�(27) ‖ fk‖∞ ≤ (1+
p

2)d‖ f ‖∞ .

We finish with two more remarks on Theorem 3.1, which have a number theoretical flavour. The

first one is

(28) lim
N→∞

λ
(
BN

PN

)

√
N

log N

=
√

2

π
,

where PN stands the family of one-point sets {p} generated by all primes p ≤ N . Of course this is an

immediate consequence of the prime number theorem and (17) applied to the sequence (pk ) of all

primes.

For the second remark we denote by P
s f

N
the family of all finite subsets A of primes in [N ] such

that n =
∏

p∈A p ≤ N (the prime number decomposition of n is square-free). Observe, that since every

n ∈ [N ] has a unique prime number decomposition, there is a one to one correspondence between

the set of all square-free numbers n ∈ [N ] and P
s f

N
.
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Based on a recent deep result of Harper from [22], for large integers N with universal constants

(29) λ
(
BN

P
s f

N

)
∼

p
N

(loglog N )
1
4

.

For the proof note that all projections χ{k} : {−1,+1}N → R, k ∈ N form a sequence of independent

Rademacher random variables. Moreover, every square-free number n ∈ [N ] defines a random vari-

able fn : {−1,+1}N →R given by

fn =
∏

p|n
p prime

χ{p} .

Then Harper’s result mentioned above states that

E

∣∣∣
∑

1≤n≤N
n square-free

fn

∣∣∣∼
p

N

(loglog N )
1
4

.

But since the one to one correspondence between the square-free numbers n ∈ [N ] and the family of

sets A ∈P
s f

N
identifies the random variables fn and χA , we see that

E

∣∣∣
∑

1≤n≤N
n square-free

fn

∣∣∣= E

∣∣∣
∑

A∈S

χA

∣∣∣ .

Consequently, Theorem 3.1 finishes the argument for (29).

4. THE LIMIT CASE

The spaces BN
=1 and ℓN

1 (R) identify as Banach spaces whenever we interpret the N-tuple
∑N

k=1 xk ek

as the function
∑N

k=1 xkχ{k} on the N-dimensional Boolean cube. Then by the result of Grünbaum

mentioned in (11) we know that

lim
N→∞

λ
(
BN

=1

)
p

N
= lim

N→∞

λ
(
ℓN

1 (R)
)

p
N

=
√

2

π
.

In the following we show a procedure that allows to extend this result to BN
=d

and BN
≤d

, where the

degree d is arbitrary. Our main result here is as follows.

Theorem 4.1. For each d ∈N,

(30) lim
N→∞

λ(BN
=d

)

N d/2
=

1
p

2π

∫∞

−∞
|Pd (t )|e− t2

2 d t ,

where Pd (t ) = td

d ! −
⌊d/2⌋∑

k=1

1

k !2k
Pd−2k (t ) with P0(t ) = 1, P1(t ) = t . Moreover,

lim
N→∞

λ(BN
=d

)

N d/2
= lim

N→∞

λ(BN
≤d

)

N d/2
.
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The following observation is important, since it helps to understand the preceding result in a larger

context: For each d ∈N0, we have that

(31) Pd =
hd

d !
,

where hn for each n ∈N0 denotes the n-th (probabilist’s) Hermite polynomial given by

hn(t ) := (−1)ne
t2

2
d n

d t n
e− t2

2 , t ∈R .

In order to prove this, note first that for d ∈ {0,1} this equality holds trivially. For arbitrary d ’s we use

induction. Suppose that Pk = hk

k! for every 0≤ k ≤ d−1, and let us show that Pd = hd

d ! . By the so-called

’inverse explicit expression for Hermite polynomials’ we know that for all t ∈R

t d = d !
⌊d/2⌋∑

k=0

1

k !2k

hd−2k (t )

(d −2k)!
= d !

⌊d/2⌋∑

k=1

1

k !2k

hd−2k (t )

(d −2k)!
+hd (t ) .

Thus, by the inductive hypothesis,

hd (t )

d !
=

t d

d !
−

⌊d/2⌋∑

k=1

1

k !2k

hd−2k (t )

(d −2k)!
=

t d

d !
−

⌊d/2⌋∑

k=1

1

k !2k
Pd−2k (t ) = Pd (t ) .

Note that from (20) for S = {S ⊂ [N ] : card(S) = d} we have

1

e
d
2

≤ lim inf
N→∞

λ
(
BN

S

)
√

dim(BN
S

)
≤ lim sup

N→∞

λ
(
BN

S

)
√

dim(BN
S

)
≤ 1 ,

and in the case S = {S ⊂ [N ] : card(S) ≤ d} the constant e− d
2 has to be changed by (2.69076)−d . The

following result is a considerable improvement.

Corollary 4.2. For S = {S ⊂ [N ] : card(S)= d} or S = {S ⊂ [N ] : card(S) ≤ d}

lim
N→∞

λ
(
BN

S

)
√

dim(BN
S

)
=

1
p

2π

∫∞

−∞

|hd (t )|
p

d !
e− t2

2 d t =
27/4

π5/4

1

d 1/4

(
1+O

( 1

d 2

))
.

Indeed, this follows from Theorem 4.1, equation (31) and a result of Larsson-Cohn [28, Remark 2.6

and 3.2], which says that

1
p

2π

∫∞

−∞
|hd (t )|e− t2

2 d t =
27/4

π5/4

p
d !

d 1/4

(
1+O

( 1

d 2

))
.

Now, if S = {S : card(S) = d}, then dim(BN
S

) =
√(N

d

)
, and if S = {S : card(S) ≤ d}, then in the case

2d −1 < N (so in particular for large N ), we have (see again (26))
(

N

d

)
≤ dim(BN

S ) =
d∑

k=0

(
N

k

)
≤

(
N

d

)
N − (d −1)

N − (2d −1)
.
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Since limN→∞

√(N
d

)/
N d/2 = 1/

p
d ! , we in both considered cases have

lim
N→∞

√
dim(BN

S
)

N d/2
=

1
p

d !
,

which gives the required statement.

