
A Defeasible Logic Programming Approach to the Integration of Rules and Ontologies∗

Sergio Alejandro Gómez† Carlos Iván Chesñevar†‡ Guillermo Ricardo Simari†

† Artificial Intelligence Research and Development Laboratory
Department of Computer Science and Engineering

Universidad Nacional del Sur
Av. Alem 1253, (8000) Bahı́a Blanca, Argentina
Email: {sag,cic,grs}@cs.uns.edu.ar

‡ Consejo Nacional de Investigaciones Cientı́ficas y Técnicas (CONICET), Argentina

ABSTRACT

The Semantic Web is a vision of the current Web where re-
sources have exact meaning assigned in terms of ontologies,
thus enabling agents to reason about them. As inconsisten-
cies cannot be treated by standard reasoning approaches, we
use Defeasible Logic Programming (DeLP) to reason with
possibly inconsistent ontologies. In this article we show
how to integrate rules and ontologies in the Semantic Web.
We present an approach that can be used to suitably extend
the SWRL standard by incorporating classical and default
negated literals in Semantic Web rules in the presence of in-
complete and possibly inconsistent information. The rules
and ontologies will be interpreted as a DeLP program al-
lowing the rules to reason on top of a set of (possibly incon-
sistent) ontologies.

Keywords: Semantic Web, ontologies, Description Log-
ics, defeasible argumentation, Defeasible Logic Program-
ming

1. INTRODUCTION

The Semantic Web [4] (SW) is a vision of the current Web
where resources have exact meaning assigned in terms of
ontologies [11], thus enabling agents to reason about them.
The Ontology Layer of the SW is well developed with the
OWL [14] language whose underlying semantics is based
on the Description Logics (DL) [2], for which specialized
reasoners exist [12].

The goal of the Rule Layer of the SW is to complement
ontologies when ontology languages cannot fulfill all of the
expressivity requirements for describing a domain. In par-
ticular, rules present advantages over plain DL ontologies
such as to allow expressing more than one free variable at
a time; besides arbitrary OWL classes can be used as predi-
cates in rules, with rules and ontology axioms freely mixed.

The proposed standard for representing rules in the SW
is the SWRL language [13]. Despite its maturity, SWRL
indirectly allows representing classical negation (by means
of the complement operator) and, to the best of our knowl-
edge, does not allow using default negation. We believe that
in order to fully exploit the potential of SW rules, it is nec-
essary that SWRL may be able to represent both kinds of
negations, a necessity that was pointed out in the beginning
of SW research (see [15]).

∗This paper is an extended version of the article S.A.Gómez,
C.I.Chesñevar, G.R.Simari. Integration of Rules and Ontologies with Defea-
sible Logic Programming. XV Congreso Argentino en Ciencias de la Com-
putacin (CACIC 2009), Pp. 90–99, 2009.

Although reasoners such as Hermit and Pellet are capa-
ble of handling OWL ontologies extended with SWRL rules
and provide efficient implementations for detecting incon-
sistent ontologies, they are incapable of performing infer-
ences upon the latter. In previous works [8, 9], we presented
a formalism called δ-ontologies capable of reasoning with
potentially inconsistent DL ontologies.

In this article, we extend the δ-ontologies framework to
suitably model incomplete and possibly inconsistent sets of
rules on top of δ-ontologies. Rules in the proposed exten-
sion are to be interpreted as DeLP programs with special
primitives to access the knowledge contained in the ontol-
ogy layer. In this way rules and ontologies are integrated as
a single DeLP program upon which queries can be posed.
The result of such queries will depend on the content of the
rules as well as the contents of the underlying ontologies.

The rest of this paper is structured as follows. In Sec-
tion 2 we briefly present the fundamentals of Descrip-
tion Logics and Defeasible Logic Programming. Section 3
briefly recalls the framework of δ-ontologies for reasoning
with possibly inconsistent ontologies. In Section 4, we ex-
tend the δ-ontologies framework to allow for building rules
on top of ontologies. In Section 5, we show how to interpret
default negated literals in SW rules in DeLP. Section 6 dis-
cusses implementation issues. Finally Section 7 discusses
related work and Section 8 concludes the paper.

2. BACKGROUND

Description Logics

Description Logics (DL) are a well-known family of knowl-
edge representation formalisms [2]. They are based on the
notions of concepts (unary predicates or classes) and roles
(binary relations or properties), and are mainly character-
ized by the constructors that allow complex concepts and
roles to be built from atomic ones. Let C and D stand for
concepts and R for a role name. Concept descriptions are
built from concept names using the constructors conjunc-
tion (CuD), disjunction (CtD), negation (¬C), existen-
tial restriction (∃R.C), and value restriction (∀R.C). To
define the semantics of concept descriptions, concepts are
interpreted as subsets of a domain of interest, and roles as
binary relations over such domain. Further extensions to the
basic DL are possible including inverse and transitive roles
noted as P− and P+, resp.

A DL ontology consists of two finite and mutually dis-
joint sets: a Tbox which introduces the terminology and an
Abox which contains facts about particular objects in the ap-
plication domain. Tbox statements have the form C v D

JCS&T Vol. 10 No. 2 June 2010

74

(inclusions) and C ≡ D (equalities), where C and D are
(possibly complex) concept descriptions. Objects in the
Abox are referred to by a finite number of individual names
and these names may be used in two types of assertional
statements: concept assertions of the type a : C and role
assertions of the type 〈a, b〉 : R, where C is a concept
description, R is a role name, and a and b are individual
names.

