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Background: Yerba mate (YM, Ilex paraguariensis) consumption beneficially affects the 
bones. However, whether YM components exert their effect on bone cells directly re-
mains elusive. Methods: We evaluated how main YM components affect osteoblastic 
(MC3T3-E1) and osteocytic (MLO-Y4) cells in vitro when administered separately or in an 
aqueous extract. MC3T3-E1 and MLO-Y4 cells were exposed to three different experi-
mental conditions: (1) Caffeine, chlorogenic acid, and their combinations; (2) Caffeine, 
rutin, and their combinations; (3) Aqueous YM extract. Results: All polyphenol and caf-
feine concentrations as well as that of their tested combinations significantly increased 
MC3T3-E1 cell viability from 16.6% to 34.8% compared to the control. In MLO-Y4 cells, 
the lowest rutin and the two highest caffeine concentrations significantly increased cell 
viability by 11.9, 14.9, and 13.7%, respectively. While rutin and caffeine combinations 
tended to increase MLO-Y4 cell viability, different chlorogenic acid and caffeine combi-
nations did not affect it. Finally, the aqueous YM extract significantly increased MLO-Y4, 
MC3T3-E1, and differentiated MC3T3-E1 cell viability compared to the control without 
treatment. Conclusions: YM components (rutin, chlorogenic acid, and caffeine) positive-
ly affected bone cells, mainly pre-osteoblast cells. Moreover, the aqueous YM extract sig-
nificantly increased MLO-Y4, MC3T3-E1, and differentiated MC3T3-E1 cell viabilities indi-
cating an additional relevant nutritional property of YM infusion. Further studies would 
be required to elucidate the underlying effector mechanism of YM on the bones and its 
relationship with previously described in vivo positive effects.
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INTRODUCTION

Yerba mate (YM) infusion, prepared with dried leaves of Ilex paraguariensis A.St.-
Hil, is a highly consumed beverage in Latin America, mainly in Argentina, Brazil, 
Paraguay, and Uruguay, as tea or coffee. The highest YM consumption occurs in 
Uruguay (~8 kg/person/year) followed by Argentina (~6.5 kg/person/year) and it 
is exported from Argentina to more than 50 countries in the world.[1] Several ac-
tive phytochemicals have been identified in aqueous extracts of Ilex paraguarien-
sis such as xanthines, polyphenols, and saponins which would be responsible for 
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beneficial actions of YM on health.[1-7] It has been previ-
ously reported that YM could decrease triglycerides and 
cholesterol in hypercholesterolemic rats [8] and could also 
result in an improvement in the lipid profile in patients 
with dyslipidemia.[9] Additional studies showed that YM 
has anti-obesity, anti-inflammatory, antibacterial and im-
munomodulatory effects.[10-14]

A positive effect of YM has been previously observed on 
bone, both in experimental animals and in postmeno-
pausal women. A higher femoral neck and lumbar bone 
mineral density (BMD) was found in postmenopausal 
women who drank more than 1 liter of YM per day for at 
least 5 years compared to controls who did not drink YM 
infusion.[15] In addition, YM administration had a positive 
effect on BMD and trabecular bone volume in rats, by par-
tially reversing bone loss due to low Ca intake.[16] Howev-
er, in a case-control study carried out in South Brazil there 
was no significant difference between the frequency of 
fractures in women who drank YM infusion and women 
who did not.[17]

