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A B S T R A C T 

Self-interacting dark matter (SIDM) is an alternative to the standard collisionless cold dark matter model (CDM), allowing 

for interactions between the dark-matter particles through the introduction of a self-scattering cross-section. Ho we ver, the 
observ able ef fects between these two scenarios are hard to detect. In this work, we present a detailed analysis of an application of 
g alaxy–g alaxy lensing to measure with high precision the shapes of cluster haloes and how this approach can be used to obtain 

information regarding the nature of the dark-matter particle. Using two sets of simulated data, SIDM and CDM simulations, 
we compute stacked shear maps centred on several subsets of haloes with masses � 10 

13.5 M �. From these maps, we obtain the 
quadrupole profiles related to the mean projected elongation of the particle distribution from which the shape parameters are 
derived. Accounting for a radial shape variation, this technique provides an enhancement of the observed differences between 

the simulated data sets. In particular, we obtain a higher slope of the power law for the shape-radial relation for the haloes 
identified in the SIDM simulation, which are rounder towards the centre. Also, as approaching to the mean virial radius, the 
projected semi-axis ratios converge to similar values than in the CDM simulation. Moreo v er, we account for the impact of the 
neighbouring mass, where more strongly elongated distributions are found for the haloes in the SIDM simulation, indicating 

that under dark matter self interaction, the large-scale structure imprints a more coherent accretion process. 

Key words: gravitational lensing: weak – galaxies: haloes – dark matter. 
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 I N T RO D U C T I O N  

ccording to the current cosmological paradigm, � cold dark matter, 
ost of the matter content in the Universe is in the form of cold

ark matter (CDM), i.e. non-relativistic and collisionless dark- 
atter (DM) particles. The success of this model is evidenced in 

ccounting for most of the current cosmological observations with 
reat precision (e.g. Weinberg et al. 2013 ; Alam et al. 2017 ; Planck
ollaboration VI 2020 ). Ho we v er, after more than fiv e decades after
easuring the galactic rotation curves (Rubin & Ford 1970 ), which 

s one of the most substantial indicators of this kind of matter, very
ittle is known regarding the nature of these particles. In this context,
lternative models that postulate other particle characteristics in 
ddition to those presented by the standard model, become rele v ant
nd are interesting subjects to be e xplored. A strate gy to address the
ack of knowledge of the DM particle nature is to explore the ranges
n which the current cosmological model seems to be less accurate. 
n this sense, current observations point out at halo scales, as those
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here potential discrepancies with the model arise (e.g. Weinberg 
t al. 2015 ; Bullock & Boylan-Kolchin 2017 ). 

Self-interacting dark matter (SIDM) is a theoretical candidate of 
ark matter that allows strong self interactions, i.e. of an amplitude
omparable to the strong force. It was proposed as an expla-
ation for certain observed astrophysical phenomena that cannot 
e explained by traditional cold dark matter models (Spergel & 

teinhardt 2000 ), like the shallowed core of galaxies (Flores &
rimack 1994 ; Simon et al. 2005 ; Walker & Pe ̃ narrubia 2011 ) and
lusters (Sand et al. 2004 ; Newman et al. 2009 ; Umetsu et al. 2012 ).
henomenological, SIDM is an attractive alternative to CDM since 

t modifies the density distribution at halo scales while conserving 
he distribution at larger radii, thus leaving intact the successful 
escription of the CDM on large scales. An e xtensiv e review of
he SIDM model and its predictions can be found in Tulin &
u ( 2018 ). 
One of the predictions of the SIDM is the modification of the

alo shapes. Within the CDM paradigm haloes are triaxial structures, 
hile when considering collisions, the orbits of dark-matter particles 

end to become more isotropic, resulting in an o v erall rounder
ass distribution. The impact of the self-interactions in shaping the 

aloes has been proposed as a test for determining the DM cross-
ection (Miralda-Escud ́e 2002 ; Peter et al. 2013 ; Brinckmann et al.
is is an Open Access article distributed under the terms of the Creative 
h permits unrestricted reuse, distribution, and reproduction in any medium, 
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018 ; Despali et al. 2022 ). Ho we ver, assessing to the halo shapes
hrough observational techniques is challenging, mainly because of
rojection effects. A widely employed method for constraining halo
hapes is strong lensing. Nevertheless, this approach is mostly limited
o the inner radial regions, where the impact of baryons is significant
nd may lead to potential confusion with the imprints attributed to
he SIDM. 

In this scenario, weak lensing offers a useful approach, since this
ffect is sensitive to the halo outskirts and can be used to constrain
he total halo shape. In particular, weak-lensing measurements
ave been successfully used to measure the halo shapes of galaxy
lusters, both using observations and simulated data (Evans & Bridle
009 ; Oguri et al. 2010 ; Clampitt & Jain 2016 ; van Uitert et al.
017 ; Shin et al. 2018 ). Ho we ver, gi ven the lower densities in
hese regions, the imprints of SIDM are expected to be almost
ndistinguishable from the CDM predictions. This fact plus the
rojection effects, make this methodology almost useless for dis-
inguishing between the two proposed scenarios (Robertson, Huff &

arkovi ̌c 2023 ). 
In this work, we propose and e v aluate using weak-lensing tech-

iques to determine the projected shapes of galaxy cluster haloes,
ith the aim of distinguishing between the predictions of the
DM and SIDM models. In particular, we propose to apply weak-

ensing stacking techniques, also known as g alaxy–g alaxy lensing,
o estimate the halo shapes. We expect that the combination of the
tacking power with the projection of the lensing signal along the
ain-axis direction of the halo, can enhance the signal-to-noise ratio,

hereby enabling a more precise shape estimation. In order to test
he proposed methodology, we produce two sets of simulated data
ith the same initial conditions: one following the CDM scenario

nd the other accounting for dark matter self-interaction. Then, we
reate lensing maps from both simulations by taking into account the
rojected density distributions of the particles stacked at the centre
f each halo. From these maps we compute the lensing radial profiles
nd fit them to obtain the aligned mean projected elongation of the
tacked haloes. Finally, we compare the measurements between the
wo simulations. 

The work is organized as follows: In Section 2 , we describe the
roduced simulations and how the haloes are identified. We detail
he shape computation using the particle distribution and the halo
haracterization in Section 3 . The formalism of the lensing analysis
s presented in Section 4 . We present the results of the maps produced
nd the lensing measurements in Section 5 . Finally, we discuss our
ndings and conclude in Sections 6 and 7 . 