To show a few examples, with the use of a computational platform, we get the following limits:

lim
N→∞

λ(BN
=2)

√
dim(BN

=2)
= lim

N→∞

λ(BN
≤2)

√(N
2

) =
1

p
2π

∫∞

−∞

∣∣∣∣
t 2 −1
p

2

∣∣∣∣e− t2
2 d t =

27/4

p
e
p

2π
≈

0.814

21/4

lim
N→∞

λ(BN
=3)

√
dim(BN

=3)
= lim

N→∞

λ(BN
≤3)

√(N
3

) =
1

p
2π

∫∞

−∞

∣∣∣∣
t 3 −3t
p

6

∣∣∣∣e− t2
2 d t =

1

3
p

2π

(
1+

4

e3/2

)
≈

0.811

31/4

lim
N→∞

λ(BN
=4)

√
dim(BN

=4)
= lim

N→∞

λ(BN
≤4)

√(N
4

) =
1

p
2π

∫∞

−∞

∣∣∣∣
t 4 −6t 2 +3

p
24

∣∣∣∣e− t2
2 d t ≈

0.808

41/4

lim
N→∞

λ(BN
=5)

√
dim(BN

=5)
= lim

N→∞

λ(BN
≤5)

√(N
5

) =
1

p
2π

∫∞

−∞

∣∣∣∣
t 5 −10t 3 +15t

p
120

∣∣∣∣e− t2
2 d t ≈

0.807

51/4

lim
N→∞

λ(BN
=6)

√
dim(BN

=6)
= lim

N→∞

λ(BN
≤6)

√(N
6

) =
1

p
2π

∫∞

−∞

∣∣∣∣
t 6 −15t 4 +45t 2 −15

p
720

∣∣∣∣e− t2
2 d t ≈

0.806

61/4
.

For the proof of Theorem 4.1 we use a probabilistic point of view, treating the coordinate func-

tions (χ{i })1≤i≤N on the Boolean cube as independent Bernoulli random variables (taking the values

±1 with equal probability 1/2); for the random variableχ{i } we shortly write xi . From this perspective,

any Walsh function χS is itself a random variable, being a product of coordinate functions. Conse-

quently, any function on the Boolean cube may also be seen as a random variable.

By Theorem 3.1 the projection constant of BN
=d

can be computed as the expectation

E

∣∣∣
∑

|S|=d ,S⊂[N]
χS

∣∣∣ .

Moreover we know from the central limit theorem that

(32)

∑N
i=1 xi
p

N
−→ Z ,

where Z is a normal random variable with mean 0 and variance 1, and the convergence is in distribu-

tion. Based on this, the main idea of our procedure is to rewrite the random variable
∑

|S|=d ,S⊂[N]χS in

a suitable way into another random variable involving
∑N

i=1 xi /
p

N , for which we manage to control

its mean.
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We use the notation Yn
D−→ Y , whenever a sequence (Yn) converges in distribution to a random

variable Y . Additionally to the notion of convergence in distribution, it will be necessary to consider

convergence in probability. We write Yn
P−→ Y if the sequence (Yn) converges in probability to a ran-

dom variable Y . Of course, convergence in probability implies convergence in distribution but, in

general, the converse is not true. We recall that these two notions of convergence coincide, provided

the limit is a constant.

Moreover, we frequently need a classical theorem of Slutsky. It states that, given two sequences

(Xn)n and (Yn)n of random variables such that Xn
D−→ X and Yn

P−→ c (where X is a random variable

and c ∈R a constant), then Xn +Yn
D−→ X +c and XnYn

D−→ c X .

Another result used at several places is that convergence in distribution is inherited under contin-

uous functions in the sense that f (Yn)
D−→ f (Y ), whenever Yn

D−→ Y and f : R→R is continuous.

Finally, recall that a sequence of random variables (Yn)n is said to be uniformly integrable, when-

ever

lim
a→∞

sup
n≥1

∫

|Yn |≥a
|Yn |dP = 0 .

A sufficient condition is that supn E(|Yn |1+ε) ≤C for some ε,C > 0, since then

(33) lim
a→∞

sup
n≥1

∫

|Yn |≥a
|Yn |dP ≤ lim

a→∞

1

aε
C .

Uniform integrability is of particular importance to us due to the fact that Y is integrable and

E(Yn) → E(Y ) ,(34)

provided (Yn)n is a uniformly integrable and Yn
D−→ Y (see for example [4, Theorem 3.5]).

4.1. The 2-homogeneous case. To keep our later calculations for the proof of Theorem 4.1 more

transparent, we deal in detail first with the 2-homogeneous case.

Theorem 4.3.

lim
N→∞

λ(BN
=2)

N
=

√
2

πe

Proof. In a first step we expand the square of the Boolean function x 7→
∑N

i=1 xi and rearrange the

terms using x2
i
= 1, to get

∑

1≤i< j≤N

xi x j =
∑

1≤i< j≤N

x{i , j } =
1

2

[( N∑

i=1
xi

)2
−N

]
.

By the central limit theorem the sequence of random variables (ZN ) given by

ZN :=
1

p
N

N∑

i=1
xi
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converges in distribution to a normal random variable Z with mean 0 and variance 1. Since the

function f (x) = |x2−1|
2 is continuous, we have

1

N

∣∣∣
∑

1≤i< j≤N

xi x j

∣∣∣=
|Z 2

N −1|
2

D−→
|Z 2 −1|

2
.

Now note that by the orthogonality of the Fourier–Walsh basis get

E

[∣∣∣
1

N

∑

1≤i< j≤N

xi x j

∣∣∣
2]

=
(N

2

)

N 2
≤ 1 ,

and hence the uniform integrability of the random variable sequence
(∣∣∣

∑
1≤i< j≤N xi x j

∣∣∣
)

N≥1
(see the

remark done in (33)). Then, thanks to Theorem 3.1 and to what we explained in (34), we see that

lim
N→∞

λ(BN
=2)

N
= lim

N→∞

1

N
E

(∣∣∣
∑

1≤i< j≤N

xi x j

∣∣∣
)
= lim

N→∞
E

( |Z 2
N −1|

2

)
= E

( |Z 2 −1|
2

)
.

Computing the latter integral, we finally arrive at

lim
N→∞

λ(BN
=2)

N
= E

( |Z 2 −1|
2

)
=

1
p

2π

∫∞

−∞

|t 2 −1|
2

e
−t2

2 d t =
√

2

πe
. �

The general case of arbitrary degrees d ∈N is technically more involved. In the previous proof for

d = 2, the key step is to rewrite
1

N

∑

1≤i< j≤N

xi x j

in terms of a polynomial in one variable.

For arbitrary d (as in Theorem 4.1), we require an adequate decomposition of the random variable

(35) YN (x) =
1

N d/2

∑

|S|=d

xS =
1

N d/2

∑

α∈ΛT (d ,N)
xα .

In order to derive the expectation of these kernels, we offer two proofs with independently inter-

esting features. Both approaches have two steps (see also the proof of Theorem 4.3): in a first step

the kernels YN are reformulated in such a way that in a second step the central limit theorem may

be applied properly. In both approaches the second steps are basically identical, whereas the argu-

ments for the first ones are substantially different. The first approach (see Section 4.2) doesn’t need

any knowledge on Hermite polynomials. It is mainly based on a natural decomposition of multi

indices α into their ’even part’ αE and their ’tetrahedral part’ αT . At the very end we arrive at the

limit formula from (30) discovering ’posthum’ that it may be written in terms of Hermite polynomi-

als. Knowing this fact, one in a second approach may use a (somewhat classical) formula of Beckner

from [3] to reach the same goal. Since we use this formula as a sort of black box, this second approach

here appears to be shorter.
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4.2. First approach - decomposing indices. For any index α ∈ Λ(d , N ) there are a unique integer

0 ≤ k ≤ d/2 and a unique decomposition

α=αT +αE

of α into the sum of a tetrahedral index αT ∈ΛT (d −2k, N ) and an even index αE ∈ΛE (2k, N ) (so all

coordinates of αE are even and |αE | = 2k). This in particular implies that

xα = xαT · xαE

︸︷︷︸
=1

= xαT for every x ∈ {−1,+1}N .