Similarly to YM, consumption of black tea and green tea 
(Camellia sinensis), which are also rich in polyphenols and 
xhantines, result in a protective effect on bone, lowering 
fracture risk.[18-20] The presence of polyphenols with an-

tioxidant effect could explain this favorable effect on bone 
tissue,[21] considering that reactive oxygen species induce 
the apoptosis of osteoblasts and osteocytes and increase 
osteoclastogenesis leading to bone loss.[22] A relationship 
between bone loss with age and oxidative stress was 
found by the assessment of advanced protein oxidation 
products such as malondialdehyde (MDA) and superoxide 
dismutase (SOD) in femur samples of young, adult, and el-
derly rats. Increased MDA levels and decreased SOD activi-
ty with aging were found.[23] Additionally, it has been 
suggested that foods rich in antioxidants may represent a 
strategy to decrease age-related bone loss, while foods 
rich in polyphenols have been associated with better bone 
health attributable to their antioxidant capacity.[20,24] 
However, although there are few in vitro studies reporting 
the effects of YM on osteoblastic cells,[25,26] whether par-
ticular components of the infusion have effects on cell sur-
vival or not remains unknown.

Therefore, we aimed to assess the content of compo-
nents with possible effects on bone tissue of commercial 
brands of Ilex paraguariensis and to evaluate the in vitro ef-
fect of the most relevant YM components (chlorogenic 
acid, rutin, and caffeine) on pre-osteoblastic and osteocyt-
ic cells. Considering that the YM is a complex mixture with 
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its corresponding matrix, we analyzed the effects of an 
aqueous YM extract on pre-osteoblastic cells, mature os-
teoblasts, and osteocytic cells.

METHODS

1. Preparation of YM infusion
YM infusions were prepared with 50 g of dried Ilex para-

guariensis leaves in 500 mL of tap water (phosphate, 0.37±

0.40 ppm; calcium, 12.48±3.83 ppm; fluoride, 0.11±0.04 
ppm) at 70 or 90°C, under constant stirring for 5 min. The 
lowest temperature (70°C) is the condition used by the man-
ufacturer companies for the analysis of YM composition in-
formed in the package and the highest temperature (90°C) 
was selected to analyze the maximum conditions in which 
YM is consumed. Samples were filtered (pore 10 µm) and 
stored at -20°C. The analyses were performed in three repli-
cates. Twelve commercial brands of YM infusions (Taragüí, 
Taragüí Energía y Unión [Las Marías], Rosamonte [Hreñuk], 
Amanda [La Cachuera], Cruz de Malta y Nobleza Gaucha 
[Molinos Río de la Plata], La Tranquera [Llorente], Playadito 
[Coop. Liebig], Piporé [Coop. Santo Pipo], Aguantadora 
[Coop. Montecarlo], Andresito [Coop. Andresito]) were ana-
lyzed. These brands comprise more than 80% of the Ilex 
paraguariensis brands sold in Argentina. 

2. YM components with possible effects on 
bone tissue

To determine the concentration of components with po-
tential activity bone-active YM components, the following 
procedures were followed: Caffeine: the content was deter-
mined by reversed-phase high-performance liquid chroma-
tography on a C18 column (Ultrasphere, Beckman, USA; 250 
mm×4.6 mm) with mobile phase 0.1% acetonitrile-water 
(20:80 v/v) and read at 273 nm.[27] Polyphenol: total poly-
phenol content (TPC) was determined spectrophotometri-
cally at 765 nm using the Folin-Ciocalteu method (ISO 14502-
1, 2005).[28] A standard curve for different concentrations of 
gallic acid (0, 10, 20, 30, 40, and 50 mg/L) (R2=0.9995) was 
plotted. The TPC was expressed as grams equivalent of gallic 
acid/100 g dry YM.[15] Calcium: its concentration was mea-
sured by atomic absorption spectroscopy (Arolab MK II, Bue-
nos Aires, Argentina). Inorganic phosphorus: it was measured 
spectrophotometrically at 690 nm (Rayto RT 6000) by induc-
ing a phosphorus reaction with molybdate in an acid medi-

um (Wiener Lab, Rosario, Argentina).[15] Fluoride: its concen-
tration was measured with ion selective electrode ORION 94-
09 with a reference electrode Ag/AgCl. The measurement is 
based on the linear relation between the mV developed by 
the electrode and the logarithm of the fluoride concentra-
tion of the standards: 10-3-10-6 M of NaF.[29]