 DATA  AC QU ISITION  

.1 Simulated data 

ultiple analyses of massive groups have constrained the cross-
ection of the dark-matter particle to values of σ / m � 1.25, cm 

2 

 

−1 (see for instance: Randall et al. 2008 ; Jee et al. 2014 ; Wittman,
olo vich & Da wson 2018 ). Taking this into account, we produce

wo simulations with the same initial conditions and two different
ark-matter particle cross-sections, σ/m = 0 cm 

2 g −1 and σ/m =
 cm 

2 g −1 , named CDM and SIDM simulations, respectively. Each
imulation consists of two combined boxes with 120 h 

−1 Mpc on
ide and 1024 3 particles, reaching a resolution of ∼ 10 8 h 

−1 M �. The
osmological parameters used are �m 

= 0 . 3 , �� 

= 0 . 7 and H 0 =
0 km s Mpc −1 . The initial conditions were generated with the MUSIC

ode (Hahn & Abel 2011 ) at z = 50 and the simulations were run
ith the GIZMO code (Hopkins 2015 ). 
NRAS 528, 3075–3091 (2024) 
The implementations of elastics self-interactions in GIZMO are
escribed in detail in Rocha et al. ( 2013 ). In a nutshell, the probability
f scattering in a time step is calculated as: 

 ij = 

σ

m 

m i v ij g ij δt. (1) 

n the equation, σ / m is the transfer cross-section per unit mass, m i the
ass of the macroparticle, v ij is the relative velocity between these

articles, and g ij is a number density factor that accounts for the
 v erlap of two particles smoothing kernels. For each pair of particles
ith an interaction probability greater than zero, the interaction is
etermined by drawing a random number. If interactions occur, the
lastic scattering determines the exit velocity. These velocities are
alculated as a function of the masses, the relative velocity and the
elocity of the mass centre of the two particles. We use the isotropic
cattering implementation, so the direction of scattering is chosen
andomly (Meskhidze et al. 2022 ). 

.2 Halo identification and properties 

rom both simulated data sets snapshots at z = 0, CDM and SIDM,
e identify dark matter haloes using the ROCKSTAR phase-space halo
nder code (Behroozi, Wechsler & Wu 2013 ). In particular, for our
nalysis, we consider only host haloes, i.e. haloes not contained
ithin another larger halo. Through this work, we use several halo
roperties calculated by ROCKSTAR code. All of these calculations are
erformed on the complete set of particles classified as gravitationally
ound within each respective halo. The viral radius, denoted as
 vir , is determined through a profile fitting technique and the viral
ass, M vir , corresponds to the mass enclosed within this radius. The

osition of each halo is established using the innermost particles
f the halo, while the halo-offset, referred to as X off , is defined as
he spatial separation between the halo location and its centre of

ass. This parameter can be used to establish the halo relaxation
tate ( 3.1 ). 

In this study, we investigate haloes with masses 10 13.5 h −1 M �
 M vir < 10 15 h −1 M �. Taking into account the position centres of

he selected haloes in the CDM simulation, we select those in the
IDM simulation with a distance difference between the centres

ower than 0 . 5 R vir and differences between the masses up to 20
er cent, obtaining in total 501 haloes in each simulation. This choice
as adopted after varying the distance difference and checking the

orrelation between the haloes according to the measured masses.
ith the adopted cuts, roughly 97 per cent of the haloes identified in

he considered mass range, have their counterpart in both simulated
ata sets. The proximity and mass similarity criteria used in our
atching process, ensure robust comparisons between the two

imulated scenarios 
We are also interested in testing the variations of the halo shapes

ccording to their local en vironment. W ith this aim, we characterize
he environment of each halo by computing the distance to the
th neighbour in each simulation, R 5 , considering as neighbours
hose haloes with M vir > 10 13 h −1 M �. This parameter is a common
bservable proxy to characterize the local density of the environment
e.g. Lackner & Gunn 2012 ; Muldrew et al. 2012 ; Ching et al. 2017 ;
antucci et al. 2023 ). We inspect the variations of this parameter with

he halo shapes in 3.1 . 
In this section, we present the characterization of halo shapes based

n the particle distribution. Additionally, we explore the connection
etween the observed differences in shape within both simulated data
ets and halo properties, while also defining the subsets of haloes to
e used in the stacking procedure. 
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.3 Individual halo shape estimates 

n order to perform the stacking procedure, it is necessary to first
ompute the main orientations of the haloes before their combination. 
ith this aim, we characterize the shape of the particle distribution

or each halo using only the identified bound particles given by 
OCKSTAR . Since we are interested in the projected shapes, we 
btain the projected particle positions by defining a tangential plane 
erpendicular to the line-of-sight vector pointing towards each halo 
entre. We consider all three primary axes of each simulation for the
rojection, thereby increasing the number of stacked haloes. 
We calculate the orientation and determine the 3D and projected 

emi-axis ratios of the particle distribution according to the eigen- 
ectors and eigenvalues of the shape tensors. We use a common 
efinition of the shape tensor, the reduced tensor: 

 

r 
ij ≡

∑ N p 
n ( x in x jn ) /r 2 n 

N p 
, (2) 

here the summation runs o v er the N p bound particles, x in , x jn are the
oordinates of the n -particle, r n is the distance to the halo centre and
he subinde x es i , j ∈ [0, 1, 2] and i , j ∈ [0, 1] for the 3D and projected
ositions, respectively. We choose to use the reduced tensor definition 
ince it accounts for the radial distance, being more sensitive to the
nner particle distribution than the other commonly used definition, 
he standard one (in which r n is neglected, equation 5 in Brinckmann
t al. 2018 ). Gi ven that the particle density is higher to wards the halo
entre, the orbits of these particles are more affected by differences in
he cross-section. Therefore, a shape definition based on this tensor 
ighlights the differences between the considered simulations. 

 H A L O  C H A R AC T E R I Z AT I O N  

y diagonalizing the tensors, we obtain the semi-axis values ( A >

 > C in 3D and a > b in projection) corresponding to the square
oot of the eigenvalues, while their respective eigenvectors ( ̂ e A , ˆ e B 
nd ˆ e C in 3D and ˆ e a , ˆ e b in projection) define the principal axis 
irections associated with their eigenvalues. From these quantities, 
e can obtain the semi-axis ratio of the projected particle distribution
 = b / a and the position angle of the main semi-axis, φ, computed
rom ˆ e a . We also obtain for the 3D inertia tensor the sphericity S =
 / A , which would be used to inspect the differences in the elongation

elated to the halo properties (see 3.1 ). 
Additionally, we consider an alternative definition of the shape 

see e.g. Dubinski & Carlberg 1991 ; Katz 1991 ; Zemp et al. 2011 )
alculated by using all the particles contained within an ellipsoidal 
adius ( r ell ) given by: 

 ell = 

√ 

x 2 ell + 

y 2 ell 

( B/A ) 2 
+ 

z 2 ell 

( C/A ) 2 
. (3) 

 ell = x . ̂ e A , y ell = x . ̂ e B and z ell = x . ̂ e C , where x is the position vec-
or of the particle in 3D with respect to the halo centre. Analogously,
n 2D, we take into account the particles within an ellipse with radius: 

 ell = 

√ 

x 2 ell + 

y 2 ell 

( b/a) 2 
. (4) 

