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ABSTRACT 12 

Bacteria that live asymptomatically within plant tissues are known as 13 

endophytes. Because of the close relation with the plant host, they have been a 14 

matter of interest for application as plant growth promoters. Melia azedarach is a 15 

widely distributed medicinal tree with proven insecticidal, antimicrobial, and 16 

antiviral activity. The aim of this study was to isolate and characterize endophytic 17 

bacteria from M. azedarach and analyze their plant growth promoting activities 18 

for the potential application as biological products. Bacteria were isolated from 19 

roots and leaves of trees growing in two locations of Northeastern Argentina. The 20 

isolates were characterized by repetitive extragenic palindromic sequence PCR 21 

and 16S rDNA sequence analysis. The plant growth-promoting activities were 22 

assayed in vitro, improvement of plant growth of selected isolates was tested on 23 

M. azedarach plantlets, and the effect of selected ACC deaminase producing 24 

isolates was tested on tomato seedlings under salt-stress conditions. The highest 25 

endophytic bacterial abundance and diversity were obtained from the roots. All 26 

isolates had at least one of the assayed plant growth-promoting activities and 27 

80% of them had antagonistic activity. The most efficient bacteria were 28 

Pseudomonas monteilii, Pseudomonas farsensis, Burkholderia sp. and 29 

Cupriavidus sp. for phosphate solubilization (2064 μg P ml−1), IAA production 30 

(94.7 μg ml−1), siderophore production index (5.5) and ACC deaminase activity 31 

(1294 nmol α-ketobutyrate mg-1 h-1). M. azedarach inoculation assays revealed 32 

the bacterial growth promotion potential, with Pseudomonas monteilii, 33 

Pseudomonas farsensis and Cupriavidus sp. standing out for their effect on leaf 34 
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area, leaf dry weight, specific leaf area, and total Chl, Mg and N content, with 35 

increases of up to 149%, 58%, 65%, 178%, 76% and 97.7%, respectively, 36 

compared to NI plants. Efficient ACC deaminase-producing isolates increased 37 

stress tolerance of tomato plants under saline condition. Overall, these findings 38 

indicate the potential of the endophytic isolates as biostimulant and biocontrol 39 

agents. 40 

 41 

Keywords: endophyte; plant growth-promoting bacteria; Melia azedarach L.; 42 

medicinal plant; biological control. 43 

 44 

1. Introduction 45 

Plants live in association with a diverse microbial community that includes 46 

bacteria, fungi, and archaea. The plant host compartments provide diverse 47 

habitats in roots, rhizosphere, and above-ground organs, leading to the 48 

adaptation of niche specialized microbes [1–3]. The internal plant tissues 49 

integrate the endosphere, a more stable environment with ecological advantages, 50 

characterized by less competition for nutrients, protection from external biotic and 51 

abiotic factors, and direct plant interaction [4,5]. Plant traits, such as root 52 

morphology, metabolite production and immune response, play significant roles 53 

in plant-microbe interactions [6]. Flavonoids, for example, are chemoattractants 54 

that take part in the rhizobia-legumes symbiosis [7], but they also induce the 55 

colonization of rice roots by non-rhizobial endophytes, such as Serratia sp. [8]. 56 

Similarly, secondary defense metabolites, such as pyrrolizidine alkaloids, can 57 

affect the rhizosphere microbiota by favoring resistant or tolerant microorganisms 58 

[9].  59 

In return, the presence of endophytic microorganisms in plant tissues can 60 

influence plant growth and development. Plant growth-promoting bacteria 61 

(PGPB) enhance plant nutrition efficiency through diverse mechanisms, such as 62 

nitrogen fixation [10,11], soil phosphorus and iron solubilization [12,13], and 63 

phytohormone production [14]. Under adverse environmental conditions, like 64 

drought, heat, and salinity, endophytes can mitigate the effects of the abiotic 65 

stresses by producing phytohormones [15,16], antioxidants [17], 66 

osmoprotectants and 1-aminocyclopropane-1-carboxylic acid (ACC) deaminase 67 

[18,19]. Endophytes can also be biological control agents and inhibit disease 68 
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symptoms caused by viral, fungal, and bacterial pathogens. Being able to 69 

colonize internal tissues, they can protect the plant directly by space competition 70 

against pathogens, and the production of antimicrobial compounds [20,21]. 71 

Besides, the close interaction and continuous crosstalk between endophytes and 72 

their plant host favor the induction of indirect control mechanisms, like plant 73 

systemic disease resistance [22,23] and the decrease of plant ethylene levels 74 

[24]. 75 

Plant growth-promoting bacteria were isolated from vegetative and reproductive 76 

structures of numerous plant species, and to a greater extent in agricultural crops 77 

[25]. Instead, there is limited information about PGPB of woody species, which 78 

represent an interesting potential given the unique ecological characteristics that 79 

occur especially in perennial and widely distributed species [26]. Most of the 80 

reports refer to nitrogen fixation and phytohormone production activities of 81 

bacterial endophytes inoculated into poplar and pine trees [27,28].  82 

Melia azedarach is a tree native to Asia that has been widely distributed in 83 

tropical, sub-tropical and warm temperate regions of the world [29]. Leaf and fruit 84 

extracts have insecticidal, antimicrobial, and antiviral activity against human and 85 

plant pathogens [30-32]. Like other medicinal plants that produce unique 86 

bioactive secondary metabolites, M. azedarach is expected to harbor a distinctive 87 

microbiota [33,34], which may also participate in metabolic pathways or produce 88 

specific biologically active compounds [35,36]. In fact, previous works reported 89 

the isolation of endophytic fungi able to produce compounds with antifungal and 90 

antibacterial activity [14,37]. Based on this data, it is reasonable to think that the 91 

endophytic bacterial community would also have useful plant growth promoting 92 

traits. The aim of this study was, therefore, to isolate and characterize endophytic 93 

bacteria from M. azedarach and analyze their plant growth promoting activities 94 

for the potential application as bioinoculants for crop production.  95 

 96 

2. Materials and methods 97 

2.1. Plant sampling and endophytic bacteria isolation 98 

Root and leaf samples were collected from four Melia azedarach trees growing 99 

in two locations, Santa Ana (San Cosme Department; 27°27′23.5ʺS, 100 

58°41′13.6ʺW) (trees named 4 and 11) and Corrientes (Capital Department; 101 

27°28′24′′S, 58°46′56.1ʺW) (trees named 2 and 3), in Corrientes province, in the 102 

northeast of Argentina. The region is characterized by a humid subtropical 103 
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climate, with a mean annual rainfall of approximately 1,200 mm, distributed 104 

mainly during spring-summer period (November to March). The mean annual 105 

temperature is 22°C with scarce frosts [38]. The soil is an Entisol (Aquents 106 

suborder), sandy-textured, with a clear and narrow surface horizon and poor 107 

organic matter content [39]. Samplings were conducted in September (2018) and 108 