One way of providing semantics to DL ontologies is in
terms of First-Order Logic by means of a function φ(·)
(see [2]). It is said that Σ is consistent if φ(Σ) has a model,
otherwise it is inconsistent. Determining if an individual
a is a member of a concept C w.r.t. Σ is called instance
checking and it refers to determining if the logical entail-
ment φ(Σ) |= C(a) holds. 1

Defeasible Logic Programming

Defeasible Logic Programming (DeLP) [7] provides a lan-
guage for knowledge representation and reasoning that uses
defeasible argumentation [5, 3] to decide between contra-
dictory conclusions through a dialectical analysis. Codi-
fying knowledge by means of a DeLP program provides a
good trade-off between expressivity and implementability
for dealing with incomplete and potentially contradictory
information. In a defeasible logic program P = (Π,∆), a
set ∆ of defeasible rules P −≺ Q1, . . . , Qn, and a set Π
of strict rules P ← Q1, . . . , Qn can be distinguished.
An argument 〈A, H〉 is a minimal non-contradictory set of
ground defeasible clauses A of ∆ that allows to derive a
ground literal H possibly using ground rules of Π. Since
arguments may be in conflict (concept captured in terms of
a logical contradiction), an attack relationship between ar-
guments can be defined. A criterion is usually defined to
decide between two conflicting arguments. If the attack-
ing argument is strictly preferred over the attacked one, the
former is called a proper defeater. If no comparison is pos-
sible, or both arguments are equi-preferred, the attacking ar-
gument is called a blocking defeater. In order to determine
whether a given argument A is ultimately undefeated (or
warranted), a dialectical process is recursively carried out,
where defeaters for A, defeaters for these defeaters, and so
on, are taken into account. Given a DeLP program P and a
query H , the final answer to H w.r.t. P takes such dialec-
tical analysis into account. Thus the answer to a query can
be either Yes, when there is at least one warranted argument
supporting H on the basis of P; No, when there is at least
one warranted argument supporting ∼H on the basis of P;
Undecided, when neitherH nor∼H are warranted w.r.t. P ,
or Unknown, if H does not belong to the signature of P .

3. REASONING WITH INCONSISTENT
ONTOLOGIES IN DELP

In the presence of inconsistent ontologies, traditional DL
reasoners (such as RACER [12]) issue an error message and
stop further processing. Thus the burden of repairing the on-
tology (i.e., making it consistent) is on the knowledge engi-
neer. In previous works [8, 9], we showed how DeLP can be
used for coping with inconsistencies in ontologies such that
the task of dealing with them is automatically solved by the
reasoning system by translating DL ontologies into DeLP

1The symbol |= denotes the usual entailment relation in FOL.

programs. By doing so the capability of reasoning with in-
consistent ontologies is gained but also some expressiveness
in the involved ontologies is lost as certain restrictions have
to be imposed on DL ontologies in order to be expressed in
the DeLP language.

Our proposal is based in part in the work of [10] who
show that the processing of ontologies can be improved by
the use of techniques from the area of logic programming.
In particular they have identified a subset of DL languages
that can be effectively mapped into a Horn-clause logics.
Given a DL ontology Σ = (T,A), we will consider the
Tbox T as partitioned into two disjoint sets—a strict termi-
nology TS and a defeasible terminology TD .

We therefore translate the DL ontology Σ into a DeLP
program P = (Π,∆) = T (Σ) by means of a mapping T
from the DL language to the DeLP language. Intuitively the
set Π of strict rules in P corresponds to the Abox A joined
with TS in Σ, and the set ∆ of defeasible rules corresponds
to TD in Σ. This translation is achieved by two specialized
functions TΠ and T∆, where TΠ translates from a set of DL
sentences into a set of DeLP strict rules and T∆ translates
from a set of DL sentences into a set of DeLP defeasible
rules, such that Π = TΠ(TS) ∪ TΠ(A) and ∆ = T∆(TD).
Notice that these functions preserve the meaning of the orig-
inal DL sentences.

As noted in [10], for DL sentences to be mapped into
Horn-logic rules, they must satisfy certain constraints. Con-
junction and universal restrictions appearing in the right-
hand side of inclusion axioms can be mapped to heads of
rules (called Lh-classes). In contrast, conjunction, disjunc-
tion and existential restriction can be mapped to rule bodies
whenever they occur in the left-hand side of inclusion ax-
ioms (called Lb-classes). As equality axioms “C ≡ D”
are interpreted as two inclusion axioms “C v D” and
“D v C,” they must belong to the intersection of Lh and
Lb.

Definition 1 (δ-Ontology) LetC be anLb-class,D anLh-
class, A,B Lhb-classes, P,Q properties, a, b individuals.
Let T be a set of inclusion and equality sentences in LDL

of the form C v D, A ≡ B, > v ∀P.D, > v ∀P−.D,
P v Q, P ≡ Q, P ≡ Q−, or P+ v P such that T
can be partitioned into two disjoint sets TS and TD . Let A
be a set of assertions disjoint with T of the form a : D or
〈a, b〉 : P . A δ-ontology Σ is a tuple (TS , TD, A). The
set TS is called the strict terminology (or Sbox), TD the
defeasible terminology (or Dbox) andA the assertional box
(or Abox).