he procedure for calculating this shape is iterative because the value 
f the ellipsoidal radius is not known in advance and depends on the
emi-axes of the ellipsoid, which need to be determined during the 
rocess. In practice, we first consider all the bound particles and 
alculate the initial set of eigenvectors and eigenvalues. Then, we 
ompute the new set of shape parameters excluding those particles 
utside the obtained ellipsoidal/ellipse region. This calculation is 
epeated considering 10 iterations or until the difference between the 
ewly and the previously computed shape parameter ( S in 3D or q in
rojection) represents less than the 1 per cent. 
We obtain the shape parameters using both iterative and non- 

terative approaches. In general, the semi-axis ratios obtained itera- 
iv ely e xhibit a strong correlation with those calculated using the non-
terative approach, with the latter being approximately ∼ 20 per cent 
ower. For the stacking procedure, we use the orientations given by
he non-iterative method. This last choice is motivated by the fact
hat in observational studies the distribution of the galaxy members is
ommonly used as tracers of the underlying dark matter distribution, 
n order to estimate the cluster orientations (Huang et al. 2016 ; van
itert et al. 2017 ; Shin et al. 2018 ; Gonzalez et al. 2021a ). Therefore,
ue to the typically small number of identified members ( � 100),
iscarding the tracers in each iteration can introduce bias into the
hape parameters. This is because the introduced shot noise tends to
redict more elongated shapes. 
On the other hand, to characterize the individual halo shapes 

ased on the dark-matter particle distribution, we use the semi-axis 
atios obtained from the iterative method. This is done since this
ethodology is more commonly used given that leads to less biased

esults (Behroozi et al. 2013 ; Robertson et al. 2023 ). Shape definition
s a matter of importance specially for this kind of analysis, since halo
hapes are particularly difficult to estimate in cored density profiles 
hat get monotonically more spherical towards the centre, which 
re expected mainly in the SIDM scenario. A detailed discussion 
n several shape definitions can be found in Zemp et al. ( 2011 )
nd in particular for the comparison between SIDM and CDM halo
hapes in Peter et al. ( 2013 ) and Brinckmann et al. ( 2018 ). It is
mportant to highlight that these shape parameters are only used for
omparative purposes and do not impact the lensing determinations, 
hich constitute the focus of this work. 

.1 Halo subset definitions 

he stacking procedure is commonly applied by combining the 
aloes that share a common property, such as a mass proxy. In order to
ake advantage of this combination technique, we initially investigate 
ow the nature of the particles influences the shaping of cluster haloes
ased on certain intrinsic properties. The properties inspected are the 
alo relaxation state according to the scaled central position offset, 
 off / R vir , the halo mass, M vir and the halo environment according to
 5 . We characterize the shape differences between the two simulated
ata sets using the computed 3D semi-axis ratios and the sphericity
 according to the iterative method presented in the last section. 
In Fig. 1 , we show how the ratio between the shape estimates

n the SIDM and CDM simulations ( S CDM 

/ S SIDM 

− 1), are related
ith the considered halo properties. As it can be noticed, relaxed
aloes classified as those with X off / R vir < 0.07 following Neto et al.
 2007 ), tend to show larger differences in the shapes. This can be
elated with the fact that less-relaxed haloes yield less precise shape
easurements due to a wrong centre definition. Ho we ver, we do not

btain a clear relation between the S CDM 

/ S SIDM 

− 1 and the haloes
asses or the environment characterization, R 5 . 
In view of these results, we consider six halo subsets for the

tacked analysis, classified considering their relaxation state, mass, 
nd environment. Although we do not obtain a clear relation between
he shape differences and the environment, we decide to inspect 
amples selected based on R 5 in order to assess the influence of the
eighbouring mass component on the analysis. In Table 1 , we show
he criteria used to define each sample and the number of haloes
MNRAS 528, 3075–3091 (2024) 
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M

Figure 1. Relation between the halo properties and the shape differences observed in the CDM and SIDM simulations. S CDM 

and S SIDM 

refer to the haloes 
sphericities ( C / A ) measured in the CDM and SIDM simulations, respectively. In the left panel, we show the relation between S CDM 

/ S SIDM 

− 1 and the halo 
relaxation state characterized using X off / R vir . The vertical line indicates the criteria used to select relaxed haloes ( X off / R vir < 0.07), those haloes selected as 
relaxed are at the left of the solid line in darker colours. The colour code indicates the halo virial masses. In the next panel, we show the normalized S CDM 

/ S SIDM 

− 1 distributions of the selected halo subsets, Lower mass and Massive (see Table 1 ). The next panel shows the relation between the shape differences and 
haloes masses. The colour code indicates the R 5 parameter, lower values are related to haloes in denser environments. Finally, in the last panel, we show the 
normalized S CDM 

/ S SIDM 

− 1 distributions for the Clustered and Isolated selected subsamples (see Table 1 ). 

Table 1. Criteria chosen to select the halo subsets for the stacked analysis 
and the number of haloes included in each subsample. 

Subsample Selection criteria Number 
of haloes 

Total - 501 
Relaxed X off / R vir < 0.07 357 
Isolated X off / R vir < 0.07, R 5 > 10.39 h −1 Mpc 88 
Clustered X off / R vir < 0.07, R 5 < 6.72 h −1 Mpc 85 
Massive X off / R vir < 0.07, M vir > 10 13.92 h −1 M � 84 
Lower mass X off / R vir < 0.07, M vir < 10 13.61 h −1 M � 88 
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ncluded. Since the analysis is performed by projecting the particles
n the three main directions of the simulations, these numbers are
ripled in the stacking. In particular, we focus our analysis on relaxed
aloes since their shapes are better constrained and they are also
ess affected by systematic effects, such as the centre definition.
he samples selected according to the mass and environment are
btained according to the quartiles of the distributions of M vir and R 5 

o enhance the differences. 

.2 Stacked halo shapes 

or a more direct comparison between the lensing estimates, we
erform a stacked analysis of the particle distribution. In this
pproach, we only consider the bound particles since we intend to
haracterize the halo shapes. With this aim, we compute the projected
hapes of the combined particle distribution for the different halo
ubsets defined in Table 1 , previously rotating them according to
he position angle, φ. We characterize the shapes of the combined
aloes by computing the shape tensor defined in equation ( 2 ), taking
nto account the positions of the rotated particles. We perform this
rocedure by considering the particles within varying radii to get an
nsight into the shape radial variation. Results are shown in Fig. 2 . We
ighlight that the stacking procedure dilutes the scatter introduced
y the shape variance in the halo sample and represents the shape
NRAS 528, 3075–3091 (2024) 
adial variation of the mean particle distribution, instead of the mean
hapes of the individual haloes. Therefore, the shaded areas obtained
ccording to the bootstrap resampling, do not represent the variance
f the q distribution, for which we measure a standard deviation of
0.12 when considering all bound particles. 
The observed radial variation of the semi-axis ratios can be

pproximately modelled using a power-law relation: 

( r) = q 0 r 
α. (5) 

e show in Fig. 2 the fitted parameters, q 0 and α, for each halo
ubset. As can be noticed, haloes in SIDM simulations tend to be
ore spherical across the entire range of radii considered. Haloes in

oth simulations tend to be rounder towards the centre, especially
hose in the SIDM simulation. This is evidenced by the fitted slopes,
, being in general ∼ 20 per cent larger for the haloes identified in

he SIDM simulation. 