March (2019) (corresponding to spring and autumn, respectively). In each tree, 109 

three root and leaf samples were analyzed as previously described [12]. Each 110 

root sample consisted of five random 2 g-subsamples fully mixed, making 10 g-111 

samples. In the case of leaf samples, 5 g-subsamples were mixed to obtain 25 112 

g-samples. 113 

Disinfection was performed as described by Domecq et al. [40] with slight 114 

modifications. Roots and leaves were thoroughly washed with tap water, 115 

sequentially surface-sterilized with 70% ethanol and 2% (v/v) sodium-116 

hypochlorite, and rinsed three times with sterile distilled water. Root and leaf 117 

sections were then placed on tryptone soybean agar (TSA) medium for one week 118 

at 28°C. To check the surface disinfection efficiency, aliquots of the last wash 119 

water were plated on TSA and examined for the presence of microbial-growing 120 

colonies. 121 

Preliminary assays were performed in order to standardize the endophytic 122 

bacteria isolation method. Two protocols were tested, with and without cell 123 

enrichment steps, according to Ikeda et al. [41]. Due to the low quantity of colony 124 

forming units (CFU) obtained from the leaf samples, we decided to increase the 125 

amount of input material from 10 g to 25 g. The cell enrichment method resulted 126 

in a significantly higher number of cultivable bacteria, and was therefore selected 127 

for processing the samples, with slight modifications as follows. Leaf (25 g) or 128 

root (10 g) samples were homogenized in 100 ml of bacterial cell extraction (BCE) 129 

buffer in a blender for three 1-min periods. The homogenate was sequentially 130 

centrifuged at 110×g for 5 min at 10°C and twice at 435×g for 20 min at 10°C. 131 

The supernatant was filtered using a Whatman filter paper (101 fast) and then 132 

centrifuged at 4,900×g for 20 min at 10°C. The pellet was suspended in 12.5 ml 133 

of BCE buffer and centrifuged at 13,500 × g for 10 min at 10°C. The supernatant 134 

was again filtered with sterile 40 μM filter disk and centrifuged at high speed; this 135 

procedure was performed twice. Finally, the pellet was suspended in 1.5 ml of 136 

50mM-Tris-HCl pH 7.5. Serial dilutions of this suspension were plated in TSA 137 

medium supplemented with 0.01% cycloheximide to prevent fungal growth. 138 
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Plates were incubated at 28° C for 96 h for the isolation and enumeration of 139 

cultivable endophytic bacteria. The bacterial colonies were counted on the plates 140 

containing 10–100 CFU. The number of CFU/g of plant was expressed as the 141 

logarithm at the base of 10. The viable cell count was conducted in triplicate. The 142 

bacterial isolation was performed on two replicates per sample; 20 colonies of the 143 

predominant morphologies were selected from each plate, subcultured in fresh 144 

medium and purified.  145 

2.2. Identification of endophytic bacteria 146 

The endophytic community was characterized at the strain level by repetitive 147 

extragenic palindromic sequence PCR (Rep-PCR) using ERIC1R-ERIC2 primers 148 

[42]. Bacterial DNA was purified using Chelex 100 resin (Bio-Rad) as described 149 

by Alippi and Aguilar [43]. Amplification and electrophoresis analysis were 150 

performed according to Versalovic et al. [42]. The digital images were analyzed 151 

with Gelcompare software version 4.0 (Applied Maths BVBA, Belgium). A total of 152 

167 Rep-PCR profiles were generated with a similarity cutoff of 85%. 153 

One isolate of each profile generated by Rep-PCR was selected for 154 

identification by 16S rDNA sequencing and phylogenetic analysis. Ribosomal 155 

16S rRNA gene was amplified by PCR using rD1 and fD1 universal primers [44]. 156 

The resulting PCR products were purified with a commercial kit (AccuPrep® 157 

PCR/Gel Purification Kit, Bioneer) and sequenced by Macrogen Inc., Seoul, 158 

Korea. Nucleotide sequences were compared with the EzBioCloud 16S 159 

database, and pairwise sequence similarities were determined with the EzTaxon 160 

server [45]. 161 

The 16S rDNA sequences were clustered into operational taxonomic units 162 

(OTU) with a dissimilarity threshold of 3% using CD-HIT SUITE program [46], for 163 

assignment at the species level. Although sequence divergence is not evenly 164 

distributed in the 16S rRNA region, 3% dissimilarity is often chosen in practice as 165 

the cutoff value to define bacteria species [47,48]. The abundance of each OTU 166 

was determined by adding the number of isolates from each representative Rep-167 

PCR profile for all the 16S rDNA sequences included in that OTU. Prior to 168 

comparative analyses, the abundance values were normalized using the 169 

totalgroup-based method described in mothur 170 

(http://www.mothur.org/wiki/Normalize.shared), by this method sequences were 171 

subsampled to the number of sequences in our smallest group (12 sequences) 172 

and then normalized across samples. Forty five OTUs were distinguished in the 173 
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bacterial community, 35 of them remained after normalization and were used for 174 

the abundance matrix (heat map in Fig. 2.B), and diversity and composition 175 

analyses. 176 

Pseudomonas isolates were further identified by multilocus sequence analysis 177 

[49,50] because 16S rRNA gene sequences of related species are highly similar 178 

(98.2 to 99%), and not informative enough to reach species level identification 179 

[51,52]. Genomic DNA of six isolates representative of the three Pseudomonas 180 

OTUs (28, 29 and 32) were amplified using primers PsEG30F/PsEG790R [53] 181 

and gyrB-F/ gyrB-R [54] for rpoD and gyrB genes, respectively. Both genes were 182 

successfully amplified from isolates of OTUs 28 and 29, while for OTU 32 only 183 

the rpoD sequence was obtained. Neighbor-joining phylogenetic trees were 184 

constructed from the combined nucleotide sequences of rpoD (690 bp), gyrB (910 185 

bp) and 16S rRNA (810 bp) for OTUS 28 and 29, and from of rpoD and 16S rRNA 186 

for the three OTUs together. 187 

2.3. In vitro plant growth-promoting (PGP) activities 188 

The endophytic community was assayed for in vitro plant nutrition, plant growth 189 

regulation and for antagonistic potential against phytopathogenic bacteria and 190 

fungi. Sixty five isolates were tested, including at least one representative of the 191 