Example 1 Consider the δ-ontologies Σ1 = (∅, T 1
D, A

1)
about swimming and Σ2 = (T 2

S , T
2
D, A

2) about program-
ming both presented in Fig. 1. The defeasible terminology
T 1

D says that both free and scuba divers are divers; satura-
tion divers are scuba divers; somebody who swims a race
stroke is usually a race swimmer, and someone who can
swim a rescue stroke is normally considered a rescue swim-
mer. The assertional box A1 establishes that crawl is a
race stroke; side is a rescue stroke; John is able to swim
both crawl and side strokes, and finally Paul is a saturation
diver. The strict terminology T 2

S expresses that among pro-
gramming languages, both logic programming and object-
oriented languages can be found. The Dbox T 2

D says that a
programmer is usually somebody who can program in some
programming language unless she has failed the elementary

JCS&T Vol. 10 No. 2 June 2010

75

programming course. The Abox A2 establishes that Pro-
log is a logic programming language and that John can pro-
gram in the Prolog programming language; that Java is an
object-oriented language and that Mary can program Java
code, and that Paul is capable of programming in the Java
programming language although he failed the elementary
programming course.

Swimming ontology Σ1 = (∅, T 1
D, A1):

Defeasible terminology T 1
D:

Free Diver t Scuba Diver v Diver
Saturation Diver v Scuba Diver
∃swims.Race Stroke v Race Swimmer
∃swims.Rescue Stroke v Rescue Swimmer

Assertional box A1:
CRAWL : Race Stroke
SIDE : Rescue Stroke
〈JOHN, CRAWL〉 : swims
〈JOHN, SIDE〉 : swims
PAUL : Saturation Diver

Programming ontology Σ2 = (T 2
S , T 2

D, A2):

Strict terminology T 2
S :

LP Lang t OOP Lang v Lang

Defeasible terminology T 2
D:

∃programs.Lang v Programmer
∃programs.Lang u Failed Prog 101 v ¬Programmer

Assertional box A2:
PROLOG : LP Lang
JAVA : OOP Lang
〈JOHN, PROLOG〉 : programs
〈MARY, JAVA〉 : programs
〈PAUL, JAVA〉 : programs
PAUL : Failed Prog 101

Figure 1: Ontologies Σ1 and Σ2 about swimming and pro-
gramming, resp.

We now recall the definitions of TΠ and T∆, for details
see [8, 9].

Definition 2 (T∆ mapping from DL sentences to DeLP
defeasible rules) Let A,C,D be concepts, X,Y variables,
P,Q properties. The T∆ : 2LDL → 2LDeLP∆ mapping is
defined in Fig. 2. Besides, intermediate transformations that
end as rules of the form “(H1 ∧H2) −≺ B” are rewritten as
two rules “H1 −≺ B” and “H2 −≺ B” (as this is an incor-
rect DeLP syntax). Similarly transformations of the form
“H1 −≺H2 −≺ B” are rewritten as “H1 −≺ B ∧ H2,” and
transformations of the form “H −≺ (B1 ∨ B2)” are rewrit-
ten as two rules “H −≺ B1” and “H −≺ B2.”

Definition 3 (T ∗Π mapping from DL sentences to DeLP
strict rules) LetA,C,D be concepts,X,Y variables, P,Q
properties. The T ∗Π : 2LDL → 2LDeLPΠ mapping is de-
fined in Fig. 3. Besides, intermediate transformations of
the form “(H1 ∧ H2) ← B” are rewritten as two rules
“H1 ← B” and “H2 ← B.” Similarly transforma-
tions of the form “H1 ← H2 ← B” are rewritten as
“H1 ← B∧H2,” and rules of the form “H ← (B1∨B2)”
are rewritten as two rules “H ← B1” and “H ← B2.”

Definition 4 (Transposes of a strict rule) Let r = H ←
B1, B2, B3, . . . , Bn−1, Bn be a DeLP strict rule. The set

of transposes of rule r, noted as “Trans(r),” is defined as:

T∆({C v D}) =df

{
Th(D, X) −≺ Tb(C, X)

}
,

if C is an Lb-class and D an Lh-class
T∆({C ≡ D}) =df T∆({C v D}) ∪ T∆({D v C}),

if C and D are Lhb-classes
T∆({> v ∀P.D}) =df

{
Th(D, Y) −≺ P (X, Y)

}
,

if D is an Lh-class
T∆({> v ∀P−.D}) =df

{
Th(D, X) −≺ P (X, Y)

}
,

if D is an Lh-class
T∆({P v Q}) =df

{
Q(X, Y) −≺ P (X, Y)

}
T∆({P ≡ Q}) =df

{
Q(X, Y) −≺ P (X, Y)
P (X, Y) −≺Q(X, Y)

}
T∆({P ≡ Q−}) =df

{
Q(X, Y) −≺ P (Y, X)
P (Y, X) −≺Q(X, Y)

}
T∆({P+ v P}) =df

{
P (X, Z) −≺

P (X, Y) ∧ P (Y, Z)

}
T∆({s1, . . . , sn}) =df

⋃n
i=1 {T∆({si})}, if n > 1

where:
Th(A, X) =df A(X)