3. Antioxidant activity
The free radical-scavenging activity of YM infusions was 

evaluated by measuring the absorbance at 517 nm of the 
samples incubated with 2,2-difenil-1-pricryl-hidrazil (DPPH) 
radical.[30] Butylated hydroxytoluene was used as a posi-
tive control. The DPPH scavenging effect (%) of the infu-
sions was calculated using the formula: ([A0–A1]/A0)×100, 
where A0 is the absorbance of the control and A1 is the ab-
sorbance of the sample. The mean inhibitory concentration 
at 50% (IC50) was calculated with the TPC that could scav-
enge 50% of the DPPH. A lower IC50 value corresponds to a 
higher antioxidant capacity of the YM infusion. In addition, 
the DPPH inhibition (%) was calculated considering a TPC of 
30 µg/mL.

4. Cell culture
The murine pre-osteoblast cell line was generously pro-

vided by Dr. McCarthy (LIOMM, La Plata, Argentina). MC3T3-
E1 cells were cultured in complete Dulbecco’s modified Ea-
gle’s Medium (DMEM; Gibco; Life Technologies, Carlsbad, 
CA, USA; supplemented with 10% fetal bovine serum [FBS], 
1% penicillin and streptomycin, 1% L-glutamine) in a hu-
midified 5% CO2 atmosphere at 37°C (CO2 incubator; Ther-
mo Fisher Scientific, Waltham, MA, USA).[31,32] 

The murine osteocyte MLO-Y4 cell line was obtained 
from Dr. Delpino (INIGEM, Buenos Aires, Argentina), with 
Dr. Bonewald´s permission (Indiana Center for Musculo-
skeletal Health, Indianapolis, IN, USA).[33] MLO-Y4 cells 
were cultured in complete α-MEM (α-Minimum Essential 
Medium; Gibco-BRL, Carlsbad, CA, USA; supplemented 
with 10% FBS, 1% penicillin, and streptomycin), at 37°C in 
a 5% CO2 incubator (Thermo Fisher Scientific, Waltham, 
MA, USA) on 0.1% type I collagen (Sigma-Aldrich, St. Louis, 
MO, USA) coated bottles or multi-well plates. The medium 
was refreshed every 2 to 3 days. Cell morphology was ana-
lyzed qualitatively through a phase contrast inverted mi-
croscope (Zeiss, Oberkochen, Germany).
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5. Differentiation of pre-osteoblast MC3T3-E1 
cells

Pre-osteoblast MC3T3-E1 cells were cultured in an os-
teogenic medium (complete DMEM supplemented with 
50 µg/mL ascorbic acid and 5 mM β-glycerophosphate).
[34] To evaluate the model of differentiated MC3T3-E1 
cells, total alkaline phosphatase activity and calcified nod-
ules were determined at days 1, 7, and 14 of culture. Enzy-
matic activity was determined by spectrophotometry (405 
nm) using a commercial kit (ALP 405 AA Wiener lab) and 
expressed concerning the total protein content assessed 
by spectrophotometry (540 nm; commercial kit Proti U/
LCR Wiener Lab). Protein assessment was performed in a 
homogenization obtained by washing the cells with phos-
phate-buffered saline, adding radioimmunoprecipitation 
assay buffer and using a scrapper and sonication to break 
the cell walls. The mineralization assay was performed by 
fixing the cells with 4% formaldehyde for 10 min and stain-
ing them with a 2% alizarin red (Sigma-Aldrich) solution 
for 30 min at room temperature, allowing the visualization 
of calcified nodules under a microscope.[27]

6. Aqueous YM extract for cell culture
The aqueous YM extract was prepared from 0.1 g of a ly-

ophilized sample (provided by Dr. Juan Ferrario; Faculty of 
Exact and Natural Sciences, Buenos Aires, Argentina),[35,36] 
which was diluted with sterile distilled water to obtain a fi-
nal concentration of 0.3 mg/mL of chlorogenic acid, one of 
the main YM components. Culture cells were exposed to 
1/500, 1/1,000, and 1/2,000 dilutions of stock solution, cor-
responding to a final concentration of chlorogenic acid of 
0.15, 0.3, and 0.6 µg/mL, respectively.