45 previously identified OTUs. All tests were carried out in triplicate.  192 

2.3.1. Nitrogen fixation ability 193 

The nitrogen fixation ability was tested according to Weber et al. [55], with 194 

modifications. The isolates were grown in liquid malate NFb medium [56] 195 

supplemented with yeast extract (0.005%) and incubated 72 h at 28ºC. Once 196 

growth was observed, an aliquot was used to inoculate fresh liquid NFb medium 197 

and incubated under the same growth conditions. This procedure was repeated 198 

at least three times. Finally, 0.1-ml aliquots were inoculated into vials containing 199 

semi-solid bromothymol blue NFb medium with (nitrogen supplemented 200 

condition) or without (NH4)2SO4 (nitrogen fixation condition). Vials without 201 

(NH4)2SO4 showing a veil-like surface layer were considered positive. The 202 

nitrogen fixing Azospirillum brasilense Cd was used as reference strain [57]. 203 

In addition, the presence of nifH gene, encoding the nitrogenase reductase 204 

subunit, was analyzed by PCR with PolF-PolR primers according to Poly et al. 205 

[58], and nested PCR as described by Yeager et al. [59].  206 

2.3.2. P solubilization activity 207 
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Isolates were initially screened for their phosphate-solubilizing ability on NBRIP 208 

(National Botanical Research Institute’s phosphate growth medium) solid 209 

medium with tricalcium phosphate as the exclusive P source according to Mehta 210 

and Nautiyal [60]. Four isolates were inoculated per plate and incubated at 28°C 211 

for three weeks. The solubilization index (SI) was calculated every two days by 212 

subtracting the colony diameter from the clear halo diameter; isolates displaying 213 

an SI equal or higher than 1.4 in three replicates were selected for quantitative P 214 

solubilization assay, performed as previously described by Collavino et al. [12]. 215 

Phosphorus solubilization was estimated using the molybdenum blue method 216 

[61]. Phosphate solubilizing Pseudomonas RHP3 was used as reference strain 217 

[60]. 218 

2.3.3. Indole acetic acid (IAA) production  219 

The IAA production was determined as described by Patten and Glick [62]. Each 220 

isolate was inoculated in 10 ml of DF medium [63] supplemented with 200 µg ml-221 

1 of L-tryptophan and incubated for 72 h at 28°C. The IAA content was assayed 222 

in the culture supernatant by reaction with Salkowski's reagent 1:2 (v/v) and 223 

measured by absorbance at 535 nm. The IAA producing strain, Azospirillum 224 

brasilense Cd, was used as reference [57]. 225 

2.3.4. Siderophore production 226 

Siderophore production was estimated according to Schwyn and Neilands [64], 227 

with modified Chrome Azurol S (CAS) agar medium, as described by Alexander 228 

and Zuberer [65]. Four isolates were assayed per CAS agar plate by placing 20 229 

μl of the bacterial suspension (approximately 108 CFU ml-1) in each quadrant and 230 

incubating for 72 hours at 28ºC. The colony diameter and colored zone were 231 

measured daily. Siderophore producing index (SPI) was calculated as follows: 232 

total diameter (colony and colored zone)/ colony diameter. Pseudomonas 233 

chlororaphis RPAN1 was used as positive reference strain [66]. 234 

2.3.5. ACC deaminase activity 235 

Isolates were screened for ACC deaminase activity on DF minimal medium with 236 

ACC (5 mM) as sole nitrogen source, according to Penrose and Glick [67]. The 237 

activity was quantified on the selected isolates by monitoring the amount of α-238 

ketobutyrate produced by ACC deamination as described by Honma and 239 

Shimomura [68] with modifications [67]. Pseudomonas putida ATCC 17399 and 240 

the isogenic strain with plasmid pRKACC, carrying an ACC deaminase gene, 241 

were used as negative and positive reference strains, respectively [69]. 242 
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2.3.6. Antagonist activity  243 

In vitro antagonist activity was evaluated by dual culture assays against 244 

common phytopathogenic microorganisms of tomato, cassava and citrus, which 245 

are important crops of Corrientes province, Argentina. The following pathogens 246 

were used: Fusarium oxysporum [70], Ralstonia solanacearum [71], (Vegetable 247 

diseases laboratory, INTA EEA Bella Vista, Corrientes, Argentina), Clavibacter 248 

michiganensis subsp michiganensis [72] (kindly provided by Dr. Ana María 249 

Romero, Universidad de Buenos Aires, Argentina), Xanthomonas axonopodis pv. 250 

manihotis, Xanthomonas citri subsp. citri, Xanthomonas axonopodis. pv. 251 

vesicatoria and Pseudomonas syringae pv. tomato (Citrus plant pathology 252 

laboratory collection, INTA EEA Bella Vista, Corrientes, Argentina). 253 

Bacterial antagonism was evaluated as previously described by Bach et al. [73] 254 

with modifications. Pathogenic and endophytic bacteria were grown in 10 ml of 255 

TS broth until OD600 = 1.00 (approximately 108 CFU ml-1). 100 μl of each 256 

pathogenic culture were plated on TSA, followed by drop-inoculation (5 μl) of the 257 

endophytic bacteria. Nine isolates were inoculated per plate and the inhibition 258 

zone was examined after 24 h at 28°C.  259 

Antagonism against F. oxysporum was evaluated as previously described by 260 

Comby et al. [74], with some modifications. Each bacterial suspension (OD600 = 261 

1.00) grown on TS broth was used to saturate a sterile filter paper disk (5 mm) 262 

and placed at four equidistant points of a potato dextrose agar (PDA) plate. Then, 263 

a F. oxysporum seven-day culture mycelial pellet (0.5 cm2) was inoculated at the 264 

center and incubated for 7 days at 28°C. Plates containing only Fusarium pellets 265 

served as control. The means of three independent repetitions were used to 266 

calculate the Inhibition index (Ii), being Ii = [(ø Fusarium alone – ø Fusarium with 267 

endophyte) / ø Fusarium alone]*100. Inhibition index values range from 0 (null 268 

inhibition) to 100 (complete inhibition). 269 

2.3.7. Bacterial pathogenicity test 270 

Hypersensitive response (HR) on tobacco and pathogenicity tests were done to 271 

discard potential plant pathogenic bacteria. Gram-negative bacteria were 272 

infiltrated in Nicotiana tabacum leaves to test the ability to induce HR after 48 h. 273 