 H A L O  SHAPE  ESTIMATES  USING  LENS ING  

he gravitational lensing effect is originated under the presence of
 gravitational field which bundles the light rays of the luminous
ources located behind it. In our case of interest, the gravitational field
s generated mainly by the halo which hosts the galaxy cluster and the
ensing effect magnifies and distorts the shapes of the background
alaxies, i.e. those located behind the cluster. In the inner regions
f the clusters, which correspond to the strong lensing regime,
istortions are significant leading to the detection of arcs and multiple
mages. Conversely, in the weak-lensing regime at the outskirts of
he cluster, the produced effect is smaller and can be only assessed
sing a statistical approach. The magnitude of the distortion is related
o the projected surface density distribution, 	, and encoded in the
hear parameter, γ , which is a complex quantity that can be obtained
rom the ellipticity components of the background galaxies. 

A key limitation in weak-lensing studies is the relatively low
ignal-to-noise ratio of the measured effect. Moreo v er, the observ ed
istortions are combined with the galaxy intrinsic projected elon-
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Figure 2. Measured semi-axis ratios according to the stacked particle distribution within a radius r , using the reduced tensor (see equation 2 ). Lighter regions 
correspond to the errors set by a bootstrap with 50 iterations. Fitted relations according to equation ( 5 ) are shown in solid and dashed lines for CDM and SIDM 

simulations, respectively. Fitted parameters are shown in the legend. 
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ation, e s . Hence, the observed galaxy ellipticity is a combination 
f both quantities, e ∼ e s + γ . The strategy that can be applied to
solate the lensing effect from the measured galaxy ellipticity, is to 
ombine the measurements of many background galaxies located at 
oughly the same radial distance from the cluster centre. Then, by 
veraging the tangential ellipticity component of these galaxies, the 
hear estimator can be obtained as ˜ γ = 〈 e 〉 . This approach assumes
hat the cluster is spherically symmetric so that the galaxies at the
ame radial distance are similarly affected by the lensing effect. Also, 
t assumes that the intrinsic orientations of background galaxies are 
andom, which is valid when the galaxies combined are located in a
ide redshift range. With this approach, the precision in the derived 

ensing estimates will depend on the number of galaxies combined. 
The signal-to-noise ratio can be upgraded by combining the back- 

round galaxies of many galaxy clusters that share a similar observed 
roperty, such as the number of identified galaxy members or their 
-ray luminosity. This strategy is commonly known as stacking 

echniques or g alaxy–g alaxy lensing. In this approach, the measured 
adial shear , is related to the mean surface density distribution of the
ombined clusters (e.g. Niemiec et al. 2017 ; McClintock et al. 2019 ;
ereira et al. 2020 ). In principle, this combination results in softening

he surface distribution, by blurring the impact of substructure. 
o we ver, if the main direction of the projected mass of each cluster

s taken into account in the stacking procedure, this technique can 
e successfully applied in order to obtain the mean aligned projected 
longation of the combined clusters (Clampitt & Jain 2016 ; van Uitert 
t al. 2017 ; Shin et al. 2018 ; Gonzalez et al. 2021a ). 

In order to perform our analysis, we construct the lensing maps by
tacking the particles related with the haloes included in the different 
ubsets defined in 3.1 , previously rotating them according to the 
ain axis direction of each halo, φ. To take into account that the

ensing effect is sensitive to the whole particle distribution along the 
ine of sight, all particles within a box of side-length 20 h −1 Mpc
entred at each halo’s position are taken into account. From the 
ensing maps, we compute the radial profiles that can be modeled by
onsidering three halo properties: mass, concentration, and shape. In 
his section, we first summarize the formalism related to the lensing 
t
nalysis and how the mean ellipticity of combined haloes can be
btained using weak-lensing stacking techniques. Then, we describe 
he computation of lensing estimators for combined halo samples 
nd the deri v ation of mean halo elongation using this procedure. 

.1 Lensing formalism for an elongated mass distribution 

.1.1 Surface mass distribution and convergence 

n elliptical surface mass density distribution can be modelled 
onsidering confocal elliptical isodensity contours, 	( R ), where R is
he elliptical radial coordinate, R 

2 = r 2 ( q cos 2 ( θ ) + sin 2 ( θ )/ q ) (van
itert et al. 2017 ). This distribution can be approximated using a
ultipole expansion in terms of the ellipticity defined as ε : = (1 −
 )/(1 + q ) (Schneider & Weiss 1991 ): 

( R) = 	( r, θ ) : = 	 0 ( r) + ε	 2 ( r) cos (2 θ ) , (6) 

here we neglect the higher order terms in ε. In this approximation, θ
s the angle relative to the major semi-axis of the surface density dis-
ribution. 	 0 and 	 2 are the monopole and quadrupole components, 
espectively. 	 0 is related to the axis-symmetrical mass distribution 
hile the quadrupole component is defined in terms of the monopole

s 	 2 = −r d( 	 0 ( r ))/d r . 
The surface density distribution can be related with the lensing 

onvergence parameter: 

= 	/	 crit , (7) 

here 	 crit is the critical density defined as: 

 crit = 

c 2 

4 πG 

D OS 

D OL D LS 
. (8) 

ere D OL , D OS , and D LS are the angular diameter distances from the
bserver to the lens, from the observer to the source, and from the
ens to the source, respectively. 

In this work, we adopt a similar approach as presented in Gonzalez
t al. ( 2022 ) and model the radial surface density distribution, 	 0 , by
aking into account two surface density components: the main halo 
MNRAS 528, 3075–3091 (2024) 
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ost and the neighbouring mass contribution. This model assumes
hat the density distribution of the main halo (1-halo term) as
ell as the contribution of the neighbouring masses (2-halo term)

re elongated by different amounts and that the main directions
re correlated. Thus, although the direction taken into account to
lign the haloes is related with the main halo component, the
ontribution of the neighbouring mass distribution to the quadrupole
s also considered in this modelling. The expected misalignment
etween the two components will bias the estimated elongation of
he neighbouring mass to lower values. 