7. Cell viability exposed to YM components
MC3T3-E1 and MLO-Y4 cells were seeded on 96 well plates 

and cultured at 37°C until they reached 70% confluence. 
Subsequently, cells were exposed for 48 hr to different caf-
feine concentrations and polyphenol (rutin or chlorogenic 
acid) in two different experiments (3 repetitions each): (1) 
Caffeine (C 0.66, 1.66 y 3.33 µg/mL), chlorogenic acid (1, 5 y 
10 µg/mL) and their respective combinations (N=6/group). 
(2) Caffeine (C 0.66, 1.66 y 3.33 µg/mL), rutin (R 1, 5 y 10 µg/
mL) and their respective combinations (N=6/group). For 
both experiments, cells incubated with a complete medium 
without treatment were used as control group. Caffeine, ru-

tin, and chlorogenic acid were purchased from Sigma Al-
drich.

After incubation at 37°C for 48 hr, 10 µL of WST-1 (Cell 
Proliferation Reagent; Roche Diagnostics, Basel, Switzer-
land) were added to each well for 120 (MC3T3-E1) or 90 
min (MLO-Y4). The absorbance of each well was measured 
at 450 nm using a microplate reader (Rayto RT-2100C).

The effect of the compounds on cell viability was calculat-
ed based on the optical density for each condition (ODt), 
considering the control group (ODc) as 100% (100*ODt/ODc). 

8. Cell viability after exposition to aqueous YM 
extract

Pre-osteoblast MC3T3-E1 and MLO-Y4 cells were seeded 
on 96 well plates and cultured at 37°C until they reached 
70% confluence. In differentiated MC3T3-E1, the aqueous 
YM extract was added on day 14 of differentiation. Subse-
quently, cells were exposed for 48 hr to different dilutions 
of the YM extract. MLO-Y4 cells were exposed to dilutions 
of 1/1,000 and 1/2,000 and both MC3T3-E1 cells were ex-
posed to dilutions of 1/500 and 1/1,000. In the same plates, 
cells were cultured without any additional treatments used 
as control cells.

During following incubation at 37°C for 48 hr, 10 µL of 
WST-1 (Roche) were added to each well and the absorbance 
at 450 nm was measured over a period of 60 min using a 
microplate reader (Rayto RT-2100C). Absorbance versus 
time was plotted to find the time when the groups showed 
significant differences. The effect of the compounds on cell 
viability was calculated based on the optical density for 
each condition (ODt), considering the control group (ODc) 
as 100% (100*ODt/ODc). 

9. Data analysis
Shapiro-Wilk and Bartlett tests were used to assess nor-

mality and equal variances respectively and parametric or 
non-parametric tests were used, as appropriate. Continu-
ous variables were expressed as mean±standard error or 
median (interquartile range [IQR]), according to data distri-
bution. Cell viability data were analyzed by one-way ANO-
VA and Dunnett’s multiple comparison test or Brown-For-
sythe and Welch’s ANOVA test and Holm-Sidak’s multiple 
comparison test. Differences were considered significant if 
P value less than 0.05. Statistical analyses were performed 
using the GraphPad Prism software (GraphPad Software 
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Table 1. Concentration of yerba mate components in infusions prepared at different temperatures in 12 commercial brands

70°C 90°C P-value

Calcium (mg/L) 14.6 (12.2–20.2) 14.6 (10.0–19.0) NS

Phosphate (mg/L) 102.8 (73.2–134.0) 109 (83.6–150.8) NS

Fluoride (mg/L) 0.18 (0.08–0.33) 0.17 (0.07–0.43) NS

Total polyphenol content (g GAE/100 g YM) 14.3 (13.6–14.8) 17.1 (15.9–18.6) <0.0001

Caffeine (g/L) 0.64 (0.61–0.83) 0.81 (0.73–0.87) 0.0161

The data is presented as median (interquartile range).
GAE, gallic acid equivalent; YM, yerba mate; NS, not significant.