This technique rapidly identifies Gram-negative heterologous pathogenic bacteria 274 

[75]. All HR positive isolates and Gram-positive bacteria were tested for 275 

pathogenicity on M. azedarach seedlings under greenhouse conditions. Each 276 

isolate was separately inoculated on leaves and roots so that different entrance 277 
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points were considered. For leaf inoculation, wounds were done with a scalpel at 278 

the leaf base and a drop of inoculum (20 µl, 106 CFU ml-1) was applied. Previously 279 

wounded roots were inoculated by immersion in a 106 CFU ml-1 bacterial 280 

suspension. Negative controls were inoculated with PBS. Visual disease 281 

symptom appearance was registered until 30 days after inoculation. 282 

2.4. In vivo plant growth promoting activities 283 

2.4.1. Melia azedarach inoculation assays 284 

The inoculation effects of PGP on plant growth were assayed on M. azedarach 285 

clone J2 plantlets obtained by in vitro propagation [76]. Rooted plantlets of similar 286 

height (7 cm to 10 cm) were transplanted into 250-ml plastic pots with sterilized 287 

perlite and watered with 1/4 Hoagland’s nutrient solution [77]. After seven days, 288 

the plants were inoculated by root immersion for 1 h in a fresh bacterial 289 

suspension (2 x108 CFU ml-1). The experimental design was in randomized 290 

complete blocks with 20 plants per treatment. The treatments included five single 291 

inoculations with isolates Bacillus sp. A101, Pseudomonas sp. A116, 292 

Pseudomonas sp. A60, Burkholderia sp. M55 and Cupriavidus sp. N1, and one 293 

non-inoculated (NI) control. The experiment was performed under controlled 294 

environmental conditions (28±1/24±2°C day/night temperature, 12-h photoperiod 295 

at 400 μmolm−2s−1). 296 

The following parameters were evaluated 120 days after inoculation: plant 297 

height, leaf area, and leaf, stem and root dry weight. Total dry weight, aerial/root 298 

biomass ratio and specific leaf area were calculated. The chlorophyll content 299 

(Chl-a, Chl-b, and total Chl) was determined by spectrophotometry [78], 300 

performing the extraction in 0.1 g leaf, with 4 random samples for each treatment. 301 

Leaf content of major nutrients (N, P, K, Ca, Mg) was analyzed. Among them, K, 302 

Na, Ca, and Mg were determined after wet digestion, K and Na content was 303 

determined by flame photometry, and Ca and Mg by complexometric titration with 304 

EDTA [79]. Kjeldahl [80] and Murphy and Riley [61] methods were applied to 305 

determine N and P content, respectively.  306 

2.4.2. Gnotobiotic root elongation assay in tomato seedlings 307 

The gnotobiotic root elongation assay was based on the ACC deaminase 308 

producing bacteria ability to reduce ethylene levels of plants under stress 309 

conditions [67, 81]. The ACC deaminase producing bacteria were tested for their 310 

effect on the growth of tomato (Solanum lycopersicum) seedlings under salt-311 

stress conditions. The assay was performed using the root elongation test 312 

Jo
urn

al 
Pre-

pro
of



10 

 

described by Penrose and Glick [67], with modifications [82]. Seeds were surface-313 

sterilized and germinated in the dark on water agar plates at 28°C. Two-day-old 314 

seedlings were incubated for 1 h with fresh bacterial suspension in sterile 30-mM 315 

MgSO4, at a density of about 2 x108 CFU ml-1. The following isolates were 316 

selected for the plant assay: Burkholderia sp. M55, Burkholderia sp. M57, 317 

Paraburkholderia sp. N147, Cupriavidus sp. N1, Variovorax sp. N4, Variovorax 318 

sp. N133. Seedlings inoculated with sterile 30-mM MgSO4 were used as negative 319 

control. After inoculation, 20 seedlings were placed in glass bottles with sterile 320 

filter paper, and watered with half strength N-free Hoagland’s solution [79] 321 

supplemented with 100 mM NaCl. The bottles were placed in a completely 322 

randomized design with four replications for each treatment. The experiment was 323 

performed under controlled environmental conditions (28±1/24±2°C day/night 324 

temperature, 12-h photoperiod at 400 μmolm−2s−1). After 9 days, the primary root 325 

and stem length were measured. 326 

2.5. Statistical data analysis 327 

Alpha diversity of the endophytic community was measured using Shannon (H’) 328 

and Simpson (1-D) indices, analyzed with Past3 program [83]. To determine 329 

abundance, diversity and significance of plant growth parameters across 330 

samples/treatments, one-way ANOVA or non-parametric Kruskal–Wallis H tests 331 

were applied, according to their normality. The correlations between the plant 332 

parameters were calculated using Pearson’s correlation coefficient. The variation 333 

analysis was performed with the statistical package InfoStat version 2011 [84]. 334 

3. Results 335 

3.1. Endophytic community of Melia azedarach 336 

The number of endophytes was significantly higher in root samples and 337 

interaction with the sampling time was observed (F = 28, p = 0.0001). The number 338 

of bacteria was higher in spring than in autumn leaf samples (F = 158.66, p < 339 

0.0001); no significant difference was observed between spring and autumn roots 340 

(Fig. 1A). 341 

A total of 507 isolates were obtained, 252 from leaves (137 and 115 from spring 342 

and autumn, respectively) and 255 from roots (110 and 145 from spring and 343 

autumn, respectively). Alpha diversity was significantly higher in roots, showing 344 

a strong effect of plant organ (H´ F = 9.56, p = 0.006; 1-D F = 7.81, p = 0.012) 345 

(Fig. 1B). Sampling time did not affect diversity (p ≥ 0.8). 16S rRNA analysis 346 
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showed that most of the endophytes belonged to the phyla Proteobacteria 347 

