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Dispersal of Late Triassic clam 
shrimps across Pangea linking 
northwestern Gondwana 
and central Pangea rift basins
Carlos M. Alarcón 1,2*, Carina E. Colombi 1,2, Oscar F. Gallego 3,4, Juan M. Drovandi 1,2 & 
Mateo D. Monferran 3,4

Clam shrimps are a group of freshwater crustaceans who prospered during the Late Triassic. They 
were abundant in lacustrine sedimentary records of continental basins distributed throughout Pangea 
during this time. However, they show significant taxonomic differences between the clamp shrimp 
faunas from the rift basins of central Pangea and the southern Gondwanan basins. In this contribution, 
we show new fossil clam shrimp assemblages from the lacustrine sedimentary successions of the 
Eastern Cordillera of Colombia (the Bocas and Montebel formations), providing information on the 
Late Triassic species that inhabited the northwestern Gondwana basins. This study demonstrates that 
the basins of northwestern Gondwana shared Norian clamp shrimp species with rift basins of central 
Pangea and differed in their faunas with the basins of the southern portion of Gondwana. In addition, 
the Late Triassic clam shrimps paleobiogeographic distribution reflects the dispersal of this fauna 
throughout fluvial-lacustrine environments established in the rift valleys along the central Pangea. 
Therefore, the rift valleys produced during the early fragmentation of central Pangea could have acted 
as corridors for dispersion. Simultaneously, rift valleys also provided paleobiogeographic barriers that 
isolated the central Pangea clam shrimp faunas from southern Gondwana.

The first stage of the breakup of the Pangea supercontinent was a continuous process that developed from the 
Ladinian to the Triassic-Jurassic boundary. As a result of rifting processes, a system of fissures crossed the central 
part of the supercontinent from the Caribbean to the Tethys1–7. This fragmentation resulted in the separation of 
Gondwana and Laurasia and the simultaneous fragmentation of Laurasia into North America and Eurasia2,4,5.

The best-known examples of this early fragmentation are the sedimentary records of the Germanic Basin in 
central Europe and the rift basins of the central Atlantic margins in the United States, Canada, and Morocco3,8–12 
(rift basins of central Pangea). These basins were propitious areas for the establishment and accumulation of 
lacustrine and fluvial successions8,13–16.

The sedimentary record of the rift basins of central Pangea hosts diverse and abundant groups of clam shrimps, 
also known (with different systematic and phylogenetic meanings) as “conchostracans” or spinicaudatans17–20. 
These non-marine invertebrates show global distribution along Pangea during the Late Triassic, allowing them 
to be used as biostratigraphic markers21–27. However, for this period, the central Pangea basins share a clam 
shrimp fauna, which shows substantial taxonomic differences compared to the faunas of the southern Gondwana 
basins23,28 (Supplementary Table 1). The factors responsible for the isolation of clam shrimp faunas within a single 
continental mass remain under debate.

This study focuses on two fossil assemblages from the Upper Triassic successions in the Eastern Cordillera 
of Colombia (the Bocas and Montebel formations), presenting a novel association of clam shrimps with high-
resolution biostratigraphy and providing information on the Late Triassic species that inhabited the northwest-
ern Gondwana basins. The clamp shrimp faunas of the northwestern Gondwana units differ from those of the 

OPEN

1Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina. 2Instituto y Museo 
de Ciencias Naturales, Universidad Nacional de San Juan, CIGEOBIO, CONICET, Av. España 400 (N), J5400DNQ San 
Juan, San Juan, Argentina. 3Grupo Paleontología y paleoambientes continentales fanerozoicos, Centro de Ecología 
Aplicada del Litoral, CECOAL, CONICET, Universidad Nacional del Nordeste, UNNE, Ruta Provincial Nº 5, Km 2,5, 
W3400  Corrientes, Argentina. 4Geología Histórica-Paleoinvertebrados-Micropaleontología (Área Ciencias de la 
Tierra -Departamento de Biología), Facultad de Ciencias Exactas, Naturales y Agrimensura (FaCENA), Universidad 
Nacional del Nordeste (UNNE), Av. Libertad 4450, W3400 Corrientes, Argentina. *email: hrgm1950@gmail.com

http://crossmark.crossref.org/dialog/?doi=10.1038/s41598-024-66015-y&domain=pdf


2

Vol:.(1234567890)

Scientific Reports |        (2024) 14:15025  | https://doi.org/10.1038/s41598-024-66015-y

www.nature.com/scientificreports/

southern Gondwana basins. However, the northwestern Gondwana basins share clam shrimp faunal components 
with the rift basins of central Pangea. Combining the biostratigraphic and paleobiogeographic data provides 
additional insights into the spatial distribution of the clam shrimp fauna. This paleobiogeographic data reflects 
the early breakup of central Pangea, whith the dispersal of clam shrimps through fluvial-lacustrine environments 
formed in the rift valleys during the Norian.