The main halo component is modelled assuming a spherically
ymmetric NFW profile (Navarro, Frenk & White 1997 ), which
an be parametrized by the radius that encloses a mean density
qual to 200 times the critical density of the Universe, R 200 , and a
imensionless concentration parameter, c 200 . The 3D density profile
s given by: 

1 h ( r ) = 

ρcrit δc 

( r /r s )(1 + r/r s ) 2 
, (9) 

here r s is the scale radius, r s = R 200 / c 200 , ρcrit is the critical density
f the Universe, and δc is the characteristic overdensity: 

c = 

200 

3 

c 3 200 

ln (1 + c 200 ) − c 200 / (1 + c 200 ) 
. (10) 

e define M 200 as the mass within R 200 that can be obtained as
 200 = 200 ρcrit (4 / 3) π R 

3 
200 .The 3D density profile of the neigh-

ouring mass distribution is modelled considering the halo–matter
orrelation function, ξ hm 

, as: 

2h ( r) = ρm 

ξhm 

= ρcrit �m 

(1 + z ) 3 b( M 200 , 〈 z 〉 ) ξmm 

, (11) 

here ρm 

is the mean density of the Universe ( ρm 

= ρcrit �m 

(1 +
) 3 ) and the halo–matter correlation function is related to the matter–
atter correlation function through the halo bias ( ξ hm 

= b ( M 200 ,
 z〉 ) ξmm 

; Seljak & Warren 2004 ). We set the halo bias by adopting
inker et al. ( 2010 ) model calibration. 
Therefore, to model the total surface density profile we consider an

lliptical distribution for the main halo component with an elongation
1h plus the term introduced by the neighbouring distribution also
longated and characterized by the aligned ellipticity component,
2h , as: 

( R) = κ	 cr = 	 1h ( r) + ε1h 	 

′ 
1h ( r) cos (2 θ ) 

+ 	 2h ( r) + ε2h 	 

′ 
2h ( r) cos (2 θ ) (12) 

here 	 1h corresponds to the projected NFW profile (equation 9 )
nd 	 2h is the projected density of the neighbouring mass (equation
1 ). The quadrupoles are related to each monopole component with
 

′ 
1h = −r d( 	 1h ( r )) / d r and 	 

′ 
2h = −r d( 	 2h ( r )) / d r . Finally, θ is the

osition angle with respect to the major semi-axis of the halo mass
istribution as in equation ( 12 ). The correspondent semi-axis ratios
or each component are obtained as q 1h = (1 − ε1h )/(1 + ε1h ) and
 2h = (1 − ε2h )/(1 + ε2h ). 

.1.2 Shear components 

he tangential and cross shear components related with the observed
ackground galaxy ellipticities, can be obtained from the deflection
otential corresponding to the defined mass distribution and can also
e decomposed into the monopole and quadrupole contributions: 

γt ( r, θ ) = γt, 0 ( r) + εγt, 2 ( r) cos (2 θ ) , 

γ×( r, θ ) = εγ×, 2 ( r) sin (2 θ ) . (13) 
NRAS 528, 3075–3091 (2024) 
These shear components are related with the surface density
istribution through (van Uitert et al. 2017 ): 

	 crit γt, 0 ( r) = 

2 

r 2 

∫ r 

0 
r ′ 	 0 ( r 

′ )d r ′ − 	 0 ( r) , 

	 crit γt, 2 ( r) = −6 ψ 2 ( r) 

r 2 
− 2 	 0 ( r) − 	 2 ( r) , 

 crit γ×, 2 ( r) = −6 ψ 2 ( r) 

r 2 
− 4 	 0 ( r) , (14) 

here ψ 2 ( r ) is the quadrupole component of the lensing potential
nd is obtained as: 

 2 ( r) = − 2 

r 2 

∫ r 

0 
r ′ 3 	 0 ( r 

′ )d r ′ . (15) 

y averaging the tangential shear in 13 in annular bins we obtain the
sually defined density contrast �	, 

	( r) = 	 crit γt, 0 ( r) = 

1 

2 π

∫ 2 π

0 
	 crit γt ( r, θ )d θ, (16) 

qui v alent to the specified in equation ( 14 ), which is the only term
bserved in the case of an axis-symmetric mass distribution and it is
nly related with the monopole. 
If we average the γ t and γ × projections in annular bins, we can

solate the quadrupole components scaled according to the ellipticity:

� T ( r) : = ε	 crit γt, 2 ( r) = 

1 
π

∫ 2 π
0 	 crit γt ( r, θ ) cos (2 θ )d θ, (17) 

� ×( r) : = ε	 crit γ×, 2 ( r) = 

1 
π

∫ 2 π
0 	 crit γ×( r, θ ) sin (2 θ )d θ. (18) 

ere we define the distance independent quantities related with the
uadrupole, � T and � ×. We model the shear profiles described in
quations ( 16 )–( 18 ), considering the projected surface density as the
um of the surface components, 	 0 = 	 1h + 	 2h , computed by using
OLOSSUS 

1 astrophysics toolkit (Diemer 2018 ). 

.2 Profile computation and estimators 

hear profiles are computed from the surface density maps, 	( x , y ),
f the stacked haloes, which are related to the convergence through
quation ( 7 ). We first obtain the stacked 	( x , y ) maps, by considering
ll the particles within a 20 h 

−1 Mpc size box, centred in each halo
nd projected along the three Cartesian axes of the simulation. In
his way, we account for the line-of-sight contribution present in the
ensing studies and we increase the number of haloes considered
n the analysis. Before all the particles are combined to compute
he maps, we rotate their positions taking into account the main
rientation, φ, based on the particle distribution of each halo (see
.3 ). Therefore, the main direction of the stacked map is aligned
ith the horizontal axis, x . 	( x , y ) is then obtained by computing

he particle density of all the considered haloes within a grid of
 × 8 ( h 

−1 Mpc) 2 area divided in 500 × 500 bins, leading to a pixel
esolution of ∼ 32 × 32( h 

−1 kpc) 2 . This map is re-scaled by dividing
ach pixel density by the number of projected haloes combined. This
rocedure is done for all the halo subsets defined in Table 1 . 
Shear maps are then obtained from the density maps using

ENSPAC 

2 package, which applies the inverse of the KS-inversion
Kaiser & Squires 1993 ) to compute the γ components. For illustra-
ion, in Fig. 3 we show the stacked maps derived for the total sample
f haloes analysed in SIDM and CDM simulations. It can be seen

https://bitbucket.org/bdiemer/colossus/src/master/
https://github.com/CosmoStat/lenspack
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Figure 3. Maps of the stacked haloes in the CDM (upper panels) and SIDM (middle panels) simulations, and their dif ferences (lo wer panel). From left to right: 
The first map corresponds to the surface density map ( 	( x , y ) = 	 cr κ), computed by stacking the particle distribution of the total sample of haloes, taking into 
account all the particles included within a box of side-length 20 h −1 Mpc and after rotating the particles to get the halo major semi-axis aligned with the x -axis. 
The particle positions are centred at each halo position and rotated according to the main axis direction of the halo. The second map is related to the tangential 
shear, 	 cr γ t ( x , y ), and leads to contrast density profile, �	, when averaged in annular bins. The third map corresponds to the tangential quadrupole component 
obtained after subtracting the contrast density distribution, �	( x , y ), to the tangential shear map [ ε	 cr γ t,2 ( x , y )]. �	( x , y ) is computed with the fitted mass and 
concentration derived from adopted modelling. Finally, the last map corresponds to the cross component and is only related to the quadrupole signal, 	 cr γ ×( x , y ). 
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hat the differences between the maps are more significant in the 
uadrupole components. 
Using these tangential and cross components maps of the shear ,

e compute the lensing estimators by averaging the pixel values 
ncluded in annular bins: 