The way to find such a decomposition of a given index α ∈Λ(d , N ) is rather simple: Given 1 ≤ j ≤ N ,

the j -th coordinate of the tetrahedral part αT ∈Λ(d , N ) is equal to 1, whenever α j is odd, and 0 else.

The even part is defined as αE :=α−αT ∈Λ(d , N ). Defining

k :=
|αE |

2
,

we indeed see that αT ∈ΛT (d −2k, N ) and αE ∈ΛE (2k, N ). Moreover, since all coordinates of αE are

even, there exists a unique β ∈Λ(d , N ) such that αE = 2β, that is, there is a canonical way to identify

ΛE (2k, N ) and Λ(k, N ).

All together, this leads to the following identification of index sets:

(36) Λ(d , N )!
⌊d/2⌋⋃

k=0
ΛT (d −2k, N )×ΛE (2k, N ) !

⌊d/2⌋⋃

k=0
ΛT (d −2k, N )×Λ(k, N ) ,

where the second identification comes from the fact that there is a canonical correspondence be-

tween ΛE (2k, N ) and Λ(k, N ).

We say that two indices α ∈Λ(d1, N ) and β ∈Λ(d2, N ) do not share variables whenever they have

disjoint support.

Lemma 4.4. Let α ∈Λ(d , N ) and k ≤ d/2. Assume that the tetrahedral part αT ∈ ΛT (d −2k, N ) and

the even part αE ∈Λ(2k, N ) of α do not share variables, and that αE = 2β with β ∈ΛT (k, N ). Then

|[α]| =
d !

2k
.

Proof. We deduce from (4) that

|[α]| =
d !

α!
=

d !

(αT +αE )!
=

d !

αT !αE !
=

d !

(2β)!
=

d !

2k
. �

Let us begin analyzing the idea to rewrite the random variable from (35) for arbitrary degrees d ≥ 2.

Taking
∑N

i=1 xi for x ∈ {−1,+1}N to the power d and writing xi = xi1 . . . xi1 for i ∈M (d , N ), we get
(

N∑

i=1
xi

)d

=
∑

i∈M (d ,N)
xi =

∑

j∈J (d ,N)

∑

i∈[j]
xi =

∑

j∈J (d ,N)
|[j]|xj =

∑

α∈Λ(d ,N)
|[α]|xα .



ASYMPTOTIC INSIGHTS FOR SPACES OF FUNCTIONS ON THE BOOLEAN CUBE 19

Decomposing each α ∈Λ(d , N ), according to (the first identification in) (36), and using the fact that

x2
i
= 1, we have

(
N∑

i=1
xi

)d

=
⌊d/2⌋∑

k=0

(
∑

αE∈ΛE (2k,N)

∑

αT ∈ΛT (d−2k,N)
|[αT +αE ]|xαT

)
.

Consequently, by (4)
(

N∑

i=1
xi

)d

=
∑

αT ∈ΛT (d ,N)
d !xαT +

⌊d/2⌋∑

k=1

(
∑

αE∈ΛE (2k,N)

∑

αT ∈ΛT (d−2k,N)
|[αT +αE ]|xαT

)
,

so that rearranging terms leads to

(37)
∑

αT ∈ΛT (d ,N)
xαT =

1

d !




(
N∑

i=1
xi

)d

−
⌊d/2⌋∑

k=1

(
∑

αT ∈ΛT (d−2k,N)

∑

αE∈ΛE (2k,N)
|[αT +αE ]|xαT

)
 .

To illustrate this, note that for d ∈ {2,3} we get

•
∑

1≤i< j≤N

xi x j =
1

2

[(
N∑

i=1
xi

)2

−N

]
,

•
∑

1≤i< j<k≤N

xi x j xk =
1

6

[(
N∑

i=1
xi

)3

− (3N −2)

(
N∑

i=1
xi

)]
.

The following two technical lemma analyze (37) in more detail.

Lemma 4.5. Given d , N ∈N, we for each x ∈ {−1,+1}N have

∑

α∈ΛT (d ,N)
xα =

1

d !



(

N∑

i=1
xi

)d

−
⌊d/2⌋∑

k=1
Cd ,k,N

∑

αT ∈ΛT (d−2k,N)
xαT


 ,

where for 1≤ k ≤ ⌊d/2⌋

Cd ,k,N =
(

N −d +2k

k

)
d !

2k
+Dd ,k,N and 0 ≤ Dd ,k,N ≤ N k−12dd ! .

In particular,

(38) lim
N→∞

Cd ,k,N

N k
=

d !

k ! 2k
.

Proof. We fix some 1≤ k ≤ ⌊d/2⌋, and note that (in view of equation (37)) we need to study

∑

αT ∈ΛT (d−2k,N)

∑

αE∈ΛE (2k,N)
|[αT +αE ]|xαT ,

in order to be able to first define and second control the factor Cd ,k,N . We fix someαT ∈ΛT (d−2k, N ),

and start to decompose
∑

αE∈ΛE (2k,N)
|[αT +αE ]|xαT .
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Let us denote the set of even indices which do not share variables with αT , by ΛE (αT ) ⊂ΛE (2k, N ),

and use ΛE (αT )c ⊂ΛE (2k, N ) for its complement in ΛE (2k, N ). Then
∑

αE∈ΛE (2k,N)
|[αT +αE ]|xαT =

[ ∑

αE∈ΛE (αT )c

|[αT +αE ]|
︸ ︷︷ ︸

=:A

+
∑

αE∈ΛE (αT )
|[αT +αE ]|

︸ ︷︷ ︸
=:B

]
xαT ,

and we handle both sums separately.

Before we start to estimate, note that A+B does not depend on αT , that is, for each αT the sum
∑

αE∈ΛE (2k,N)
|[αT +αE ]|

is the same. Indeed, given two different tetrahedral multi indices αT ,α′
T
∈ΛT (d −2k, N ), the natural

bijection between index sets that maps αT to α′
T

, given by a suitable permutation of coordinates,

also lets the sums invariant. This allows us to define

Cd ,k,N := A+B .

Estimating A : In order to estimate the cardinality ofΛE(αT )c , observe that any multi index inΛE(αT )c

needs to share at least one of the d −2k possible variables of αT , and therefore

(39) |ΛE (αT )c | ≤ (d −2k)|ΛE (2k −2, N )| = (d −2k)|Λ(k −1, N )| ≤ (d −2k)N k−1 .