Th((C uD), X) =df Th(C, X) ∧ Th(D, X)
Th((∀R.C), X) =df Th(C, Y) −≺R(X, Y)

Tb(A, X) =df A(X)
Tb((C uD), X) =df Tb(C, X) ∧ Tb(D, X)
Tb((C tD), X) =df Tb(C, X) ∨ Tb(D, X)
Tb((∃R.C), X) =df R(X, Y) ∧ Tb(C, Y)

Figure 2: Mapping from DL ontologies to DeLP defeasible
rules

Trans(r) =



H ← B1, B2, . . . , Bn−1, Bn

B1 ← H, B2, B3, . . . , Bn−1, Bn

B2 ← H, B1, B3, . . . , Bn−1, Bn

B3 ← H, B1, B2, . . . , Bn−1, Bn

. . .
Bn−1 ← H, B1, B2, B3 . . . , Bn

Bn ← H, B1, B2, . . . , Bn−1


.

Definition 5 (TΠ mapping from DL sentences to DeLP
strict rules) We define the mapping from DL ontologies
into DeLP strict rules as TΠ(T) = Trans(T ∗Π (T)).

T ∗Π ({C v D}) =df

{
Th(D, X) ← Tb(C, X)

}
,

if C is an Lb-class
and D an Lh-class

T ∗Π ({C ≡ D}) =df T ∗Π ({C v D}) ∪ T ∗Π ({D v C}),
if C and D are Lhb-classes

T ∗Π ({> v ∀P.D}) =df

{
Th(D, Y) ← P (X, Y)

}
,

if D is an Lh-class
T ∗Π ({> v ∀P−.D}) =df

{
Th(D, X) ← P (X, Y)

}
,

if D is an Lh-class
T ∗Π ({a : D}) =df

{
Th(D, a)

}
,

if D is an Lh-class
T ∗Π ({〈a, b〉 : P}) =df

{
P (a, b)

}
T ∗Π ({P v Q}) =df

{
Q(X, Y) ← P (X, Y)

}
T ∗Π ({P ≡ Q}) =df

{
Q(X, Y) ← P (X, Y)
P (X, Y) ← Q(X, Y)

}
T ∗Π ({P ≡ Q−}) =df

{
Q(X, Y) ← P (Y, X)
P (Y, X) ← Q(X, Y)

}
T ∗Π ({P+ v P}) =df

{
P (X, Z) ←

P (X, Y) ∧ P (Y, Z)

}
T ∗Π ({s1, . . . , sn}) =df

⋃n
i=1 T

∗
Π ({si}), if n > 1

where:
Th(A, X) =df A(X)

Th((C uD), X) =df Th(C, X) ∧ Th(D, X)
Th((∀R.C), X) =df Th(C, Y) ← R(X, Y)

Tb(A, X) =df A(X)
Tb((C uD), X) =df Tb(C, X) ∧ Tb(D, X)
Tb((C tD), X) =df Tb(C, X) ∨ Tb(D, X)
Tb((∃R.C), X) =df R(X, Y) ∧ Tb(C, Y)

Figure 3: Mapping from DL ontologies to DeLP strict rules

JCS&T Vol. 10 No. 2 June 2010

76

Definition 6 (Interpretation of a δ-ontology) Let Σ =
(TS , TD, A) be a δ-ontology. The interpretation of Σ is
a DeLP program P = (TΠ(TS) ∪ TΠ(A), T∆(TD)).

Notice that in order to keep consistency within an argu-
ment, we must enforce some internal coherence between
the Abox and the Tbox; namely given a δ-ontology Σ =
(TS , TD, A), it must not be possible to derive two comple-
mentary literals from TΠ(TS) ∪ TΠ(A).

Definition 7 (Potential, justified and strict membership
of an individual to a class) Let Σ = (TS , TD, A) be a
δ-ontology, C a class name, a an individual, and P =
(TΠ(TS) ∪ TΠ(A), T∆(TD)).

1. The individual a potentially belongs to class C, noted
as PotentialMember(a,C,Σ), iff there exists an ar-
gument 〈A, C(a)〉 w.r.t. P;

2. the individual a justifiedly belongs to class C, noted
as JustifiedMember(a,C,Σ), iff there exists a war-
ranted argument 〈A, C(a)〉 w.r.t. P , and,

3. the individual a strictly belongs to class C, noted as
StrictMember(a,C,Σ), iff there exists an argument
〈∅, C(a)〉 w.r.t. P .

Example 2 (Continues Ex. 1) Consider again the δ-
ontologies Σ1 and Σ2, they are interpreted as the DeLP
programs P1 and P2 according to Def. 6 as shown in Fig. 4.
From P1, we can determine that John justifiedly belongs
to the concept Race Swimmer in Σ1 as there exists a
warranted argument structure 〈A1, race swimmer(john)〉
where: 2

A1 =

{
race swimmer(john) −≺

swims(john, crawl), race stroke(crawl)

}
.

Likewise, there are warranting arguments A2 and A3 for
rescue swimmer(john) and diver(paul) resp., with:

A2 =

{
rescue swimmer(john) −≺

swims(john, side), rescue stroke(side)

}
and

A3 =

 diver(paul) −≺ scuba diver(paul)
scuba diver(paul) −≺

saturation diver(paul)

 .