˜ �	 ( r) = 

∑ N pix 
j= 1 ( 	 crit γt ) j 

N pix 
, (19) 

˜ � T ( r) = 

∑ N pix 
j= 1 ( 	 crit γt ) j cos 2 θj 

∑ N pix 
j= 1 cos 2 2 θj 

, (20) 

˜ � ×( r) = 

∑ N pix 
j= 1 ( 	 crit γ×) j sin 2 θj 

∑ N pix 
j= 1 sin 2 2 θj 

. (21) 

n these equations, the sums are computed o v er the N pix pix els
hich centres are included within a radial bin r ± δr . ( 	 crit γ t ) j and
 	 crit γ ×) j are the j pixel value of tangential and cross shear maps,
espectively, and θ j is the position angle of the j pixel with respect to
he x -axis. Profiles are computed considering 20 logarithmic annular 
ins from 100 h −1 kpc up to 5 h −1 Mpc. The respective errors for
ach profile, σ�	 , σ� T and σ� × , are computed using a bootstrap 
esampling with 50 iterations o v er the total number of haloes in each
ubset. In order to compute the errors, we produce for each halo
ample 50 resampled maps. 

 RESULTS  

e perform the fitting procedure in order to obtain the parameters
hat characterize the surface density distribution, in the same way as it
MNRAS 528, 3075–3091 (2024) 
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Figure 4. Fitted contrast density profiles, �	, for the halo subsets analysed. In solid grey and dashed pink are the profiles obtained for the CDM and SIDM 

haloes, respectively. Fitted relations are shown in solid and dashed lines, which are almost identical. In orange and light-green we show the corresponding 1-halo 
and 2-halo components, and the red lines represent the sum of these two components. The panels below each profile show the differences between the observed 
contrast density and the fitted model (red solid lines). 
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ould be conducted using the observational data. First, we obtain the
ass and the concentration parameters by fitting the contrast density

rofiles, �	, since this profile is sensitive only to the monopole
omponent of the modelling and has a larger signal-to-noise ratio
ompared with the quadrupole profiles. After that, we constrain the
rojected halo shapes by fitting the quadrupole components. In this
ection, we begin by presenting the results related to the monopole
omponent and then we present the halo shapes derived according to
he quadrupole components, by considering two different models. 

.1 Fitted parameters from the monopole 

e constrain fit the contrast density profiles by using the Markov
hain Monte Carlo method, implemented through EMCEE python
ackage (F oreman-Macke y et al. 2013 ), to optimize the log-
ikelihood function for the monopole profile: 

ln L ( �	| M 200 , c 200 ) = 

1 

2 

( ̃  �	 − �	) 2 

σ 2 
�	 

+ ln 2 πσ 2 
�	 , (22) 

here ˜ �	 is the profile computed from the tangential shear map
ccording to equation ( 19 ), σ�	 is its respective bootstrap error,
nd �	 is the model (equation 16 ) computed considering 	 0 as
he sum of the main and second halo components, 	 0 = 	 1h +
 2h . To fit the data we use 15 and 250 steps with flat priors, 12.5 <

og [ M 200 /( h −1 M �)] < 15.5, 4 < c 200 < 8. Our best-fitting parameters
re obtained after discarding the first 50 steps of each chain, accord-
ng to the median of the marginalized posterior distributions and
rrors enclose the central 64 per cent of the marginalized posterior. 
NRAS 528, 3075–3091 (2024) 
Fitted profiles are shown in Fig. 4 together with the reduced chi-
quares values. The adopted modelling is suitable for all the subsets
ut for the Isolated sample of haloes, in which the amplitude of the
-halo term o v erestimates the surface density distribution at larger
adial scales. Fitted posterior density distributions for each sample are
hown in Fig. 5 . Mass and concentrations derived for each combined
alo sample are in general in agreement within the errors for both
imulated data sets. Ho we ver, profiles from the SIDM simulation tend
o describe more massive (by ∼ 1 per cent ) and concentrated (by

3 per cent ) distributions. Previous studies have shown that density
rofiles in SIDM simulations tend to show higher concentrations
hich can be related with a mass displacement from the inside
ut, enhancing the density of SIDM haloes around or beyond r s ,
esulting in a steeper profile at such radii (Banerjee et al. 2020 ), thus
n agreement with our findings. Although with low significance,
ifferences in the masses might be related with the well-known
nterplay between mass and concentration (e.g. Bullock et al. 2001 ;
uffy et al. 2008 ; Bhattacharya et al. 2013 ; Okoli 2017 ; Ishiyama

t al. 2021 ). The combined relation between these parameters can be
lso noticed from the contour distributions. 

.2 Mean aligned elongation constrained from the quadrupoles 

nce we have constrained M 200 and c 200 for each halo subset,
e proceed to simultaneously fit the quadrupole components us-

ng a similar approach, minimizing the sum of the likelihoods
n L ( � T | r, ̃  q 1h , ˜ q 2h ) + ln L ( � ×| r, ̃  q 1h , ˜ q 2h ), defined as: 
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Figure 5. Posterior density distributions for the fitted parameters from the contrast density profiles, �	, mass, and concentration. In grey and pink are the 
results for the CDM and SIDM, respectively. The distributions are shown after discarding the first 50 steps of each chain. Vertical lines indicate the median 
values of the distributions adopted as log M 200 and c 200 . 
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ln L ( � T | ̃  q 1h , ˜ q 2h ) = 

1 

2 

( ̃  � T − � T ) 2 

σ� T 

+ ln 2 πσ 2 
� T 

(23) 

ln L ( � ×| ̃  q 1h , ˜ q 2h ) = 

1 

2 

( ̃  � × − � ×) 2 

σ� ×
+ ln 2 πσ 2 

� × , (24) 

here ˜ � T and ˜ � × are the profiles computed from the tangential and 
ross shear maps according to equations ( 20 ) and ( 21 ), respectively,
� T and σ� × their respective bootstrap error. � T and � × are the 
dopted models (equations 17 and 18 ) computed considering 	 0 = 

 1h + 	 2h . To fit the data, we use 15 chains for each parameter and
000 steps in this case, considering flat priors: 0 . 6 < ˜ q 1h < 0 . 9 and
 . 1 < ˜ q 2h < 0 . 5. The parameters are obtained after discarding the
rst 200 steps of each chain and the obtained posterior distributions
or both fitted parameters are shown in Fig. 6 . The fitted semi-
xis ratios are tightly constrained and, as e xpected, the y indicate
ounder shapes for the haloes in the SIDM simulation, with semi-
xis ratios roughly ∼ 10 per cent larger than their counterparts in 
he CDM simulation. An unexpected result is that the elongation 
f the neighbouring distribution of the haloes tends to be larger for
he SIDM simulation. Although the observed differences are not as 
ignificant as for the halo elongation, given that q 2h has larger errors,
alo subsets from the SIDM simulation systematically show larger 
alues, roughly around ∼ 10 per cent . This result, together with the 
arger differences obtained for q 1h when compared to those based on 
he particle distribution, might reflect the deficiencies of the model in 
roperly distinguishing between the shapes of both components. This 
s also accounted by the large differences between the modelling and 
he computed profiles quantified from reduced chi-squared values 
hat can be observed in Fig. 7 , especially for the cross component
nd the haloes included in the SIDM simulation. 