Inc., San Diego, CA, USA).

RESULTS

1. YM components with possible effect on 
bone tissue 

No differences in calcium, phosphate, fluoride, total poly-
phenol, and caffeine content were found among the differ-
ent commercial Ilex paraguariensis brands evaluated (data 
not shown, One-way ANOVA and Kruskal-Wallis test). Con-
sistent with those results, no differences among commer-
cial brands were observed in antioxidant activity: IC50, mean 
70.1 µg/mL; range, 47.2–90.4; IQR, 61.9–73.9; DPPH inhibi-
tion 21.8%; range, 13.4–36.2; IQR, 19.4–24.7.

The concentration of YM infusion components obtained 
with different temperatures of the water did not show sig-
nificant differences in calcium, phosphate, or fluoride con-
centration. On the contrary, significantly higher TPC and 
caffeine levels were observed at 90°C compared to 70°C 
(Table 1).

2. YM components effects on osteocytic cultured 
cells (MLO-Y4)

MLO-Y4 cells did not show evident changes in morpholo-
gy after exposure to treatments. After 3 hr of seeding, cells 
were small, stretched and stellated in shape, with many 
short processes. After 48 hr, the MLO-Y4 cells were more 
confluent and dendritic morphology, a characteristic mor-
phologic feature of osteocytes, was evident.

Rutin (R, 1 µg/mL) and caffeine (C, 1.66 and 3.33 µg/mL) 
significantly increased the MLO-Y4 cells viability compared 
to the control without treatment by 11.9%, 14.9%, and 
13.7%, respectively (Fig. 1A). The remaining concentrations 
did not show significant effects on cell viability.

All the combinations of rutin and caffeine showed a ten-

dency to increase MLO-Y4 cell viability, reaching statistical 
significance for several of them (Fig. 1B). We highlighted 
the R 10 µg/mL+C 0.66 µg/mL combination, which repre-
sents approximately, the TPC/caffeine ratio found in YM in-
fusions, which showed a significant increase of 8.4% com-
pared to the control. No additive or synergistic effect of the 
combination was observed.

On the other hand, the different combinations of caf-
feine and chlorogenic acid did not show an effect on cell 
viability (Fig. 1C). Moreover, the highest chlorogenic acid 
concentration employed in combination with caffeine 
showed a tendency to decrease MLO-Y4 cell viability, com-

pared to controls.

3. Effect of YM components on pre-osteoblastic 
cultured cells (MC3T3-E1)

MC3T3-E1 cells did not show evident morphological 
changes after exposure to rutin, chlorogenic acid, or caf-
feine or combinations at their different concentrations, 
compared to controls. The cells presented rounded mor-
phology after 3 hr of seeding and began forming a mono-
layer with a fibroblastoid shape after 1 day of culture. After 
48 hr, the cells were semi-confluent.

Each polyphenol (rutin or chlorogenic acid) and caffeine 
concentration significantly increased from 16.6% to 34.8% 
MC3T3-E1 viability cells compared to control, considered 
as 100% of viability (Fig. 2A). Furthermore, all combina-
tions between chlorogenic acid and caffeine (Fig. 2B), and 
rutin and caffeine (Fig. 2C) showed a significant increase in 
MC3T3-E1 cell viability. We highlighted two particular 
combinations (AC 10 µg/mL+C 0.66 µg/mL and R 10 µg/
mL+C 0.66 µg/mL), which had, approximately, the TPC/
caffeine ratio found in YM infusions, with an increase of 