From P2 in turn we can conclude that both
John and Mary justifiedly belong to the concept
Programmer but Paul justifiedly belongs to the con-
cept ¬Programmer as there are warranted arguments
〈B1, programmer(john)〉, 〈B2, programmer(mary)〉,
and 〈B3,∼programmer(paul)〉, where:

B1 =

{
programmer(john) −≺

programs(john, prolog)

}
,

B2 =

{
programmer(mary) −≺

programs(mary, java)

}
, and

B3 =

 ∼programmer(paul) −≺

programs(paul , java),
failed prog 101 (paul)

 .

Notice that there exists another argu-
ment 〈B4, programmer(paul)〉 with B4 =
{programmer(paul) −≺ programs(paul , java)} that
is defeated by argument B3.

2For space reasons we do not include complete dialectical analyses. See
Sect. 6 for checking them on-line.

DeLP program P1 = (Π1, ∆1) obtained from Σ1:
Facts Π1:

race stroke(crawl). rescue stroke(side).
swims(john, crawl). swims(john, side).
saturation diver(paul).

Defeasible rules ∆1:
diver(X) −≺ free diver(X).
diver(X) −≺ scuba diver(X).
scuba diver(X) −≺ saturation diver(X).
race swimmer(X) −≺ swims(X, Y), race stroke(Y).
rescue swimmer(X) −≺

swims(X, Y), rescue stroke(Y).

DeLP program P2 = (Π2, ∆2) obtained from Σ2:
Facts and strict rules Π2:

lp lang(prolog). oop lang(java).
programs(john, prolog). programs(mary, java).
programs(paul, java). failed prog 101(paul).
lang(X) ← lp lang(X).
∼lp lang(X) ← ∼lang(X).
lang(X) ← oop lang(X).
∼oop lang(X) ← ∼lang(X).

Defeasible rules ∆2:
programmer(X) −≺ programs(X, Y), lang(Y).
∼programmer(X) −≺

programs(X, Y), lang(Y), failed prog 101(X).

Figure 4: DeLP programs P1 and P2 obtained from ontolo-
gies Σ1 and Σ2, resp.

4. ADDING RULES ON TOP OF
ONTOLOGIES

We now define how to express rules in the Semantic Web
with the presence of incompleteness and potential inconsis-
tency. The notions presented will lead to the central defi-
nition of integration system that joins rules and ontologies
making it suitable for a SW setting.

Definition 8 (Strict, justified and potential member-
ship statements) Let a be an individual name, C a
concept name, and Σ a δ-ontology. The expression
“StrictMember(a,C,Σ)” is called a strict membership
statement and queries if “a” strictly belongs to “C”
w.r.t. Σ. The expression “JustifiedMember(a,C,Σ)”
is called a justified membership statement and queries if
“a” justifiedly belongs to “C” w.r.t. Σ. The expression
“PotentialMember(a,C,Σ)” is called a potential mem-
bership statement and queries if “a” potentially belongs to
“C” w.r.t. Σ.

Definition 9 (Semantic web strict rule) A semantic web
strict rule is an ordered pair, denoted “B =⇒ H ,” whose
first member, B, is a finite set of literals or potential
membership statements, and whose second member, H ,
is a literal. A semantic web strict rule with antecedent
{L1, . . . , Ln} and head H will be also written as “L1 ∧
. . . ∧ Ln =⇒ H .”

Definition 10 (Semantic web defeasible rule) A semantic
web defeasible rule is an ordered pair, denoted “B �== H ,”
whose first member, B, is a finite set of literals or potential
membership statements, and whose second member, H , is
a literal. A semantic web defeasible rule with antecedent
{L1, . . . , Ln} and head H will be also written as “L1 ∧
. . . ∧ Ln �== H .”

JCS&T Vol. 10 No. 2 June 2010

77

Definition 11 (Semantic web program) Let S be a set of
semantic web strict rules and D a set of semantic web de-
feasible rules. A semantic web program is a pair 〈S,D〉.

Definition 12 (Integration system) Let P be a semantic
web program and let Σ1, . . . ,Σn be n δ-ontologies. An
integration system of rules and ontologies I is a pair
〈P, {Σi}i=1,...,n)〉.

Example 3 Consider the semantic web program P =
〈S,D〉 presented in Fig. 5, this SW program will be inte-
grated with ontologies Σ1 and Σ2 from Ex. 1 into the inte-
gration system I = 〈P, {Σ1,Σ2}〉. In P , the set of seman-
tic web strict rules S expresses that somebody who poten-
tially belongs to the concept “race swimmer” (resp. “rescue
swimmer”) in ontology Σ1 is a race swimmer (resp. res-
cue swimmer) and that whoever is a potential member of
the concept “programmer” in ontology Σ2 is a computer
geek. The set of semantic web defeasible rules D says that
computer geeks are not usually good at sports but expert
swimmers normally are; if somebody is either capable of
swimming both a race stroke and a rescue stroke the he is
often considered an expert swimmer; finally, a diver is usu-
ally considered an expert swimmer.