A potential shortcoming in the adopted modelling approach might 
e linked to the parametrization used for fitting the main halo
omponent. The impact of the adopted modelling for fitting the 
uadrupole was already tested in a previous work (Gonzalez et al.
022 ), in which we considered three alternative approaches: (1) 
tting an Einasto model (Einasto & Haud 1989 ; Retana-Montenegro 
t al. 2012 ) instead of the NFW, (2) fixing the NFW concentration in
he analysis by using a concentration relation with mass and redshift,
nd (3) restricting the radial range in the fitting procedure to a v oid
he impact of the neighbouring component. In that work, we showed
hat the fitted semi-axis ratios are in general agreement, regardless of
he adopted modelling specially when discarding highly unrelaxed 
aloes. This leads us to the conclusion that the constrained shapes are
ot expected to be significantly influenced by the particular model 
dopted. In this work, we extend this analysis by considering an
FW model with a core, since it is expected to better constrain the
ensity distributions observed in SIDM haloes. We adopt the model 
resented in (Neto et al. 2007 ) and fit three parameters to the contrast
ensity profiles, mass, concentration, and a parameter that accounts 
or the presence of a core (1/ b in equation 2 in Neto et al. 2007 ).

e obtain that the fitted parameters are highly correlated. This is
xpected since, as was already shown in the previous subsection, 
here is a correlation between the mass and the concentration that
annot be properly disentangled since the adopted radial range is not
ighly sensitive to the inner mass distribution. Despite this, we test
MNRAS 528, 3075–3091 (2024) 
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Figure 6. Posterior density distributions for the fitted parameters ( q 1h and q 2h ) from the tangential and cross quadrupole component profiles, � T and � ×. In 
grey and pink are the results for the CDM and SIDM, respectively. The distributions are shown after discarding the first 200 steps of each chain and the vertical 
lines indicate the median values. 

Figure 7. Fitted quadrupole profiles, tangential (upper panels) and cross (lower panels) components, for the halo subsets analysed. In solid grey and dashed 
pink are the profiles obtained for the CDM and SIDM haloes, respectively. The shadow region express the obtained errors according to bootstrap resampling. 
Fitted relations are shown in solid and dashed lines. In orange and light-green we show the corresponding to the 1-halo and 2-halo components, respectively, 
and the red lines represent the sum of these two components. q 1h and q 2h are obtained according to the fitting procedure described in 5.2 . The panels below each 
profile shows the differences between the observed quadropole profiles and the fitted model (red solid lines). 
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Figure 8. Quadupole profiles for an NFW surface density distribution with 
M 200 = 10 14 M � and c 200 = 5 elongated by a fix semi-axis ratio, q = 0.6 
(solid line) and by a radial dependent semi-axis ratio q = q 0 r α (dashed line). 
Bottom panels show the difference between both profiles (dotted line). 
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he impact on the quadrupole fitting by using this modelling. We 
btain equi v alent results as for the NFW model without a core. The
tted semi-axis ratios are in agreement within 1 per cent. The results
btained when varying the model further reinforces our findings, 
oncluding that the chosen model for the main halo component has a
imited impact on the estimated halo shapes based on the quadrupole 
tting. Ho we ver, it is worth noting that in contrast, the constrained
asses and concentrations can be significantly influenced by the 

articular modelling. This result is e xpected giv en the low values
btained for the derived χ -squares when fitting �	, indicating that 
he adopted modelling accurately describes the observed density 
istributions with highly correlated parameters. 

.3 Radial variation modelling 

ccording to the results presented in 3.2 , the shapes of the halo parti-
le distributions show a radial variation, which is more pronounced in 
he SIDM simulation, as indicated by a steeper fitted power-law slope. 
aking this into account and the results presented in the previous 
ubsection, we aim to propose a model that accurately captures the 
hape radial variation. In order to do that, we generate a surface
ass map that follows a projected NFW elliptical distribution, 
[ R ( q )], with a radial variation of the semi-axis ratio, q : = q ( r ),

et following equation ( 5 ). From this map, we can compute the
xpected quadrupole profiles using equations ( 20 ) and 21 . In Fig. 8 ,
e show a comparison between the obtained profiles with and 
ithout considering a radial variation for the elongation of the density 
istribution. As it can be noticed, a radial variation of the semi-axis
atio can significantly affect the quadrupoles, especially at lower 
adial ranges, where the signal is suppressed due to the rounder
istribution towards the centre. 
In this case, we minimize the sum of the likelihoods defined in

quations ( 23 ) and ( 24 ), ho we ver, the models are modified. For
he main halo component, the model for the quadrupole profiles 
s derived from surface density maps of an elliptical NFW model
ith a radial variation, 	[ R ( q )]. In order to build the maps, we fix

he previously obtained mass and concentrations for each sample, 
ccording to the fitted contrast density distributions, �	. We add to
his model for the 1-halo term, the contribution from the neighbouring 

ass distribution considering the same model as in the previous 
ubsection, i.e. using equations ( 17 ) and ( 18 ) with 	 0 = 	 2h . With
his approach, we proceed to fit the quadrupoles considering three 
ree parameters with uniform priors: −0.15 < α < 0.15, 0.4 < q 0 <
.8 and 0.3 < q 2h < 0.7. 
The posterior distributions are presented in Fig. 10 . In this case,

t can be noticed that the semi-axis ratios for both simulations are
onsistent for all the halo subsets analysed. This is evidenced in both,
he main halo component, q 0 , and the neighbouring mass distribution, 
 2h . On the other hand, significant differences are obtained for
he power-law slope that characterizes the radial variation of the 
longation. In particular, we obtain a detectable radial variation 
or the haloes in the SIDM simulation, while the haloes in the
DM simulation exhibit a negligible variation, compatible with 
= 0. The proposed model seems to impro v e the fitting of the

ross-quadrupole component especially for the haloes in the SIDM 

imulation, resulting in lower chi-square values (Fig. 9 ). However, 
ccording to the contours of the posterior distributions, there is 
lso a noticeable interplay between the fitted parameters q 0 and α
hich reflects that the signal is sensitive to a combination of these
arameters. A deeper discussion of these results is presented in the
ext section. 

 DI SCUSSI ON  

llowing strong elastic self-interactions of the DM particle produces 
ore spherical shapes in the particle distribution of simulated 

aloes. While this result is consistent and haloes in SIDM sim-
lations systematically exhibit rounder shapes, the actual quan- 
itati ve dif ferences are relati vely small. This can be seen in the
pper panel of Fig. 11 in which the differences of the semi-
xis ratios of the particle distribution between CDM and SIDM 

imulations are lower than 5 per cent. Due to the combination of
he stacking power and the fact that the shear is sensitive to the
hole inner distribution where the impact of considering a non- 

ero σ / m is expected to be larger, weak-lensing estimates show
ignificant differences between the fitted shape parameters from both 
imulations. 