Clearly, αT +αE ∈Λ(d , N ) for any αE ∈ΛE (αT )c , and hence by (4)

A =
∑

αE∈ΛE (αT )c

|[αT +αE ]| =
∑

αE∈ΛE (αT )c

d !

(αT +αE )!
≤ (d −2k)N k−1d ! .

Estimating B : We have

B =
∑

αE∈ΛE (αT )
|[αT +αE ]| =

∑

αE∈ΛE (2k,N−d+2k)
|[αT +αE ]|.

We then may decompose the index set ΛE (2k, N −d +2k) into the set of those indices which use k

variables, denoted by ΛE (2k, N −d +2k)k , and the set that contains all even indices with less than k

variables, denoted by ΛE (2k, N −d +2k)<k , so

B =
∑

αE∈ΛE (2k,N−d+2k)<k

|[αT +αE ]|

︸ ︷︷ ︸
=:B<k

+
∑

αE∈ΛE (2k,N−d+2k)k

|[αT +αE ]|

︸ ︷︷ ︸
=:B=k

.

Observe that given a multi index in ΛE (2k, N −d +2k)<k , it is mandatory that some variable appears

to at least the 4th power (since all the indices in the set ΛE (2k, N −d+2k)<k are even). Going through

all the possible N −d +2k variables, we get the bound

|ΛE (2k, N −d +2k)<k | ≤ (N −d +2k)|ΛE (2k −4, N −d +2k)|

= (N −d +2k)|Λ(k −2, N −d +2k)| ≤ (N −d +2k)k−1 ,
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and then (as above with (4))

B<k =
∑

αE∈ΛE (2k,N−d+2k)<k

|[αT +αE ]| ≤
∣∣∣ΛE (2k, N −d +2k)<k

∣∣∣ d ! ≤ N k−1d ! .

On the other hand, note that for each α ∈ΛE (2k, N −d +2k)k there is β ∈ΛT (k, N −d +2k) such that

α= 2β. Thus, this defines a one to one mapping between ΛE (2k, N −d +2k)k and ΛT (k, N −d +2k),

so we get

|ΛE (2k, N −d +2k)k | = |ΛT (k, N −d +2k)| =
(

N −d +2k

k

)
.

Then by Lemma 4.4

B=k =
∑

αE∈ΛE (2k,N−d+2k)k

|[αT +αE ]| =
(

N −d +2k

k

)
d !

2k
.

Combining step: We define D := A+B<k (note that D = Dd ,k,N in fact depends on d ,k and N ). Then

D ≤ N k−12dd !, and all in all we obtain

Cd ,k,N =
∑

αE∈ΛE (2k,N)
|[αT +αE ]| = A+B = B=k +Dd ,k,N ≤

(
N −d +2k

k

)
d !

2k
+N k−12dd ! .

Finally, for a fixed k, a standard calculation gives (38). �

The following lemma goes one step further - namely, rewriting the random variable from (35) in

a way that later allows us to calculate the limit of its mean. Notice that for d = 0 this random variable

equals the constant function of value 1.

Lemma 4.6. Given d ∈N0 and N ∈N, there is ϕd ,N ∈C (R) such that for all x ∈ {−1,+1}N

(40)
1

N d/2

∑

α∈ΛT (d ,N)
xα = Pd

(∑N
i=1 xi
p

N

)
+ϕd ,N

(∑N
i=1 xi
p

N

)
,

where Pd is as in Theorem 4.1 and ϕ0,N =ϕ1,N = 0. Moreover, we have that

(41) ϕd ,N

(∑N
i=1 xi
p

N

)
P−→0 , as N →∞ ,

and

(42)
1

N d/2

∑

α∈ΛT (d ,N)
xα D−→Pd (Z ) , as N →∞ ,

where Z is a normal distribution with mean 0 and variance 1.



22 DEFANT, GALICER, MANSILLA, MASTYŁO, AND MURO

Proof. The proof will be by induction on d . Recall from Theorem 4.1 that P0 = 1 and P1 = t . Then for

d = 0 there is nothing to prove, and for d = 1 the proof by (32) is obvious as well.

Let us fix some d ≥ 2, and assume that the result is true for all degrees ≤ d −1. The aim is to prove

the result for d . Dividing the equality from Lemma 4.5 by N d/2 = N k N (d−2k)/2 and using the inductive

hypothesis, we have

1

N d/2

∑

α∈ΛT (d ,N)
xα =

1

d !

(∑N
i=1 xi
p

N

)d

−
⌊d/2⌋∑

k=1

Cd ,k,N

d !N k

(
1

N (d−2k)/2

∑

αT ∈ΛT (d−2k,N)
xαT

)

=
1

d !

(∑N
i=1 xi
p

N

)d

−
⌊d/2⌋∑

k=1

Cd ,k,N

d !N k

(
Pd−2k

(∑N
i=1 xi
p

N

)
+ϕd−2k,N

(∑N
i=1 xi
p

N

))
.

Defining for t ∈R

ϕd ,N (t ) :=
⌊d/2⌋∑

k=1

(
Cd ,k,n

d !N k
−

1

k !2k

)(
Pd−2k (t )+ϕd−2k,N (t )

)

and recalling the definition of Pd , we see that (40) holds. It remains to show the two limit formulas

from (41) and (42). By the inductive hypothesis for each 1 ≤ k ≤ d/2

Pd−2k

(∑N
i=1 xi
p

N

)
D−→Pd−2k (Z ) and ϕd−2k,N

(∑N
i=1 xi
p

N

)
P−→0 , as N →∞ ,

Moreover, by Lemma 4.5, (38) we have that lim
N→∞

Cd ,k,n

d !N k
−

1

k !2k
= 0 , so that (41) follows by Slutsky’s

theorem. Since convergence in distribution is preserved under continuous functions, we conclude

that

Pd

(∑N
i=1 xi
p

N

)
D−→Pd (Z ) , as N →∞ ,

and then we obtain (42) from another application of Slutsky’s theorem, using (40) and (41). �

Finally, we come to the proof of the main contribution of this section, Theorem 4.1, which extends

Theorem 4.3 to all possible degrees.

Proof of Theorem 4.1. We for N ∈Ndefine the random variable YN(x) as in (35) . Applying Lemma 4.6,

the central limit theorem as in (32), the fact that convergence in distribution is preserved under con-

tinuous functions, and Slutsky’s theorem, we get

YN (x) = Pd

(∑N
i=1 xi
p

N

)
+ϕd ,N

(∑N
i=1 xi
p

N

)
D−→Pd (Z ) , as N →∞ .

Now orthogonality of the Fourier–Walsh basis assures that for all N

E|YN |2 =
|ΛT (d , N )|

N d
≤ 1 ,
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which gives the uniform integrability of all YN (see the remark from (33)). Using [4, Theorem 3.5],

this implies

lim
N→∞

E|YN | = E[|Pd (Z )|] =
1

p
2π

∫∞

−∞
|Pd (t )|e− t2

2 d t ,

which by Theorem 3.1 finishes the proof of (30). The second claim follows with similar arguments.