Set of strict semantic web rules S:
PotentialMember(x, Race Swimmer, Σ1) =⇒

Race Swimmer(x)
PotentialMember(x, Rescue Swimmer, Σ1) =⇒

Rescue Swimmer(x)
PotentialMember(x, Programmer, Σ2) =⇒ Geek(x)

Set of defeasible semantic web rulesD:
Geek(x) �== ¬Good(x)
Swimmer(x) �== Good(x)
Race Swimmer(x) ∧ Rescue Swimmer(x) �== Swimmer(x)
PotentialMember(x, Diver, Σ1) �== Swimmer(x)

Figure 5: Semantic web program P = 〈S,D〉

In order to answer queries posed against an integration
system of rules and ontologies, we will interpret integration
systems as DeLP programs. We define next the notions of
semantic interpretation and answer to a query for an inte-
gration system.

Definition 13 (Semantic interpretation) Let I =
(P, {Σ1, . . . ,Σn}) be an integration system such
that: P = 〈ΠP ,∆P〉, Σ1 = (T 1

S , T
1
D, A

1), . . . ,
Σn = (Tn

S , T
n
D, A

n). The semantic interpretation of I,
noted as Sem(I), is the DeLP program (Π,∆), where:

Π = Φ(ΠP) ∪
⋃

i=1,...,n

T (T i
S) ∪

⋃
i=1,...,n

T (Ai)

and

∆ = Φ(∆P) ∪
⋃

i=1,...,n

T (T i
D),

and Φ(·) stands for the interpretation function of Semantic
Web rules as defined in Fig. 6.

Definition 14 (Answer to a query in a SW integration
system) Let I be a SW integration system and L a literal.
The answer to the query L, noted as AnswerI(L), is de-
fined as:

• YES iff the answer to the query L is Yes w.r.t.
Sem(I);

• NO iff the answer to the query ∼ L is Yes w.r.t.
Sem(I), and

• UNDECIDED iff the answer to the query L is Unde-
cided. w.r.t. Sem(I).

Example 4 (Continues Ex. 3) Consider again the integra-
tion system I presented in Ex. 3. When we compute
Sem(I), we obtain the DeLP program formed by the frag-
ments presented in Fig. 7 along with the ones already pre-
sented in Ex. 2. We will show that AnswerI(good(john))
is UNDECIDED, AnswerI(good(mary)) is NO, and
AnswerI(good(paul)) is YES.

First, we will consider the dialectical analysis for
the query “good(john).” There exists an argument
〈C1, good(john)〉 where:

C1 = A1 ∪ A2 ∪ (good(john) −≺ swimmer(john)),
(swimmer(john) −≺ race swimmer(john),

rescue swimmer(john))

 .

However, there is an argument 〈C2,∼ good(john)〉, that
says John is not good at sports as he is a geek (because he is
a programmer), that defeats argument C1, where: C2 = B1∪
{∼good(john) −≺ geek(john)}. Therefore, the answer for
the query “good(john)” is UNDECIDED.

When we consider the dialectical analysis for de-
termining the answer to the query “good(mary),” we
find out that there is a warranted argument 〈B2 ∪
{geek(mary) −≺ programmer(mary)},∼good(mary)〉.

Last, let us consider the dialectical tree for the literal
“good(paul).” There is an argument 〈D1, good(paul)〉,
based on the defeasible information that asserts that Paul is
an expert swimmer (because he is a saturation diver), with:

D1 = A3 ∪
{

(good(paul) −≺ swimmer(paul)),
(swimmer(paul) −≺ diverΣ2 (paul))

}
.

But argument D1 is attacked by an argument 〈D2,∼
good(paul)〉, where:

D2 = B4 ∪
{

(∼good(paul) −≺ geek(paul)),
(geek(paul) −≺ programmer(paul))

}
.

Nevertheless, as Paul failed the elementary programming
course, this argument is defeated by argument B3 (see
Ex. 2), thus reinstating argument D1.

Φ(B1 ∧ . . . ∧ Bn =⇒ A) =df

Φ(A) ← Φ(B1), . . . , Φ(B1)
Φ(B1 ∧ . . . ∧ Bn �== A) =df

Φ(A) −≺ Φ(B1), . . . , Φ(B1)
Φ(L(x1, . . . , xn)) =df L(X1, . . . , Xn)

Φ(¬L(x1, . . . , xn)) =df ∼L(X1, . . . , Xn)
Φ(PotentialMember(a, C, Σ)) =df CΣ(a)

Figure 6: Interpretation of Semantic Web rules as DeLP
rules

5. ADDING DEFAULT NEGATION TO
SW RULES

We now discuss how to add default negation to the ap-
proach to Semantic Web rules presented in Sect. 4. A de-

JCS&T Vol. 10 No. 2 June 2010

78

Strict rules ΠD:
race swimmer(X) ← race swimmerΣ1 (X).
rescue swimmer(X) ← rescue swimmerΣ1 (X).
geek(X) ← programmerΣ2

(X).

Defeasible rules ∆D:
∼good(X) −≺ geek(X).
good(X) −≺ swimmer(X).
swimmer(X) −≺

race swimmer(X), rescue swimmer(X).
swimmer(X) −≺ diverΣ1 (X).

Figure 7: DeLP program P ′ = (ΠS ,∆D) obtained from
the interpretation of P = 〈S,D〉

fault negated literal L is denoted as notL and is only al-
lowed in the body of SW rules. This negation is interpreted
by the DeLP default negation (for details see [7, Sect. 6.1])
and the definition of the interpretation function Φ(·) for SW
rules (which was presented in Def. 13) is extended accord-
ingly by adding the equation

Φ(notL(x1, . . . , xn)) =df notL(X1, . . . , Xn).