17.7% and 25.5% in viability, respectively. 
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Fig. 1. Yerba mate (YM) components effects on MLO-Y4 cell viability. 
Data are expressed as mean±standard error (%) compared to con-
trols (white bar, 100%). The x-axis indicates the concentrations of YM 
components in µg/mL. (A) Effects of individual YM components. (B) 
Effects of rutin and caffeine combinations. (C) Effects of chlorogenic 
acid and caffeine combinations. a)P<0.05 by one-way ANOVA and 
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Fig. 4. Aqueous yerba mate (YM) extract effects on MC3T3-E1 cultured cells. (A, B) Assessment of differentiation by total alkaline phosphatase 
(ALP) activity (C) and calcified nodules (D) increase. (C, D) The aqueous YM extract significantly increased MC3T3-E1 and differentiated MC3T3-E1 
cells viability. Data are expressed as mean±standard error (%) compared to controls (white bar, 100%) at 30 and 15 min respectively. a)P<0.05 
vs. control and day 1 by Brown-Forsythe and Welch’s ANOVA test (Holm-Sidak’s multiple comparison test). b)P<0.05 by one-way ANOVA (Dunnett’s 
multiple comparison test) for MC3T3-E1. c)P<0.05 by Brown-Forsythe and Welch’s ANOVA test (Holm-Sidak’s multiple comparison test) for differ-
entiated MC3T3-E1 cells.
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4. Aqueous YM extract effects on bone cultured 
cells

The aqueous YM extract significantly increased MLO-Y4, 
MC3T3-E1 and differentiated MC3T3-E1 cell viability com-
pared to controls after 48 hr of treatment (Fig. 3, 4). Con-

sidering the same YM dilution (1/1,000) the cell viability 
was increased by 23.6% in MLO-Y4 cells, 15.4% in MC3T3-
E1 cells and 105.8% in differentiated MC3T3-E1 cells. De-
spite there being no significant differences between both 
aqueous YM extracts, there is a trend to greater viability in 

Fig. 3. Aqueous yerba mate (YM) extract effects on MLO-Y4 cell viability. (A) Absorbance (Abs) versus time graphs. Data are expressed as 
mean±standard error (SE). Data into the segmented line is shown in (B) after calculating cell viability. (B) MLO-Y4 cell viability expressed as 
mean±SE (%) compared to controls (light gray bar, 100%) at 60 min. a)Indicates significant differences between YM 1/2,000 and control. b)Indi-
cates significant differences between YM 1/1,000 and control. c)P<0.05 by Brown-Forsythe and Welch’s ANOVA test and Holm-Sidak’s multiple 
comparison test.
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the more concentrated extract. 
Representative pictures of MLO-Y4 and differentiated 

MC3T3-E1 cells show no evident changes in morphology 
after exposure to YM treatment (Fig. 5).

DISCUSSION

Elemental composition analysis of Ilex paraguariensis re-
vealed the presence of many macro- and microelements. 
Amino acids, minerals (aluminum, chromium, copper, iron, 
manganese, nickel, potassium, and zinc, among others) 
and vitamins have been described in variable concentra-
tions due to factors such as the characteristics of the soil 
and the seasons of the year.[37,38] The average calcium 
concentration found in this study in 12 commercial brands 
of YM was 15 mg/L without differences between them and 
both water temperatures evaluated. Despite the calcium 
content reported here being lower than the one informed 
previously (28.5 mg/L at 80°C and 28.7 mg/L at 90°C),[15] 
the values in both studies are low and only contribute to a 

1.5% to 3% of the Recommended Dietary Allowances (RDA; 
1,000 mg/day) considering 1 L of YM infusion per day. 
Phosphate represents 16.9% of the RDA (700 mg/day) and 
fluoride content represents a small amount below the rec-
ommended upper limit (6 mg/day). A previous study as-
sessed the content of selected elements (copper, zinc, iron, 
manganese, but not calcium),[6] the authors estimated 
that the consumption of one cup (200 mL) of YM infusion 
can cover 57.6% to 72.4% of RDA for manganese, 2.0% to 
2.4% for copper, 0.42% to 1.43% for iron, and 0.56% to 
0.84% for zinc. The bone effect of YM could not be attribut-
ed to calcium, phosphate, or fluoride content. In addition, 
we did not find differences in the levels of these extracted 
compounds when the temperatures used were above 70°C.