Observe first that by another application of Theorem 3.1 we have

λ(BN
≤d ) = E

[∣∣∣∣∣
∑

α∈ΛT (≤d ,N)
xα

∣∣∣∣∣

]
.

Also by Lemma 4.6, (42), for every 0≤ k ≤ d

1

N k/2

∑

α∈ΛT (k,N)
xα D−→Pk (Z ) , as N →∞ ,

where Z is as above. Hence we as before use Slutsky’s theorem and the fact that a sequence of random

variables converges in probability whenever it converges in distribution to a constant, to see that for

every 0≤ k < d
1

N d/2

∑

α∈ΛT (k,N)
xα P−→0 , as N →∞ .

Now one more application of Slutsky’s theorem shows that

lim
N→∞

1

N d/2

∑

α∈ΛT (≤d ,N)
xα = lim

N→∞

1

N d/2

d∑

k=1

∑

α∈ΛT (k,N)
xα = lim

N→∞

1

N d/2

∑

α∈ΛT (d ,N)
xα = Pd (Z ),

where the limit is taken in the sense of distribution. Again by orthogonality

E

[∣∣∣∣∣
1

N d/2

∑

α∈ΛT (≤d ,N)
xα

∣∣∣∣∣

2]
=

|ΛT (≤ d , N )|
N d

<∞ ,

implying that the random variables 1
Nd/2

∑

α∈ΛT (≤d ,N)
xα, N ∈ N are uniformly integrable, and this is

enough to conclude that

lim
N→∞

λ(BN
≤d

)

N d/2
= E(|Pd (Z )|)

(see again (34)). Together with the first claim this finishes the proof. �

4.3. Second approach - Beckner’s formula. The following identity of Beckner from [3, Equation (5)]

rephrases
∑

|S|=d xS directly in terms of Hermite polynomials, and may hence serve as a substitute of

Lemma 4.5.

Lemma 4.7. For each d , N ∈N and x ∈ {−1,+1}N

1

N
d
2

∑

|S|=d

xS =
1

d !

(
hd

(
x1 + . . .+xNp

N

)
+

1

N

⌊d/2⌋∑

k=1
ad ,k,N hd−2k

(
x1 + . . .+xNp

N

))
,

where the coefficients ad ,k,N are bounded in N and hℓ is the ℓ-th Hermite polynomial.
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With this the proof of Theorem 4.1 follows similarly as above replacing the polynomials Pd by

hd /d !. Indeed, applying Lemma 4.7, the fact that convergence in distribution is preserved under

continuous functions together with (32) gives that for all ℓ ∈N0 we again get

hℓ

(∑N
i=1 xi
p

N

)
D−→ hℓ(Z ) , as N →∞ .

Also, as the constants ad ,k,N are bounded in N , we have limN→∞
ad ,k,N

N
= 0 for every 1 ≤ k ≤ ⌊d/2⌋, so

that by Slutky’s theorem (YN again as in (35))

YN (x) =
1

d !

(
hd

(
x1 + . . .+xNp

N

)
+

1

N

⌊d/2⌋∑

k=1
ad ,k hd−2k

(
x1 + . . .+xNp

N

))
D−→

1

d !
hd (Z ) , as N →∞.

The rest of the proof proceeds in a similar way as before.

While it may seem that this approach is more concise, it actually conceals the use of a deep specific

result as if it were a ’hidden toolkit’. Furthermore, we would like to underscore that the first approach,

founded on the contemporary combinatorial technique known as ’monomial decomposition’ (see

e.g., [16, 31]), reinforces this fresh perspective. We firmly believe that this approach holds substantial

potential for wider applications.

5. SIDON VS PROJECTION CONSTANT

Given a set S ⊂
{

S ⊂ [N ]
}

, we now establish an intimate link of the Sidon constant of BN
S

with its

projection constant. To do so, we define

S ♭ =
{
S \ {i } : S ∈S , i ∈ S

}
.

Moreover, the following constant

(43) κ :=
( ∞∏

k=1
sinc

π

pk

)−1
= 2.209 . . . ,

is going to appear, where (pk )k≥1 is the sequence of prime numbers and sinc x := (sin x)/x.

The main result is as follows.

Theorem 5.1. Let 2≤ d ≤ N . Then

(44) Sid
(
BN

=d

)
≤ C (d)λ

(
BN

=d−1

)
,

where C (d) ≤ ed (2d)κd 2d−1. Additionally,

(45) Sid
(
BN

≤d

)
≤ C̃ (d) max

1≤k≤d
λ

(
BN

=k−1

)
,

where C̃ (d) ≤ (2.69076)2d (d +1)(1+
p

2)d (2d)κd 2d .
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Note that the estimates of Sid
(
BN

=d

)
and Sid

(
BN

≤d

)
are anyway trivial if 0 ≤ d ≤ 1, so there is no

need to compare them with projection constants. In fact, the previous the statement is an obvious

consequence of the following more general result.

Theorem 5.2. Let 2≤ d ≤ N and S ⊂
{
S ⊂ [N ] : |S| = d

}
. Then

Sid
(
BN

S

)
≤ C (d) ‖Q : BN

=d →BN
S ‖λ

(
BN

S ♭

)
,

where the constant C (d) is as in (44) and Q is the projection annihilating Fourier coefficients with

indices S not in S .

More generally, if S ⊂
{
S ⊂ [N ] : |S| ≤ d

}
, then

Sid
(
BN

S

)
≤ C̃ (d) max

1≤k≤d
‖Qk : BN

=k →BN
S=k

‖ max
1≤k≤d

λ(BN
(S=k )♭

) ,

where S=k = {S ∈ S : |S| = k}, the constant C̃ (d) is as in (45) and Qk is the projection annihilating

Fourier coefficients with indices S not in S=k .

The proof of Theorem 5.2 is given in Section 5.3. In the coming two sections we prepare it collect-

ing a few independently interesting facts.

5.1. Annihilating coefficients. In what follows we need a lemma, which is a discrete variant of a re-

sult for polynomials on the N-dimensional torus due to Ortega-Cerdà, Ounaïes and Seip in [35]. We

include a proof for the sake of completeness.

Lemma 5.3. Let 2 ≤ d ≤ N . Then

∥∥Q : Pd (ℓN
∞) →BN

=d

∥∥≤ κd 2d−1 ,

where Q is the projection annihilating coefficients with non-tetrahedral indices. In particular,

λ
(
BN

=d

)
≤ κd 2d−1λ

(
Pd (ℓN

∞)
)

.

Proof. As usual, we write π(x) for the counting function of the prime numbers. Now, given

t = (t1, . . . , tπ(d)) ∈R := [0,1]π(d) ,

define

rd (t ) = cd exp

(
2πi

( t1

2
+

t2

3
+·· ·+

tπ(d)

pπ(d)

))
,

where

cd =
π(d)∏

k=1

(
pk

2πi

(
e

2πi
pk −1

))−1

.