We now illustrate the inner workings of this extended
approach to SW rules with an example that continues the
above presented ones.

Example 5 Consider again the δ-ontology Σ1 =
(T 1

S , T
1
D, A1) presented in Ex. 1. Let Σ′1 = (T 1

S , T
1
D, A1 ∪

{(WILLIAM : Free Diver), (NATALIA : Free Diver)}),
i.e. there are two additional facts stating that both William
and Natalia are freedivers. Consider also the δ-ontology
Σ3 presented in Fig. 8; it says that somebody who suffers
a swimming disease is injured; someone who went to a see
a doctor can usually be consider treated; both swimmer’s
ear and pink-eye are swimming diseases; William suffers
from swimmer’s ear; Natalia suffers from pink eye, and it
is known that William went to see a doctor.

Let P5 be a new SW program obtained from the
SW program P (presented in Ex. 3) by adding an
extra SW defeasible rule indicating that some in-
jured swimmer that it is not know if he was treated
is supposed to be unathletic. Formally, P5 =
〈ΠP ,∆P ∪ {Swimmer(x), Injured(x), notTreated(x) �
== ¬Good(x)}〉. Let I5 = 〈P5, {Σ1,Σ2,Σ3}〉.
We will present how the answers to queries w.r.t.
Sem(I5) are computed, in particular we will
see that AnswerI5(good(william)) is YES while
AnswerI5(good(natalia)) is NO. When we consider
the DeLP code in Fig. 9 along with the DeLP code
already presented in Ex. 4, we see there is an argument
〈E1, good(william)〉 supporting that William is athletic
because he is a free-diver; formally,

E1 =
{

(good(william) −≺ swimmer(william))
}
∪ D1

D1 =

{
(swimmer(william) −≺ diver(william)),
(diver(william) −≺ free diver(william))

}
.

There is also an argument 〈G1,∼good(william)〉 express-
ing that William is not good at sports because he is injured
(as he suffers from swimmer’s ear); more formally,

G1 = D1 ∪



(∼good(william) −≺

swimmer(william),
injured(william),
nottreated(william)),

(injured(william) −≺

suffers(william, swimmers ear),
swimmingDisease(swimmers ear))


.

However, the argument G1 is defeated by
〈H1, treated(william)〉 expressing that William was
treated (as he went to see a doctor), thus reinstating E1:

H1 =

{
treated(william) −≺

went to see a doctor(william)

}
.

When we consider the arguments concerning Natalia’s
case, the following dialectical analysis arises. First, there
is an argument 〈E2, good(natalia)〉 expressing that Natalia
is athletic because she is a swimmer (she is a freediver
and freedivers are a kind of diver that it is ultimately a
swimmer); this argument is defeated by another argument
〈D2,∼ good(natalia)〉 saying that Natalia is not good at
sports as she is an injured swimmer (she suffers from a pink
eye condition). In turn the latter argument does not have any
defeaters and it is thus warranted.

Strict terminology T 3
S :

∃suffers.SwimmingDisease v Injured

Defeasible terminology T 3
D:

WentToSeeADoctor v Treated

Abox A3:
SWIMMERS EAR : SwimmingDisease
PINK EYE : SwimmingDisease
〈WILLIAM, SWIMMERS EAR〉 : suffers
〈NATALIA, PINK EYE〉 : suffers
WILLIAM : WentToSeeADoctor

Figure 8: Ontology Σ3 = (T 3
S , T

3
D, A

3) about swimming
injuries

New facts obtained from extra assertions added to Σ1:
free diver(william). free diver(natalia).

Defeasible rule obtained from extra defeasible SW rule:
∼good(X) −≺ swimmer(X), injured(X), nottreated(X).

Set of strict rules Π3 obtained form T 3
S :

injured(X) ← suffers(X, Y), swimmingDisease(Y).

Set of defeasible rules ∆3 obtained form T 3
D:

treated(X) −≺ went to see a doctor(X).

Set of facts obtained from A3:
swimmingDisease(swimmers ear).
swimmingDisease(pink eye).
suffers(william, swimmers ear).
suffers(natalia, pink eye).
went to see a doctor(william).

Figure 9: Remaining portion of the semantic interpretation
of I5

6. IMPLEMENTATION ISSUES

As performing defeasible argumentation is a computation-
ally complex task, an abstract machine called JAM (Jus-
tification Abstract Machine) has been specially developed
for an efficient implementation of DeLP [7]. JAM provides
an argument-based extension of the traditional WAM (War-
ren’s Abstract Machine) for Prolog. A full-fledged imple-
mentation of DeLP is available online,3 including facilities
for visualizing arguments and dialectical trees. The DeLP
programs presented in this article can be downloaded and
tried on-line.4

3See http://lidia.cs.uns.edu.ar/delp client.
4See http://cs.uns.edu.ar/˜sag/papers/programjcst2010.delp.

JCS&T Vol. 10 No. 2 June 2010

79

7. RELATED WORK

Eiter et al. [6] propose a combination of logic programming
under the answer set semantics with the DLs SHIF(D)
and SHOIN (D). This combination allows for building
rules on top of ontologies as we do. However, in contrast
to our approach, they are not able to handle inconsistencies
neither in the ontologies nor in the rule bases.