(Pseudomonadales, Enterobacterales, Burkholderiales and Rhizobiales) and 348 

Firmicutes (Bacillales). Actinobacteria and Bacteroidetes were present in low 349 

proportion (Fig. 2A). The leaf community was mostly composed of 350 

Pseudomonadales (44%), Enterobacterales (36%) and Bacillales (18%). In 351 

contrast, a greater diversity of groups was observed in root samples, with 352 

abundance of Bacillales (31%), Burkholderiales (30%), Rhizobiales (17%) and 353 

Pseudomonadales (13%). As regards seasonal variation in the endophytic root 354 

community, spring samples had the highest proportion of Bacillales while 355 

Burkholderiales and Rhizobiales predominated in autumn (Fig. 2A). 356 

The phylotype distribution among samples also reflected the differential 357 

bacterial composition within plant organs (Fig. 2B). Only 5 of the 35 OTUs 358 

observed were present in root and leaf samples. All Burkholderiales, Rhizobiales, 359 

and most of Bacillales phylotypes were detected only in roots while 360 

Enterobacterales and Pseudomonadales were found almost exclusively in leaves 361 

(Fig. 2B). The most abundant OTUs belonged to Pseudomonas (OTU 28) and 362 

Kosakonia (OTU 35), representing 18 and 16% of total isolates, respectively. 363 

OTU 28, closely related to P. monteilii, had wide distribution in root and leaf 364 

samples (present in 65% of the samples) while OTU 35, related to Kosakonia 365 

cowanii, was found exclusively and in almost all leaf samples (Fig. 2B). 366 

The Pseudomonas OTUs were further identified to the species level through the 367 

combined analysis of 16S rRNA, rpoD and gyrB genes. In the generated tree, 368 

OTUs 29 and 32 clustered with P. oryzihabitans and P. stutzeri, respectively. 369 

Similar results were obtained from the phylogenetic trees generated by single or 370 

multiple gene sequences (16S rRNA, gyrB and rpoD genes for OTU 29, and 16S 371 

rRNA and rpoD for OTU 32), supporting the strains affiliation (Fig. 3A, B; Fig. S1). 372 

The isolates of OTU 28 were separated in two clusters, strains A1 and A116 373 

grouped with P. farsensis while A60 and 2A10 grouped with P. monteilii and P. 374 

parafulva, with A60 being highly related with P. monteilii in all the phylogenetic 375 

trees, except the one inferred from the 16S rDNA sequences alone (Fig. 3A, B; 376 

Fig. S1). P. farsensis related isolates had low abundance and were found in only 377 

two samples (leaves of trees 2 and 3, warm season) while the isolates related 378 

with P. monteilii had the abundance and distribution described for cluster 28 (Fig. 379 

2B). 380 
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3.2. Melia azedarach endophytic community has diverse and highly efficient 381 

PGP activities 382 

The potential plant growth promoting activities were assayed in 65 endophytic 383 

isolates, representing the 24 identified genera. The most common traits were P 384 

solubilization and IAA production, found in 97% and 89% of the isolates, 385 

respectively. N-fixing activity, assayed by growth on N-free media and detection 386 

of the nifH gene, had lower frequency (38.4%), but were equally distributed within 387 

all endophytic classes (Fig. 4). The efficiency of these activities differed among 388 

groups. Most isolates of Pseudomonadales and Enterobacterales showed high P 389 

solubilization activity, with maximum between 407 and 2064 μg P ml−1, reaching 390 

three times higher activity than the reference strain (Pseudomonas RHP3, 685 391 

μg P ml−1). Also IAA production was high in M. azedarach endophytes; some 392 

isolates of Pseudomonas, Pantoea and Bacillus produced more IAA than the 393 

reference strain (Azospirillum brasilense Cd, 44 μg ml−1), with maximum levels of 394 

94.7, 87.5, and 79 μg ml−1, respectively. 395 

Other PGP activities, such as siderophore production (60%), bacterial 396 

antagonism (38.5%) and ACC deaminase (15.4%), had uneven distribution 397 

among bacterial orders (Fig. 4). The production of siderophores was detected 398 

mainly in Burkholderiales and Pseudomonadales, with the highest values in 399 

Burkholderia isolates, which doubled (5.5) those of the reference strain (P. 400 

chlororaphis subs. aurantiaca RPAN1, 2.2). Burkholderiales also had the highest 401 

number of isolates with ACC deaminase activity, with maximum of 1294, 1210 402 

and 967 nmol α-ketobutyrate mg-1 h-1 production in Cupriavidus, 403 

Paraburkholderia and Burkholderia, respectively, similar to the reference strain 404 

(P. putida ATCC 17399/pRKACC, 1346 nmol α-ketobutyrate mg-1 h-1).  405 

The antagonistic activity was assayed by dual culture against six 406 

phytopathogenic bacteria and F. oxysporum. Bacterial antagonism was observed 407 

in 25 isolates, mainly Pseudomonas, Burkholderia and Kosakonia (Fig. 4; Table 408 

S1). The highest biological control activity was found against X. axonopodis pv. 409 

manihotis, with a total of 12 isolates from 8 genera, nine of which also showed 410 

antagonism against X. axonopodis pv. vesicatoria. In contrast, X. citri subsp citri 411 

and C. michiganensis subsp michiganensis were mainly controlled by 412 

Pseudomonas strains. Ralstonia solanacearum was inhibited only by 413 

Enterobacterales while P. syringae pv. tomato was controlled by Paenibacillus 414 

and Burkholderia isolates (Fig. 4; Table S1). 415 
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On the other hand, a large and diverse population had fungal antagonistic 416 

activity against F. oxysporum. Significant inhibitory activity (> 15%) was observed 417 

in 40 of the 65 isolates, with representatives of all genera and, in a greater 418 

proportion, Bacillus, Kosakonia, Paenibacillus and Pseudomonas. The highest 419 

inhibition (> 60%) was observed in isolates from Pseudomonas (100%), 420 

Rhizobium (77%), Sphingobium (77%) and Paenibacillus (64%) (Fig. 4; Table 421 

S1). Some bacteria that did not grow on PDA were also tested on TSA medium. 422 

Interestingly, four strains of the genus Paenibacillus and Bacillus presented an 423 

inhibition capacity greater than 75% under these conditions (data not shown). 424 

3.3 Endophytic bacteria promote growth of Melia azedarach plants under 425 

gnotobiotic conditions 426 

Five isolates, selected for their in vitro PGP performance, were assayed on their 427 

ability to promote M. azedarach plants growth. Among them, Bacillus sp. A101 428 

and P. farsensis A116 showed the highest IAA production, P. monteilii A60 and 429 

Burkholderia sp. M55 were highly efficient in solubilizing P and siderophore 430 

production while Cupriavidus sp. N1 showed the highest ACC deaminase activity. 431 

All of them had antagonistic activity, were negative for pathogenicity tests, and 432 

most, except for Cupriavidus sp. N1, were N-fixers.  433 

All the assayed isolates significantly increased plant growth, especially foliar 434 

parameters, i.e., leaf area, leaf dry weight and leaf specific area, with increases 435 

of up to 149%, 58% and 65%, respectively, compared to NI plants. The highest 436 

values were obtained in plants inoculated with P. monteilii A60, Bacillus sp. A101 437 

and Cupriavidus sp. N1 (Fig. 5.A, B; Table S2). Likewise, all inoculated plants 438 

had higher chlorophyll content (b and total), and significantly lower Chl a/b ratio. 439 