On the other hand, caffeine concentration and total poly-
phenol increased at higher extraction temperatures. Caf-
feine consumption has a negative impact on BMD with ac-
celerated bone loss [39] and increased risk of fractures,[40] 
mainly associated with low calcium diets.[41,42] This nega-
tive effect was also observed in experimental animals.[43,44] 
Caffeine administration enhanced osteoclastogenesis from 
bone marrow hematopoietic cells and bone resorption ac-
tivity in vivo.[45] Moreover, caffeine enhanced the expres-
sion of the receptor activator of nuclear factor-κB ligand 
(RANKL) and reduced osteoprotegerin protein levels in 
MC3T3-E1 pre-osteoblastic cells.[42] Caffeine (10 mM=1,942 
µg/mL) also showed a negative effect on viability of the os-
teoblasts, the formation of ALP-positive staining colonies 
and mineralization nodules.[46] However, in the current 
study, we found an increase in bone cell viability, mainly for 
pre-osteoblast (MC3T3-E1) cells following low caffeine con-
centrations treatment (0.66–3.33 µg/mL). A systematic re-
view showed both effects, caffeine can negatively interfere 
with bone metabolism by accelerating bone loss and delay-
ing bone repair, or positive effect by activating osteogenesis 
and bone neoformation.[47]

According to recommendations, caffeine intake should 
be below 400 mg/day [48] because a negative association 
between caffeine (>200–300 mg/day=~400–500 mL of 
coffee) and BMD has been reported, an effect which was 
attenuated with Ca intake >750 mg/day.[38,43] Conse-
quently, the caffeine concentration found in our study (800 
mg/L; 95% confidence interval, 610–860) for an estimated 
intake of 1 liter of YM per day would be above the daily 
recommendation. Therefore, it could be expected that YM 

Fig. 5. Cell morphology on a contrast phase microscope. (A) MLO-Y4 
cells without treatment. (B) MLO-Y4 cells after 48 hr treated with a 
1/1,000 dilution of aqueous yerba mate (YM) extract. (C) Differentiat-
ed MC3T3-E1 cells without treatment. (D) Differentiated MC3T3-E1 
cells after 48 hr treated with a 1/1,000 dilution of aqueous YM ex-
tract.
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consumption was deleterious for bone tissue. However, 
previous studies have found a positive effect of YM infu-
sion on BMD in postmenopausal women and experimental 
animals.[14,15] 

These positive effects could be explained by the antioxi-
dant action of polyphenols which have shown a positive 
impact on bone metabolism.[20,23] Polyphenols can pre-
serve bone health potentially by different mechanisms: the 
antioxidant effect, which could be lower and be shared with 
other infusions or foods such as tea, wine, and blueberries, 
among others. YM was able to decrease bone resorption in 
rats by inhibiting osteoclastogenesis in a RANKL-dependent 
signaling pathway activated by oxidative stress.[49] More-
over, polyphenols have proven osteoblastogenesis improve-
ment and osteoclastogenesis reduction.[50,51] Among the 
polyphenols known to have bone effects, dietary soy isofla-
vones suppress bone depletion in rodents and post-meno-
pausal women, icariin has been reported to have osteogenic 
properties both in vitro and in vivo and fisetin promotes os-
teoblasts differentiation through Runx2 transcriptional ac-
tivity.[45,52] 