Geological setting
The Colombian basins in northern South America were located at low paleolatitudes (0º-5º N) at the western 
margin of Pangea during the Late Triassic29. At this paleolatitude, the western margin of Pangea was affected by 
intracontinental rifting, resulting in a series of extensional basins forming during the Late Triassic30–35. In the 
Sierra Nevada de Santa Marta (SNSM) regions and the Eastern Cordillera, the filling of the basins is represented 
by the Los Indios, Corual, Tiburón, Bocas, Palermo, and Montebel formations.

The Upper Triassic Bocas and Montebel formations are located in the Eastern Cordillera of Colombia 
(Fig. 1A–C). These units host fossil assemblages characterized by freshwater invertebrates (e.g. clam shrimps, 
darwinuloid ostracods, unionid bivalves), vertebrate teeth, fish scales, and plant remains36–43. The lithological 
and fossiliferous characteristics of the Bocas and Montebel formations indicate a lacustrine environment38,42–44.

Results
Clam shrimp assemblages
The identified clam shrimp assemblages exhibit significant species diversity and are abundant within the Bocas 
and Montebel formations (Fig. 1D; Supplementary systematic paleontology). The clam shrimp faunas in both 

Figure 1.   (A) The Eastern Cordillera of Colombia in northern South America. (B,C) Detail of the studied areas 
from the Bocas and Montebel formations. (D) Stratigraphic columns of the Bocas and Montebel formations 
showing the stratigraphic position of the studied clam shrimps. Maps drawn with QGIS 3.36 (https://​www.​qgis.​
org/​en/​site/​index.​html). Stratigraphic columns drawn with Inkscape 1.2.2 (https://​inksc​ape.​org/).

https://www.qgis.org/en/site/index.html
https://www.qgis.org/en/site/index.html
https://inkscape.org/
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units are characterized by an assemblage of species with the following components and percentage abundance: 
Howellisaura colombianus Bock, 1953 (51.5%), Shipingia hebaozhaiensis Shen, 1976 (28.5%), Euestheria winter-
pockensis Bock, 1953 (17.6%), Gregoriusella sp. (1.5%), and Shipingia olseni Kozur and Weems, 2005 (0.9%; Fig. 2).

Biostratigraphy
The assemblage described from the Bocas and Montebel formations in Colombia allows for correlation with the 
Shipingia hebaozhaiensis zone defined in the Germanic Basin and the Newark Supergroup22,23,25. This correla-
tion assigns a middle-late Alaunian age (middle Norian) to the Bocas and Montebel formations22,23,25. However, 
in the middle to upper part of the Bocas Formation, the occurrence of Shipingia olseni, a marker taxa of the 
Sevatian21–23,25, in association with Shipingia hebaozhaiensis, indicates the transition between the Alaunian and 
Sevatian for this specific interval. The overlap of S. hebaozhaiensis and S. olseni has also been reported in the 
Newark Supergroup, specifically in the Groveton Member of the Bull Run Formation in the Culpeper Basin21,22.

Discussion and conclusions
Paleobiogeography
The clam shrimp taxa described from the Bocas and Montebel formations in the Eastern Cordillera of Colombia 
(Shipingia hebaozhaiensis, Euestheria winterpockensis, Gregoriusella sp., Shipingia olseni, and H. colombianus) 

Figure 2.   Fossil clam shrimps from the Upper Triassic of the Eastern Cordillera of Colombia. (A) Shipingia 
olseni Kozur and Weems, 2005. (B–D) Shipingia hebaozhaiensis Shen, 1976. (E,F) Howellisaura colombianus 
Bock, 1953. (G) Euestheria winterpockensis Bock, 1953. (H) Gregoriusella sp. (I) Detailed growth bands (white 
box in (A)) with pitted ornamentation of Shipingia olseni. (J) Detailed growth bands (white box in (B)) with 
smooth ornamentation of Shipingia hebaozhaiensis. (K) Detailed growth bands (white box in E) with radial lirae 
ornamentation of Howellisaura colombianus. The yellow arrows indicate the radial lirae. (L) Detail of the growth 
bands with radial lirae ornamentation of Howellisaura colombianus. 
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reveal common elements between the northwestern Gondwana basins and the rift basins of central Pangea. The 
common taxa (Shipingia hebaozhaiensis, Euestheria winterpockensis, Gregoriusella sp., and Shipingia olseni) have 
previously been reported in the Newark Supergroup for the Culpeper, Gettysburg, Fundy, and Newark basins 
(U.S.A. and Canada), as well as in the Germanic Basin (Germany). In addition, H. colombianus was reported in 
the Tinacoa Formation, along the Serranía del Perijá45 (Venezuela, South America). Therefore, this paleobiogeo-
graphical distribution would encompass the rift basins of central Pangea extending to the northwestern Gond-
wana basins during the middle-late Norian (middle Alaunian-early Sevatian; Fig. 3; Supplementary Table 2).