The highest Chl total content was obtained with P. monteilii A60 and Cupriavidus 440 

sp. N1, with increases of up to 178% compared to NI plants (Figure 5.C). These 441 

plants, as well as those inoculated with P. farsensis A116, had significantly higher 442 

N and Mg content compared to the NI controls (Figure 5.D). 443 

The principal component analysis (PCA) showed a clear separation between NI 444 

plants and all inoculated treatments with 59.6% of variability explained by plant 445 

height, leaf area, leaf dry weight, and Chl-b (Figure 5.E). Chl-b content was found 446 

positively correlated with leaf area (r= 0.7, p= 0.0002) and dry plant biomass, i. 447 

e. leaf (r= 0.7, p < 0.0001), aerial (r= 0.62, p= 0.0017), root (r= 0.42, p= 0.042) 448 

and total dry weight (r= 0.59, p= 0.0034). Regarding nutrient content, higher 449 

specific leaf area (SLA) and chlorophyll contents were correlated with increases 450 
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in P (SLA: r= 0.48, p= 0.016; Chl-a: r= 0.52, p= 0.015), Mg (r= 0.48, p= 0.017; 451 

Chl-b: r= 0.51, p= 0.02), K (SLA: r= 0.46, p= 0.024; Chl-b and total ChL: r= 0.62, 452 

p= 0.002) and N (SLA: r= 0.50, p= 0.043; total Chl: r= 0.49, p= 0.0442), while N 453 

was strongly correlated with Mg (r= 0.77, p= 0.007) and K levels (r= 0.71, p= 454 

0.031) (Fig. 6).  455 

3.4 ACC deaminase-producing endophytes increased tomato salinity 456 

tolerance 457 

Six isolates that showed the highest α-ketobutyrate production (> 500 nmol α-458 

ketobutyrate mg-1 h-1) were selected for testing their effect on tomato seedlings 459 

growth under saline stress conditions. Non-inoculated stressed (NI stressed) 460 

seedlings showed a significant decrease of root (~70% lower) and shoot length 461 

(~40%) compared to those observed in normal growth conditions (NI unstressed) 462 

(Fig. 7.A, B). All the isolates, except for Burkholderia M55, had significant effect 463 

on plant growth under saline conditions; inoculated seedlings showed 464 

significantly higher root and shoot length than NI (p<0.0001); the highest increase 465 

was observed in plants inoculated with Burkholderia M57 and Paraburkholderia 466 

N147, where the growth parameters were comparable to those of the unstressed 467 

plants (Fig. 7.A, B).  468 

4. Discussion 469 

In search of plant growth promoting bacteria, we have characterized the 470 

culturable endophytic bacterial community of Melia azedarach trees from two 471 

localities of Northeastern Argentina. In the assayed trees, the endophytic 472 

bacterial community was composed predominantly of Proteobacteria and 473 

Firmicutes, represented mainly by Pseudomonadales and Enterobacterales, and 474 

Bacillales, respectively. These groups have been found in diverse plant tissues 475 

and environmental conditions, indicating physiological versatility that allows them 476 

to adapt to various plant internal microenvironments [85,86]. The bacterial 477 

community was also similar to other medicinal plants, as shown in a recent review 478 

that indicated Bacillales, Enterobacterales and Pseudomonadales as the most 479 

common orders found in 40 medicinal plant families [87]. The community 480 

structure was mainly affected by the organ source. Abundance and diversity were 481 

higher in roots, suggesting that the leaf niche is more restrictive for the entry and 482 

colonization of endophytes. This result agrees with previous reports in relation to 483 

plant colonization. Mishra et al. [88] found that endophytes were distributed in 484 
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internal niches depending on their ability to colonize, overcoming plant defenses, 485 

but also on the allocation of plant resources. This generally results in a 486 

decreasing endophytic diversity from the root towards the upper parts of the plant 487 

[89,90]. Analysis of several forest species, such as Populus, Alnus and Betula, 488 

showed that bacterial diversity increased from the leaves to the root, as opposed 489 

to the behavior observed in endophytic fungi, explained by the different 490 

colonization strategies [91,92]. The endophytic composition was also affected by 491 

the plant compartment. More than 85% of the observed OTUs were not shared 492 

between tissues; Rhizobiales, Burkholderiales and most Bacillales were detected 493 

only in roots. In contrast, the leaf endophytic configuration was more stable, with 494 

Gammaproteobacteria (Pseudomonadales/ Enterobacterales) representing 80% 495 

of the total isolates. Several works have shown the effect of compartmentalization 496 

on the endophytic assembly in plants [92-94]. In Populus, Burkholderiales were 497 

found enriched in the rhizospheric soil, and Pseudomonas in leaves and stems, 498 

while Rhizobiales dominated the root bacterial community [95]. Further analyses, 499 

including different sampling sites and a higher number of trees, would be 500 

necessary in order to establish the core microbiota of M. azedarach and the key 501 

factors that shape it. 502 

The endophytic bacteria isolated from M. azedarach showed diverse and 503 

efficient functional activities. All of them had at least one PGP activity. For 504 

instance, isolates affiliated to P. monteilii (cluster 28) had most of the PGP 505 

functions analyzed (except for ACC deaminase), with highly efficient IAA 506 

production, P solubilization and bacterial and fungal antagonistic activity (Fig. 4). 507 

Moreover, a high proportion of the endophytes showed antagonistic activity, 508 

providing a collection of potential biological controllers of F. oxysporum and six 509 

plant pathogenic bacteria. Like M. azedarach, other medicinal plants have been 510 

postulated as a source of diverse antimicrobial compound-producing endophytes 511 