Note that the function rd : R →C has the following properties:

(i)
∫
R rd (t )dµ(t ) = 1,
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(ii)
∫
R r k

d
(t )dµ(t ) = 0 for each 2 ≤ k ≤ d ,

(iii) |rd (t )| ≤ κ for all t ∈R;

here dµ denotes the Lebesgue measure on R. Indeed, (i) and (ii) are trivial and follow by the defini-

tion of the function, and (iii) holds because |rd (t )| = |cd | and

|cd |−2 =
π(d)∏

k=1

p2
k

(2π)2

∣∣∣e
2πi
pk −1

∣∣∣
2
=

π(d)∏

k=1
sinc2 π

pk

.

Take now some P ∈ Pd (ℓN
∞) and a representation P x =

∑
|α|=d cαxα, x ∈ R

N . Then by the properties

(i) and (ii) we have

QP (x) =
∫

RN
PC(x1rd (t 1), . . . , xnrd (t N ))dµ(t 1) · · ·dµ(t n) , x ∈ ℓN

∞.

where PC(z) =
∑

|α|=d cαzα, z ∈C
N . By (iii) we deduce that

|PC(x1rd (t 1), . . . , xN rd (t N ))| ≤ κd‖PC‖Pd (ℓN
∞(C))

for every x ∈ BℓN
∞

, and therefore

‖Q(P )‖BN
=d

≤ κd ‖PC‖Pd (ℓN
∞(C)).

But by a result of Visser [46] we know that

‖PC‖Pd (ℓN
∞(C)) ≤ 2d−1‖P‖Pd (ℓN

∞) .

All together this proves the first statement; the second one is then an immediate consequence. �

5.2. Sidon vs Gordon–Lewis constant. The following fact is the first of two major steps towards the

proof of Theorem 5.2.

Theorem 5.4. Let 2≤ d ≤ N and S ⊂
{
S ⊂ [N ] : |S| = d

}
. Then

(46) gl
(
BN

S

)
≤ χ

(
BN

S

)
≤ Sid

(
BN

S

)
≤ ed gl

(
BN

S

)
.

Additionally, if S ⊂
{
S ⊂ [N ] : |S| ≤ d

}
then

(47) gl
(
BN

S

)
≤ χ

(
BN

S

)
≤ Sid

(
BN

S

)
≤ (2.69076)2d gl

(
BN

S

)
.

Observe that the first estimate in Theorem 5.4 is immediate from the Gordon–Lewis inequality as

formulated in (7), and the second one is trivial.

The proof of the third estimate is more involved and needs preparation. The first lemma needed

is taken from [8, Proposition 21.14] (its roots have to be traced back to the works [36] and [41]).
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Lemma 5.5. Let Xn be an n-dimensional Banach space with a basis (xk )n
k=1, and denote the coefficient

functionals of this basis by (x∗
k

). Suppose that there exist constants K1,K2 ≥ 1 such that for every choice

of λ,µ ∈C
n the two diagonal operators

Dλ : Xn → ℓn
2 , xk 7→λk ek

D∗
µ : X ∗

n → ℓn
2 , x∗

k 7→µk ek

satisfy π1(Dλ) ≤ K1

∥∥∥
∑n

k=1 λk x∗
k

∥∥∥
X∗

n

and π1(D∗
µ) ≤ K2

∥∥∥
∑n

k=1 µk xk

∥∥∥
Xn

. Then

χ
(
(xk ), Xn

)
≤ K1K2 gl (Xn) .

The second lemma is an almost immediate consequence of the so-called hypercontractivity of

functions on the Boolean cube.

Lemma 5.6. Let 2 ≤ d ≤ N and S ⊂
{
S ⊂ [N ] : |S| = d

}
. Then

(48) π1
(
I : BN

S → ℓ2(S )
)
≤ e

d
2 ,

where I ( f ) = ( f̂ (S))S∈S for f ∈BN
S

. More generally, if S ⊂
{
S ⊂ [N ] : |S| ≤ d

}
, then

(49) π1
(
I : BN

S → ℓ2(S )
)
≤ (2.69076)d .

Proof. Suppose that S ⊂
{
S ⊂ [N ] : |S| = d

}
and take finitely many f1, . . . , fM ∈ BN

S
. Then by (18) we

have
M∑

k=1
‖I fk‖ℓ2(S ) =

M∑

k=1
‖ fk‖L2({−1,+1}N )

≤ e
d
2

M∑

k=1
‖ fk‖L1({−1,+1}N ) = e

d
2

M∑

k=1
E[| fk |]

= e
d
2 E[

M∑

k=1
| fk |] ≤ e

d
2 sup

x∈{−1,+1}N

M∑

k=1
| fk (x)| ≤ e

d
2 sup
ϕ∈B

(BN
S

)∗

M∑

k=1
|ϕ( fk )| ,

which gives (48). With the same argument and the use of (19) instead of (18) we obtain (49). �

Proof of Theorem 5.4. As explained above, we may concentrate on the third estimate. For A ∈ S we

write ψA : BN
S

→ C for the coefficient functionals of the canonical basis (χA)A∈S in BN
S

. They form

the orthogonal basis of the dual (BN
S

)∗ in the sense that

〈χA,ψB 〉BN
S

,(BN
S

)∗ = δA,B .

Given two real sequences λ= (λA)A∈S and (µA)A∈S , we consider the two diagonal operators

Dλ : BN
S −→BN

S , Dλ(χA) =λAχA

D∗
µ : (BN

S )∗ −→BN
S , D∗

µ(ψA) =µAχA ,
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and show that

‖Dλ‖ ≤
∥∥∥

∑

A∈S

λAψA

∥∥∥
(BN

S
)∗

(50)

‖D∗
µ‖ ≤

∥∥∥
∑

A∈S

µAχA

∥∥∥
BN

S

.(51)

If we combine these two estimates with Lemma 5.6, together with the ideal property of the π1-norm

and also Lemma 5.5, then the conclusion follows. Let us prove (50). Define for x ∈ {−1,+1}N the

diagonal map

Dx : {−1,+1}N → {−1,+1}N , y 7→ x y ,

and note that χA ◦Dx = x AχA for every A ∈S . Then for x ∈ {−1,+1}N and f =
∑

A∈S f̂ (A)χA ∈BN
S

we

get
∣∣∣
[

Dλ

(∑

S

f̂ (A)χA

)]
(x)

∣∣∣=
∣∣∣
∑

S

λA f̂ (A)χA(x)
∣∣∣=

∣∣∣
∑

S

λA f̂ (A)x A
∣∣∣

=
∣∣∣〈

∑

S

f̂ (A)x AχA ,
∑

S

λAψA〉BN
S

,(BN
S

)∗

∣∣∣

=
∣∣∣〈

∑

S

f̂ (A)χA ◦Dx ,
∑

S

λAψA〉BN
S

,(BN
S

)∗

∣∣∣

≤
∥∥∥
∑

S

f̂ (A)χA ◦Dx

∥∥∥
BN

S

∥∥∥
∑

S

λAψA

∥∥∥
(BN

S
)∗

=
∥∥∥
∑

S

f̂ (A)χA

∥∥∥
BN

S

∥∥∥
∑

S

λAψA

∥∥∥
(BN

S
)∗

.