Nevertheless, older reports of clam shrimps preserved in the Los Indios Formation34 (the Sierra Nevada de 
Santa Marta, northern Colombia) provide evidence that the distribution of clamp shrimp assemblages in north-
western Gondwana and rift basins of central Pangea could have begun earlier, probably during the Lacian (early 
Norian). This early distribution is supported by Euestheria ovata Lea, 1856, Euestheria cf. E. hausmanni Schmidt, 
1938, Euestheria buravasi Kobayashi, 1975 and Shipingia weemsi Kozur et al., 2012 present in the Los Indios 
Formation as well as in units of the Newark Supergroup and the Germanic Basin (Fig. 3; Supplementary Table 2).

Distribution and dispersion of clam shrimps across rift valleys
The paleobiogeographic distribution of clam shrimps throughout central Pangea demonstrates that this fauna 
(i.e., Euestheria ovata, Euestheria cf. E. hausmanni, Euestheria buravasi, Shipingia weemsi, Shipingia hebaozhaien-
sis, Euestheria winterpockensis, Gregoriusella sp., Shipingia olseni, H. colombianus) extended across central 
Europe, the eastern margin of North America (Newark Supergroup), and northern South America during the 
Norian. This paleobiogeographic distribution coincides with the rift zones associated with the Late Triassic early 
fragmentation of central Pangea (Fig. 4).

During the latter, the fractured areas and related subsidences led to the formation of large rift valleys and a 
network of lakes and aligned river systems46. An analogous tectonic scenario can currently be observed in the 
Great Rift Valley of East Africa, resulting from the fracturing of the African Plate. The tectonic depressions are 
occupied by elongated and narrow lakes and river systems, reflecting the rift morphology that extends regionally 
(> 3000 km) from Mozambique to Ethiopia47,48.

Figure 3.   Correlation of stratigraphic units and common clam shrimp species of the Upper Triassic in the 
basins of northern South America and the rift basins of central Pangea. Species reports and unit ages are based 
on previous studies12,21–25,34,45. Figure drawn with Inkscape 1.2.2 (https://​inksc​ape.​org/).

https://inkscape.org/
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The freshwater environments, supplied by a network of fluvial and lacustrine systems in the rift valleys 
that developed in a large continentalized Pangea may have provided uniquely favorable habitats for the estab-
lishment of the clamp shrimp faunas during the Late Triassic. Additionally, the clamp shrimp reproductive 
adaptations (i.e. accelerated biological cycle, dioecious reproduction, and the presence of abundant eggs capable 
of withstanding desiccation28,49–54) could have favored their high abundance in these habitats and the survival 
resistance of their eggs during transport across rift valleys.

This conditioned dispersion of clam shrimp fauna throughout the central Pangea basins associated with 
the early fragmentation (rift basins of the central Atlantic margins; Germanic Basin; northwestern Gondwana) 
could explain the taxonomic difference with the southern Gondwanan clamp shrimp faunas (Supplementary 
Table 1). Therefore, the rift valleys of central Pangea could have acted as a paleobiogeographic barrier favoring 
the isolation of these independently evolving faunas (provincialism).

Methods
A total of 330 remarkably well-preserved specimens were collected from the Bocas and Montebel formations 
for systematic identification. These individuals were obtained from dark lacustrine claystones and siltstones 
(Fig. 1D). The specimens were observed with a binocular stereo microscope Leica S9D and photographed with a 
Leica Flexcam C1 camera. The S.E.M. (scanning electron microscope) images were obtained with a JEOL 5800LV 
microscope at the Secretaría General de Ciencia y Técnica, Universidad Nacional del Nordeste (UNNE). The pre-
viously proposed methodology was followed for taxonomic identification and biostratigraphic schemes18,23,25,55,56. 
All specimens are housed in the Instituto y Museo de Ciencias Naturales collection, Universidad Nacional de 
San Juan (registered numbers PISJ 111–117).

Data availability
No datasets were generated or analysed during the current study.

Figure 4.   Paleobiogeographic distribution of common clam shrimp species from the Upper Triassic of the 
basins of northern South America and the rift basins of central Pangea. (A) Late Tuvalian-early Lacian. (B) 
Lacian. (C) Alaunian-early Sevatian. The red lines represent the rifting zones of central Pangea during the Late 
Triassic2,5,6. The scheme was developed based on paleogeographic reconstructions for the Late Triassic57,58. 
Figure drawn with Inkscape 1.2.2 (https://​inksc​ape.​org/).

https://inkscape.org/
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