[96-98]. In previous works, actinobacteria isolated from Thymus roseus efficiently 512 

inhibited F. oxysporum and Verticillium dahliae growth [34]. The endophytic 513 

community of the medicinal plants Dodonaea viscosa, Fagonia indica, Caralluma 514 

tuberculata, and Calendula arvensis have been also reported to inhibit 515 

Phytophthora parasitica growth, mediated by secondary metabolites production 516 

[99]. Plant pathogens were not the only target for biocontrol, endophytic bacteria 517 

from Origanum vulgare have been tested against human pathogens and 518 

demonstrated antimicrobial activity against antibiotic resistant bacteria [100]. 519 
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These results support the hypothesis that endophytic bacteria extend the 520 

potential of medicinal plants as bio product sources beyond the production of 521 

bioactive compounds. 522 

Efficient ACC deaminase activity was detected only in Burkholderiales. This 523 

group was found exclusively in roots, which could suggest a higher ACC 524 

deaminase activity in this organ. ACC is an ethylene precursor, involved in plant 525 

development, defense, and symbiosis [101]. In response to stress conditions, 526 

ACC is exuded by the roots and can be taken up by ACC deaminase-producing 527 

bacteria to be used as carbon and nitrogen sources, reducing plant ACC levels, 528 

and thus the "stress ethylene". Bacteria with ACC deaminase activity have been 529 

found in soils and associated with plants, on the surface and inside roots, leaves, 530 

and seeds [18,102]. However, there are few reports about their relative 531 

abundance in the plant endophytic community. Rhizosphere and root 532 

compartments have shown higher frequency and expression of the ACC 533 

deaminase encoding gene (acdS) than bulk soil [103]. Likewise, the abundance 534 

of these bacteria increased in the roots of plants under stress conditions [104-535 

106]. It has been postulated that plants selectively recruit ACCd-producing soil 536 

bacteria to integrate into their microbiome [107]. Indeed, ACC is a strong 537 

chemoattractant for PGPB [103,106,108,109]. Roots are the main pathway for 538 

the entry of microorganisms and exhibit a high microbial diversity and abundance 539 

[92,93,110]. Higher ACCd activity in the roots would favor plant microbial 540 

colonization, rapid response to soil stress conditions, and prevent ACC/ethylene 541 

signaling. 542 

Plant inoculation assays showed the efficiency of endophytic bacteria as growth 543 

promoters of M. azedarach. P. monteilii A60, P. farsensis A116 and Cupriavidus 544 

sp. N1 strains standed out for their effect on plant growth and physiological 545 

parameters, such as plant height, leaf area, leaf dry weight, specific leaf area, 546 

and Chl-b, Mg and N content. Besides, highly efficient ACC deaminase-producing 547 

isolates were able to increase stress tolerance of tomato plants under saline 548 

condition. M. azedarach inoculated plants showed higher leaf area and specific 549 

leaf area (SLA), which were found directly correlated with Chl-b and leaf 550 

macronutrient content. These foliar traits contribute importantly to plant 551 

photosynthesis, growth rate and productivity [111-113]. The increase of 552 

aerial/root biomass ratio, chlorophyll, N and Mg content indicated a nutritional 553 

effect of the endophytic bacteria on M. azedarach plants, regardless of the 554 
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bacterial isolate. It has been widely observed that PGP activity increased plant 555 

growth and consequently crop yields, especially under adverse conditions [114]. 556 

However, these effects were not frequently evident under optimal growth 557 

conditions [115]. It is interesting to note that, at least to our knowledge, the PGP 558 

effect was evidenced in M. azedarach plants under optimal environmental and 559 

nutritional conditions. Further studies will be needed to validate the promoting 560 

effects of inoculation under field conditions. 561 

Among the bacterial activities that could explain the plant performance 562 

improvement, all the inoculated strains, except N1, were able to fix N2. However, 563 

our results indicated that a bacterium may directly affect plant growth by one or 564 

more of PGP mechanisms. Apart from N2 fixation, P. farsensis A116 and Bacillus 565 

sp. A101 had high IAA production, P. monteilii A60 and Burkholderia sp. M55 566 

were efficient in siderophore production and P solubilization. On the other hand, 567 

Cupriavidus sp. N1 was not able to fix N2, but had high ACC deaminase activity, 568 

bacterial antagonism and siderophore production. Besides promoting the growth 569 

of M. azedarach, Cupriavidus sp. N1 promoted shoot and root growth of tomato 570 

seedlings under salinity conditions, showing the ability to synthesize ACC 571 

deaminase in vivo. The use of ACC deaminase-producing bacteria in several 572 

plant species has resulted in increased tolerance to different biotic and abiotic 573 

stresses [81,116,117]. The PGP traits of C. N1, particularly its remarkable 574 

efficiency in the synthesis of ACC deaminase, as well as its ability to interact with 575 

different plant species, would point it as a potential inoculant to be used under 576 

normal and growth-limiting conditions. Interestingly, this strain was found most 577 

closely related with C. numazuensis and C. necator, species that have been 578 

found nodulating Mimosa spp. [118]. 579 

5. Conclusion 580 

This study revealed that Melia azedarach trees host endophytic bacteria with 581 

significant plant growth-promoting potential, as evidenced by their diverse and 582 

efficient functional activities. Notably, Pseudomonas monteilii, Pseudomonas 583 

farsensis and Cupriavidus sp. demonstrated a high capacity to enhance M. 584 

azedarach growth. Additionally, five efficient ACC deaminase producing strains 585 

enhanced the salt tolerance of tomato plants. Overall, these findings underscore 586 

the utility of medicinal plant-associated endophytes as biostimulant and 587 

biocontrol agents. 588 
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TABLE AND FIGURE CAPTIONS 1000 

Fig. 1. Abundance and α-diversity. A. Number of viable bacterial cells found in 1001 

disinfected roots (red boxes) and leaves (light blue boxes) of Melia azedarach 1002 

trees sampled at spring (striped boxes) and autumn (solid boxes). B. Calculated 1003 

alpha-diversity, using Shannon (H´) and Simpson (1-D) indices, of the endophytic 1004 

bacterial community isolated from leaves (red boxes) and roots (light blue boxes) 1005 

samples. Different letters indicate significant difference between means at p < 1006 

0.05 according to Tukey HSD test (ANOVA).  1007 

Fig. 2. Taxonomic composition. A: Proportion of endophytic bacterial orders 1008 

found in each sample type of Melia azedarach. B. Neighbor-joining analysis of 1009 

partial 16S rRNA gene sequences showing the relationship between the 35 1010 

endophytic phylotypes. OTU number and its closest sequence are indicated in 1011 

each branch. Shading area in the tree indicates the organ source, root (green), 1012 

leaf (blue), or both (not shaded). Only bootstrap values ≥50 (based on 1000 1013 

pseudoreplicates) are indicated. 1014 

The heatmap in the right margin illustrates the relative abundance of the 1015 

sequences in each sample according to the plant organ (leaves and roots) and 1016 

sampling-time (spring and autumn). Original abundance values are ln(x+1)-1017 

transformed. No scaling was applied to rows.  1018 

Fig. 3. Phylogenetic analysis of Pseudomonas isolates. Six isolates 1019 

representative of the three Pseudomonas OTUs, 28 (names in red), 29 (names 1020 

in green) and 32(names in light blue), identified by partial 16S rRNA, rpoD and 1021 

gyrB nucleotide sequence analysis. A. Neighbor-joining phylogenetic trees based 1022 

on a concatenated alignment of rpoD (690 bp), gyrB (910 bp) and 16S rRNA (810 1023 

bp) sequences for Pseudomonas OTUS 28 and 29 and closest related species. 1024 

B. Neighbor-joining phylogenetic trees based on a concatenated alignment of 1025 

rpoD and 16S rRNA for the three OTUs together and closest related species. 1026 

Bootstrap values >50% are shown on branches (1000 replications). 1027 

Fig. 4. In vitro plant growth-promoting (PGP) activities. Heatmap showing the 1028 