Obviously, this leads to the estimate from (50), and to see (51) we simply repeat the argument. This

completes the proof. �

5.3. Gordon–Lewis vs projection constant. With the following theorem we establish the second

step for the proof of Theorem 5.2. If one combines it with Theorem 5.4, the proof of Theorem 5.2

is immediate.

Theorem 5.7. Let 2≤ d ≤ N and S ⊂
{
S ⊂ [N ] : |S| = d

}
. Then

gl
(
BN

S

)
≤ c(d)

∥∥Q : BN
=d →BN

S

∥∥λ
(
BN

S ♭

)
,

where c(d) ≤ (2d)κd 2d−1 and Q denotes the projection annihilating Fourier coefficients with indices

S not in S . More generally, if S ⊂
{
S ⊂ [N ] : |S| ≤ d

}
, then

gl
(
BN

S

)
≤ c̃(d) max

1≤k≤m

∥∥Qk : BN
=k →BN

S=k

∥∥ max
1≤k≤d

λ
(
BN

(S=k )♭
)

,

where c̃(d) ≤ (d +1)(1+
p

2)d (2d)κd 2d and Qk denotes the projection annihilating Fourier coefficients

with indices S not in S=k = {S ∈S : |S| = k}.
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Again we need preparation for the proof, and start with two elementary observations. We start

with a result taken from [8, Lemma 22.2].

Lemma 5.8. For every finite dimensional Banach lattice X , and every finite dimensional Banach space

Y one has

gl
(
L (X ,Y )

)
≤λ(Y ) .

The second tool is an elementary piece of multilinear algebra.

Lemma 5.9. For f ∈BN
=d

let P f be the associated d-homogeneous polynomial on R
N given by

P f (x) =
∑

1≤ j1<···< jd ≤N

f̂ ({ j1, . . . , jd })x j1 . . . x jd
.

Then the unique d-linear symmetrization P̌ f : (RN )d →R of P f is given by

P̌ f (u1, . . . ,ud ) =
∑

i∈[N]d

ik 6= iℓ for k 6= ℓ

f̂ ({i1, . . . , id })

d !
u1

i1
. . .ud

id
.

Proof. Let (ai)i∈M (d ,N) be the symmetric matrix defining P̌ f . Then for all x ∈R
N we have

∑

1≤ j1<···< jd≤N

f̂ ({ j1, . . . , jd })xj = P̌ f (x, . . . , x) =
∑

i∈M (d ,N)
aixi =

∑

j∈J (d ,N)

∑

i∈[j]
ajxj =

∑

j∈J (d ,N)
|[j]|ajxj ,

and hence f̂ ({ j1, . . . , jd }) = d !aj whenever 1≤ j1 < ·· · < jd ≤ N , and = 0 else. �

Proof of Theorem 5.7. To see the first statement, we consider the following commutative diagram:

(52) BN
S

i d //

Ud

��

BN
S

L
(
ℓN
∞,BN

S ♭

)
Id

// L
(
ℓN
∞,Pd−1(ℓN

∞)
)

Vd

// Pd (ℓN
∞),

R

OO

where R is the canonical projection annihilating coefficients with multi indices not generated by sets

in S , Id is the canonical isometric embedding and

(
Ud ( f )x

)
(u) := P̌ f (u, . . . ,u, x) for f ∈BN

S and x ∈ ℓN
∞,u ∈ {−1,+1}N ,

Vd (T )(y) := (T y)(y) for T ∈L
(
ℓN
∞,BN

S ♭

)
and y ∈ ℓN

∞.
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We show that Ud , as an operator from BN
S

into L
(
ℓN
∞,BN

S ♭

)
, is well-defined. Indeed, by Lemma 5.9

for x ∈ ℓN
∞ and u ∈ {−1,+1}N

P̌ f (u, . . . ,u, x) =
∑

i∈[N]d

ik 6= iℓ for k 6= ℓ

f̂ ({i1, . . . , id })

d !
ui1 . . .uid−1 xid

=
∑

i∈[N]d−1

ik 6= iℓ for k 6= ℓ

( ∑

1≤ℓ≤N
ik 6=ℓ

f̂ ({i1, . . . , id })

d !
xℓ

)
ui

=
∑

1≤ j1<···< jd≤N

(d −1)!
( ∑

1≤ℓ≤N
jk 6=ℓ

f̂ ({ j1, . . . , jd })

d !
xℓ

)
uj

=
∑

S∈S ♭

(d −1)!
( ∑

1≤ℓ≤N
jk 6=ℓ

f̂ (S)

d !
xℓ

)
uS .

By the polarization formula from [10, Proposition 4] we have ‖Ud‖ ≤ 2d , and moreover trivially

‖Vd‖ ≤ 1. Hence by the ideal property (8) of the Gordon–Lewis constant

gl
(
BN

S

)
≤ 2d

∥∥R : Pd (ℓN
∞) →BN

S

∥∥ gl
(
L

(
ℓN
∞,BN

S ♭

))
≤ 2d ‖R : Pd (ℓN

∞) →BN
S

∥∥λ
(
BN

S ♭

)
,

where for the last estimate we use Lemma 5.8. Finally, since by Lemma 5.3

∥∥R : Pd (ℓN
∞) →BN

S

∥∥≤ κd 2d−1
∥∥Q : BN

=d →BN
S

∥∥ ,

the proof of the first claim is complete.

For the second claim we assume that S ⊂
{
S ⊂ [N ] : |S| ≤ d

}
, and consider the following commu-

tative diagram

(53)

BN
S

O⊕
⊕

Pk
��

idBN
S // BN

S

C⊕∞
⊕

∞BN
S=k

idC⊕
⊕

Uk

��

idC⊕
⊕

idBN
S=k // C⊕1

⊕
1 BN

S=k

∑
OO

C⊕1
⊕

1 Pk (ℓN
∞)

idC⊕
⊕

Rkoo

C⊕∞
⊕

∞L
(
ℓN
∞,BN

(S=k )♭

) idC⊕
⊕

Ik// C⊕∞
⊕

∞L
(
ℓN
∞,Pk−1(ℓN

∞)
) Φ // C⊕1

⊕
1 L

(
ℓN
∞,Pk−1(ℓN

∞)
)

.

idC⊕
⊕

Vk

OO

Let us explain our notation in this diagram: Note first that Pk and Rk stand for the canonical projec-

tions annihilating coefficients. By Klimek’s result already used in (27), for each k, we have

‖Pk : BN
S →BN

S =k‖ ≤ (1+
p

2)d ,
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and from Lemma 5.3, we conclude that

∥∥Rk : Pk(ℓN
∞) →BN

S=k

∥∥≤ κd 2d−1∥∥Qk : BN
=k →BN

S=k

∥∥ .