Williams and Hunter [16] use argumentation to reason
with possibly inconsistent rules on top of DL ontologies. In
contrast, we translate possible inconsistent DL ontologies to
DeLP to reason with them within DeLP.

In the classification of systems for combining rules and
ontologies presented in [1], two kinds are distinguished: hy-
brid and homogeneous. Our approach can be considered
homogeneous in the sense that it does not distinguish be-
tween predicates in rules and ontologies and uses DeLP as
a specialized reasoner.

8. CONCLUSIONS AND FUTURE WORK

We have presented a novel approach for combining rules
and ontologies in the Semantic Web that could be used as a
basis for suitably extending the current standard SWRL for
representing rules on top of OWL ontologies. The proposed
approach allows to add incomplete and possibly inconsis-
tent rules on top of also possibly inconsistent ontologies by
interpreting them as DeLP programs. We have presented a
framework for characterizing the behavior of the proposed
approach and an example scenario including both classical
and negated literals in rules.

As future work, the formal properties arising from the
approach must be characterized. Other research issue is re-
lated to the inclusion of both strict and justified member-
ship statements in Semantic Web rules as in this work we
have only considered the inclusion of potential membership
statements. Our current research efforts are directed toward
solving these issues.

Acknowledgments: This research is founded by Univer-
sidad Nacional del Sur (UNS), Agencia Nacional de Pro-
moción Cientı́fica y Tecnológica (PICT 2002 No. 13.096,
PICT 2003 No. 15.043, PAV 2004 076), and by Projects
PIP 112-200801-02798 (CONICET, Argentina), TIN2006-
15662-C02-01 (MEC, Spain), PGI 24/ZN10 (SGCyT, UNS,
Argentina).

References

[1] Grigoris Antoniou, Carlos Viegas Damasio, Benjamin
Grosof, Ian Horrocks, Michael Kiefer, Jan Maluszyn-
ski, and Peter F. Patel-Schneider. Combining Rules
and Ontologies. A survey. REWERSE 2005, 2005.

[2] Franz Baader, Diego Calvanese, Deborah McGuin-
ness, Daniele Nardi, and Peter Patel-Schneider, edi-
tors. The Description Logic Handbook – Theory, Im-
plementation and Applications. Cambridge University
Press, 2003.

[3] T. J. M. Bench-Capon and Paul E. Dunne. Argumen-
tation in artificial intelligence. Artif. Intell., 171(10-
15):619–641, 2007.

[4] T. Berners-Lee, J. Hendler, and O. Lassila. The Se-
mantic Web. Scient. American, 2001.

[5] Carlos Iván Chesñevar, Ana Maguitman, and Ronald
Loui. Logical Models of Argument. ACM Computing
Surveys, 32(4):337–383, December 2000.

[6] Thomas Eiter, Thomas Lukasiewicz, Roman Schind-
lauer, and Hans Tompits. Combining Answer Set Pro-
gramming with Description Logics for the Semantic
Web. KR 2004, pages 141–151, 2004.

[7] A. Garcı́a and G. Simari. Defeasible Logic Program-
ming an Argumentative Approach. Theory and Prac.
of Logic Program., 4(1):95–138, 2004.

[8] Sergio Alejandro Gómez, Carlos Iván Chesñevar, and
Guillermo Ricardo Simari. An Argumentative Ap-
proach to Reasoning with Inconsistent Ontologies. In
Thomas Meyer and Mehmet A. Orgun, editors, Proc.
of the Knowledge Representation in Ontologies Work-
shop (KROW 2008), volume CPRIT 90, pages 11–20,
Sydney, Australia, 2008.

[9] Sergio Alejandro Gómez, Carlos Iván Chesñevar, and
Guillermo Ricardo Simari. Reasoning with Inconsis-
tent Ontologies Through Argumentation. Applied Ar-
tificial Intelligence, 1(24):102–148, 2010.

[10] Benjamin N. Grosof, Ian Horrocks, Raphael Volz,
and Stefan Decker. Description Logic Programs:
Combining Logic Programs with Description Logics.
WWW2003, May 20-24, Budapest, Hungary, 2003.

[11] T. R. Gruber. A translation approach to portable on-
tologies. Knowledge Acquisition, 5(2):199–220, 1993.

[12] Volker Haarslev and Ralf Möller. RACER System De-
scription. Technical report, University of Hamburg,
Computer Science Department, 2001.

[13] Ian Horrocks, Peter F. Patel-Schneider, Harold Boley,
Said Tabet Benjamin Grosof, and Mike Dean. SWRL:
A Semantic Web Rule Language Combining OWL
and RuleML. National Research Council of Canada,
Network Inference, and Stanford University, 2004.

[14] Deborah L. McGuiness and Frank van Harmelen.
OWL Web Ontology Language Overview, 2004.
http://www.w3.org/TR/owl-features/.

[15] Gerd Wagner. Web Rules Need Two Kinds of Nega-
tion. In N. Henze F. Bry and J. Maluszynski, editors,
Proc. of the 1st International Workshop, PPSW3 ’03.
Springer-Verlag LNCS 2901, 2003.

[16] M. Williams and A. Hunter. Harnessing ontologies
for argument-based decision-making in breast cancer.
Proc. of the Intl. Conf. on Tools with AI (ICTAI’07),
pages 254–261, 2007.

JCS&T Vol. 10 No. 2 June 2010

80