PGP activities analyzed in 65 endophytic isolates. IAA production (IAA), P 1029 
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solubilization (P), ACC deaminase activity (ACC) and siderophore production (S) 1030 

are shown as percentage activity relative to the maximum activity found (100%); 1031 

Inhibition index (Ii) values are indicated for Fusarium antagonism (FA) while 1032 

nitrogen fixation (Fix) and bacterial antagonism (BA) are indicated as positive (+) 1033 

or null (-) activity. 1034 

Fig. 5. Bacterial growth promoting-activity on Melia azedarach plants. (A) 1035 

Leaf, stem, root, and total dry weight, (B) leaf area (cm2) and specific leaf area 1036 

(SLA, cm2/g), (C) chlorophyll content (Chl-a, Chl-a/b, and total Chl) (mg/g), (D) 1037 

leaf N and Mg content (%) for inoculated (Bacillus sp. A101, Burkholderia sp. 1038 

M55, Pseudomonas farsensis A116, Pseudomonas monteilii A60 or Cupriavidus 1039 

sp. N1) and non-inoculated (NI) plants growing under gnotobiotic conditions. 1040 

Different letters indicate significant differences among treatments according to 1041 

Tukey test (p < 0.05). (E) Principal component analysis (PCA) of plant growth 1042 

parameters according to inoculation treatments. 1043 

Fig. 6. Correlation of growth parameters. Pearson's correlation matrix of 1044 

growth parameters, plant height, leaf (LDW), stem (STW), root (RDW), and total 1045 

dry weight (TDW), leaf area, specific leaf area (SLA), chlorophyll a (Chl-a), 1046 

chlorophyll a/b ratio (Chl-a/b), and total chlorophyll (total Chl), leaf N, P, K, Ca 1047 

and Mg content, measured in Melia azedarach plants inoculated with endophytic 1048 

bacteria (Bacillus sp. A101, Burkholderia sp. M55, Pseudomonas farsensis A116, 1049 

Pseudomonas monteilii A60 or Cupriavidus sp. N1) under gnotobiotic conditions. 1050 

Fig. 7. Gnotobiotic root elongation assay in tomato seedlings. ACC 1051 

deaminase-producing bacteria, Burkholderia sp. M55 (B. M55), Burkholderia sp. 1052 

M57 (B. M57), Paraburkholderia sp. N147 (P. N147), Cupriavidus sp. N1 (C. N1), 1053 

Variovorax sp. N4 (V. N4) and Variovorax sp. N133 (V. N133), were analyzed for 1054 

their effect on shoot length (A) and root length (B) of tomato seedlings growing 1055 

under saline conditions (100 mM NaCl). Non-inoculated plants were tested under 1056 

saline (NI stressed) and normal conditions (NI unstressed). Different letters 1057 

indicate significant differences among treatments according to Kruskal Wallis test 1058 

(p<0.0001). 1059 

 1060 
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Plant height
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Chl-b

Total Chl

Leaf P

Leaf K

Leaf Ca

Leaf Mg

Leaf N

LDW

Leaf area

SDW

RDW

TDW

SLA

Plant

height
Leaf

area LDW STW TDW Leaf K Leaf Ca Leaf Mg Leaf NLeaf PChl-bChl-a

Total 

ChlRDW SLA

1 0.363 0.394 0.344 0.188 0.368 0.014 0.003 -0.024 -0.018 -0.210 0.148 -0.286 0.416 -0.192

0.363 1 0.708*** 0.238* 0.270* 0.532*** 0.233* 0.301 0.705** 0.551* -0.078 0.277 -0.348 0.427* 0.365

0.394 0.708*** 1 0.544 *** 0.679*** 0.910*** -0.294 0.172

0.320 0.147 -0.417* -0.275 -0.173 -0.318 -0.204 -0.363 1 -0.364 -0.671*

0.416 0.427* 0.013 0.104 -0.278 -0.081 0.482* 0.230 0.511* 0.420 0.046 0.437* -0.364 1 0.768*

-0.192 0.365 0.004 -0.351 -0.202 -0.135 0.503* 0.470 0.431 0.492* 0.265 0.711* -0.671* 0.768* 1

0.699** 0.467* -0.577** -0.058 0.054 0.013 0.004

0.344 0.238* 0.544*** 1 0.519*** 0.734*** -0.301** 0.055 0.292 0.178 -0,652** -0.053 -0.035 0.104 -0.351

0.188 0.270* 0.678*** 0.519*** 1 0.857*** -0.322** -0.038 0.415* 0.227 -0.608* -0.449* 0.320 -0.278 -0.202

0.368 0.532*** 0.910*** 0.734*** 0.856 *** 1 -0.347** 0.052 0.585* 0.346 -0.677** -0.219 0.147 -0.081 -0.135

0.014 0.233* -0.294 -0.301** -0.322** -0.347** 1 0.222 0.163 0.205 0.484* 0.459* -0.417* 0.482* 0.503*

0.003 0.301 0.172 0.055 -0.038 0.052 0.222 1 0.211 0.822*** 0.522* 0.441 -0.275 0.230 0.470

-0.024 0.705** 0.698 ** 0.292 0.415* 0.585* 0.163 0.211 1 0.684** -0.071 0.622** -0.173 0.511* 0.431

-0.018 0.551* 0.467* 0.178 0.227 0.346 0.205 0.822*** 0.684** 1 0.300 0.622** -0.318 0.420 0.492*

-0.210 -0.078 -0.577** -0,652** -0.608* -0.677** 0.484* 0.522* -0.071 0.300 1 0.365 -0.204 0.046 0.265

0.148 0.277 -0.058 -0.053 -0.448* -0.219 0.459* 0.441 0.622** 0.365 1 -0.363 0.437 0.711*

-0.286 -0.348 0.054 -0.035

0.622**
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