Note that Uk , Vk and Ik for each 1≤ k ≤ d are the operators from (52). If f = a0 +
∑d

k=1 fk is a decom-

position of f ∈ BN
S

, then O( f ) = a0, and hence
(
O⊕

⊕
Pk

)
( f ) =

(
a0, ( fk)d

k=1

)
. Additionally,

∑
is the

mapping which assigns to every
(
a0, ( fk )m

k=1

)
the polynomial f = a0 +

∑d
k=1 fk , and Φ stands for the

identity map. The notation for the rest of the maps is self-explaining.

Applying the ideal property (8), we all together arrive at

gl
(
BN

S

)
≤ 2d(d +1)(1+

p
2)d max

1≤k≤d

∥∥Rk : Pk (ℓN
∞) →BN

S =k

∥∥ gl
(
C⊕∞

⊕

∞
L

(
ℓN
∞,BN

(S=k )♭
))

.

It is easy to check that for any Banach spaces X and Y one has gl
(
X ⊕∞ Y

)
≤ 2 max{gl (X ), gl (Y )}.

Thus, to complete the proof, it suffices to show that

gl
(⊕

∞
L

(
ℓN
∞,BN

(S=k )♭
))
≤ max

1≤k≤m
λ

(
BN

(S=k )♭
)

.

Indeed, using standard properties of ε- and π-tensor products (see e.g., [6]), we have

⊕
∞

L
(
ℓN
∞,BN

(S=k )♭
)
,→

⊕
∞

L
(
ℓN
∞,

⊕
∞

BN
(S=k )♭

)

= ℓd
∞⊗ε

[
ℓN

1 ⊗ε

⊕

∞
BN

(S=k )♭
]

=
[
ℓd
∞⊗ε ℓ

N
1

]
⊗ε

⊕

∞
BN

(S=k )♭

=
(
ℓd

1 ⊗π ℓ
N
∞

)∗⊗ε

⊕

∞
BN

(S=k )♭
=L

(
ℓd

1 (ℓN
∞),

⊕

∞
BN

(S=k )♭
)

,

where the first space in fact is 1-complemented in the second one, and all other identifications are

isometries. Then we deduce from Lemma 5.8 that

gl
(⊕

∞
L

(
ℓN
∞,BN

(S=k )♭
))
≤ gl

(
L

(
ℓd

1 (ℓN
∞),

⊕

∞
BN

(S=k )♭
))
≤λ

(⊕

∞
BN

(S=k )♭
)

.

Since

λ
(⊕

∞
BN

(S=k )♭
)
= γ∞

(
id⊕

∞BN

(S=k )♭

)
≤ max

1≤k≤m
γ∞

(
idBN

(S=k )♭

)
= max

1≤k≤m
λ

(
BN

(S=k )♭
)

,

the proof is complete. �

5.4. Sidon constants and the Bohnenblust-Hille inequality. In Theorem 5.1 we prove that the pro-

jection constant of BN
S

and its Sidon constant (see again (2)) are closely related. In the following

result we describe the asymptotic behaviour of Sid(BN
S

) in the case that S is ’big’.
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Proposition 5.10. Given integers 1 ≤ d ≤ N, let S ⊂ [N ] be such that (N/d)d/2 ≤ |S | and |S| ≤ d for

all S ∈S . Then there are constants C1, C2 ≥ 1 (independent of N ,d ,S ) such that

C1
1

p
N
|S |

1
2 ≤ Sid(BN

S ) ≤ C

p
d log d

2

1
p

N
|S |

1
2 .

For the proof of the upper bound we need the so-called subexponential Bohnenblust-Hille in-

equality for functions on Boolean cubes from [11, Theorem 1]: There is a constant C ≥ 1 such that

for each 1 ≤ d ≤ N and every f ∈BN
≤d

one has

(54)
( ∑

S⊂[N]
|S|≤d

| f̂ (S)|
2d

d+1

)d+1
2d ≤C

p
d logd ‖ f ‖∞.

Proof of Proposition 5.10. The upper bound follows from Hölder’s inequality and (54). That is, for all

functions f ∈BN
S

,

∑

|S|≤d

| f̂ (S)| ≤
( ∑

|S|≤d

| f̂ (S)|
2d

d+1

) 2d
d+1 |S |

d−1
2d ≤C

p
d log d 1

|S |
1
d

|S |
1
2 ‖ f ‖∞ .

But by assumption
p

N ≤
p

d |S |
1
d , and hence the claim follows from the definition of Sidon con-

stants given in (2). The proof of the lower estimate is probabilistic. Indeed, by the Kahane-Salem-

Zygmund inequality for the Boolean cube (see, e.g., [11, Lemma 3.1]) there is a family (εS)S∈S of signs

such that for f =
∑

S∈S εSχS we have

‖ f ‖∞ ≤ 6
√

log2
p

N
( ∑

S∈S

|εS |2
) 1

2
,

and hence

|S | =
∑

S∈S

| f̂ (S)| ≤ Sid(BN
S ) 6

√
log2

p
N |S |

1
2 .

This completes the argument. �

Corollary 5.11. There are constants C1,C2 > 0 such that for each integer 1≤ d ≤ N one has

C1
1

p
N

(
N

d

) 1
2

≤ Sid
(
BN

=d

)
≤ C

p
d logd

2

1
p

N

(
N

d

) 1
2

and

C1
1

p
N

(
d∑

k=0

(
N

k

)) 1
2

≤ Sid
(
BN

≤d

)
≤ C

p
d logd

2

1
p

N

(
d∑

k=0

(
N

k

)) 1
2

.

Proof. Since
(

N
d

)d
≤

(N
d

)
≤

∑d
k=0

(N
k

)
(see again (24)), both sets S = {S : |S| = d} and S = {S : |S| ≤ d}

satisfy the assumptions of Proposition 5.10. �
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Corollary 5.12. There are constants C1,C2 > 0 such that for all 1 ≤ d ≤ N,

C1
1

p
d

(N

d

)d−1
2 ≤ Sid

(
BN

=d

)
≤ Sid

(
BN

≤d

)
≤C

p
d log d

2 e
d
2

1
p

d

(N

d

) d−1
2

.

In particular, we have the following hypercontractive comparison:

Sid
(
BN

=d

)
∼C d

(N

d

)d−1
2

and Sid
(
BN

≤d

)
∼C d

(N

d

) d−1
2

.

Proof. Both first and the third estimate follow from the preceding corollary. For the lower one use

again (24), and for the upper note that it suffices to check that

1
p

N

( d∑

k=0

(
N

k

)) 1
2 ≤ e

d
2

1
p

d

(N

d

)d−1
2

;

indeed, this is another consequence of (25). �
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