In this study, we found that the main polyphenols pres-
ent in YM significantly increased pre-osteoblast (MC3T3-E1) 
cell viability at all concentrations evaluated, from 1 to 10 
µg/mL. On osteocytes, the individual effect was lower and 
only the lowest rutin concentration (1 µg/mL) showed a 
significant increase in cell viability. In agreement with our 
results, chlorogenic acid prevented RANKL-induced osteo-
clastogenesis,[53] promoted osteogenic differentiation of 
human dental pulp stem cells through Wnt signaling [54] 
and prevented osteoporosis in ovariectomized rats through 
the Shp2/phosphoinositide 3-kinase/Akt pathway.[55] 
Moreover, rutin from Chrozophora tinctoria increased osteo-
cyte and osteoblast-related gene expression and decreased 
the expression of members of the Runx2 suppressor family 
and of osteoclastogenic genes in the SAOS-2 cell line.[56]

We also evaluated the combinations of both polyphe-
nols (chlorogenic acid or rutin) plus caffeine. While all com-
binations showed a significant increase in pre-osteoblast 
(MC3T3-E1) cell viability, the effect in osteocyte cells (MLO-
Y4) was less clear. Furthermore, it would appear that there 
is a competition between chlorogenic acid and caffeine in 
osteocytic cells because chlorogenic acid inhibits the caf-
feine-induced increase in osteocyte viability, an effect 
which was not observed in MC3T3-E1 cells. 

Despite the value of the evaluated individual YM compo-
nent and its combinations on bone cells, we considered the 
importance of assessing the YM extract effect because of its 
matrix and possible interactions. Here we found that the 
aqueous YM extract significantly increased the viability of 
MLO-Y4 (~23%), MC3T3-E1 (~15%) and differentiated MC3T3-
E1 (~100%) cells compared to the control without treatments. 
In accordance with YM components effects results, the aque-
ous YM extract increased cell viability mainly on MC3T3-E1 
differentiation cells. Furthermore, the same YM extract 
showed a positive effect on survival and growth of dopami-
nergic neurons in culture.[36] It was also recently demonstrat-
ed that pre-administration of YM extract may prevent delete-
rious effects in cell morphology, increasing cell adhesion and 
proliferation rate in MC3T3-E1 cells exposed to H2O2, which 
could enable the maintenance of extracellular matrix in the 
presence of oxidative stress.[25] Moreover, a positive effect of 
low concentration of soluble YM on osteoblast of bone mar-
row-derived mesenchymal stromal cells differentiation was 
found, with increased alkaline phosphatase activity, mineral-
ization and gene expression of transcription factors (Runx2, 
Osterix, and β-catenin) and bone matrix proteins (osteopon-
tin, bone sialoprotein, osteocalcin, and bone morphogenetic 
protein-2).[26] However, the same study showed that a higher 
YM concentration (≥50 µg/mL) had deleterious effects, in-
cluding cytotoxicity.[26]

Some limitations of the study must be pointed out: it is 
an in vitro study with a limited range of concentrations 
evaluated and without considering the bioavailability of 
the components included in a complex matrix of YM. In ad-
dition, the viability assay (WST-1) does not allow complete 
discrimination between cell survival and cell proliferation, 
because both situations could increase the overall activity 
of succinate-tetrazolium reductase (EC 1.3.99.1), only active 
in metabolically intact cells.

In conclusion, main YM components (rutin, chlorogenic 
acid, and caffeine) have shown positive effect on bone cells, 
mainly pre-osteoblast cells (MC3T3-E1). Moreover, the aque-
ous YM extract significantly increased the viability of osteo-
cytic (MLO-Y4), pre-osteoblast cells (MC3T3-E1), and differ-
entiated MC3T3-E1 cells indicating an additional relevant 
nutritional property to YM infusion. Latin America, mainly 
Argentina and Brazil, are the main producers of YM in the 
world. According to the National Institute of YM (INYM) from 
Argentina, in 2019 they exported almost 80 million kilos 
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mainly to Syria, Chile, Lebanon, USA, and Spain.
However, further studies are necessary to elucidate the 

mechanism of action of YM on bone and its relationship 
with previously positive YM effects on the bone described 
in vivo. 
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