In the bottom panel of Fig. 11 , we show the results when
ccounting for a radial variation of the elongation. In this case, the
esults based on the stacked particle distribution, show systematically 
o wer v alues of q 0 for the haloes in the CDM simulation, but
till in agreement within a 5 per cent. On the other hand, as
iscussed in 3.2 , the power-law slopes differ by a ∼ 20 per cent .
egarding the results predicted by the lensing analysis, there 
re no discernible variations in the fitted q 0 and q 2h parameters.
o we ver, we found significant differences in the fitted power-law

lope, α. Our results show a very subtle radial variation in the
hapes of haloes from the CDM simulation ( −0.04 � α � 0.0),
MNRAS 528, 3075–3091 (2024) 
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Figure 9. Same as in Fig. 7 . q 0 , α, and q 2h are obtained according to the fitting methodology described in ( 5.3 ). 
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hereas haloes in the SIDM simulation exhibit a steeper relationship
 α � −0.06). 

Further visualization of these results is presented in Fig. 12 ,
n which we show the predicted q ( r ) relation for the main halo
omponent, according to the fitted parameters, α and q 0 , together
ith the fitted elongation for the neighbouring mass contribution,
 2h . In this Figure, it can be clearly seen how this modelling captures
he expected variation of the elongation, in which at the inner radial
anges the haloes in the SIDM simulation are rounder towards the
entre compared to those in the CDM simulation. For all the samples
n both simulations, the neighbouring mass distribution is rounder
han the mass distribution of the main halo, except for the Clustered
ample. This result indicates that the larger clustering amplitude
xpected for these haloes, preferentially occurs in a direction aligned
ith the halo main orientation. We marked in darker colours the

egions in which the main and the 2-halo component are expected
o be more dominant, setting the limit at the mean virial radius
f the stacked haloes. At these regions, the semi-axis ratios of
he main halo component from the SIDM and CDM simulations,
onverge roughly at the same value for most of the samples. Ho we ver,
lustered and Lower-mass halo samples show higher differences
ithin this region, being the haloes in the SIDM simulation more

longated. 
In order to interpret these results, we extend the analysis pre-

entedin 3.2 by considering all the dark-matter particles used to
alculate the lensing maps, as opposed to solely the bound particles,
nd computing the shapes up to projected radii of 5 h −1 Mpc. We
how in Fig. 13 the ratio between the estimated shape parameters
rom the CDM and the SIDM simulations. When considering only
he bound particles the differences between the simulated data are
NRAS 528, 3075–3091 (2024) 
ore significant at the inner regions and then remains constant given
hat we are far from the halo radial extension. On the other hand,
he whole particle distribution shows a stepper variation and the
emi-axis ratios converge at larger radii. Clustered and Lower-mass
alo subsets show a similar behaviour as the modelled from the
uadrupole profiles, in which the haloes in the SIDM simulation
how a more elongated distribution at the outskirts. This last result
oes not necessarily indicate that these haloes are indeed more
longated at the outskirts. Instead it suggests that the neighbouring
ass distribution is better aligned with the halo. We should keep

n mind that the orientations considered to align the haloes and
erform the stacking are computed using only the bound dark-matter
articles. This result is in agreement with the presented in Banerjee
t al. ( 2020 ). In this work, they obtain from the phase-space of
he particles in CDM and SIDM simulations, that the potential
ecomes more isotropic in the presence of velocity-independent
elf-interactions. 

The observed shapes of the whole DM particle distribution clarify
he obtained results presented in 5.2 and 5.3 and summarized in
igs 11 and 12 . When considering a radial variation, the fitted slopes
f the power law are higher for the SIDM since the whole particle
istribution shows a steeper radial variation than the predicted
ccording only to the bound particles. On the other hand, results
resented in 5.2 , in which q 2h shows significant differences between
oth simulations, is an expected result given that the model tends
o compensate for the radial variation mainly present in the SIDM
aloes. In fact, fitted q 2h in the CDM simulation are in agreement
or both models within a ∼ 3 per cent , while the fitted values
or the SIDM are 10 per cent larger when considering a radial
ariation. 
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Figure 10. Posterior density distributions for the fitted parameters ( α, q 0 , and q 2h ) from the tangential and cross quadrupole component profiles, � T and � ×. In 
grey and pink are the results for the CDM and SIDM, respectively. The distributions are shown after discarding the first 200 steps of each chain and the vertical 
lines indicate the median values. 
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Figure 11. Ratio between the fitted shapes parameters from each sample of haloes tacked from the CDM and SIDM simulations. The shadow grey region 
corresponds to a 5 per cent agreement. Upper panel: Red diamonds represent the mean semi-axis ratio obtained for the stacked haloes, according to the bound 
particle distribution using the iterative method ( 2.3 ). Green and purple dots correspond to the fitted q 1h and q 2h from the quadrupole components ( 5.2 ) Bottom 

panel: Black and grey squares correspond to α and q 0 fitted according to the radial variation of the stacked bound particle distribution ( 3.2 ). Light-blue, green, 
and purple correspond to the fitted parameters, α, q 0 , and q 2h , according to the quadrupole profiles ( 5.3 ). 
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 SUMMARY  A N D  C O N C L U S I O N S  

n this study, we provide a comprehensive analysis of the application
f a stacked weak-lensing approach to determine the shapes of cluster
aloes, with the aim of gathering insights into the nature of dark-
atter particles. With this aim, we produce two sets of simulated data,
ith different cross-sections for the dark-matter particle, σ / m , but
ith the same initial conditions. One of the simulated data considers
 non-interactive DM particle, σ/m = 0 cm 

2 g −1 (CDM simulation),
hile the other allows for self-interactions with σ/m = 1 cm 

2 g −1 

SIDM simulation). In agreement with previous studies, derived
hapes based on the particle distribution of the haloes identified
n the SIDM simulation are systematically rounder than those in
he CDM simulation. Ho we ver, assessing these dif ferences through
bservations certainly constitutes a challenging task. 
With the aim of obtaining the halo shapes to discern between

he two simulated scenarios, we propose to measure the mean halo
longation by stacking the expected aligned component of the weak-
ensing signal. The approach considered in this work to reco v er the
alo shapes, takes advantage of the stacking power, the sensitivity of
he lens effect to the entire inner mass distribution within a projected
adius, and the projection of the signal in the main direction of
NRAS 528, 3075–3091 (2024) 

a  
he halo elongation. This results in radial profiles that efficiently
apture the differences introduced due to the shape variation. In
act, our results show that the obtained fitted parameters show larger
iscrepancies between the simulated data, than when considering the
article distribution. Hence, the adopted methodology highlights the
ifferences between the two simulated data sets. 
When applying the stacked lensing analysis, we found that the

tted shapes can vary by roughly a 10 per cent for the haloes identified
n the SIDM simulation compared to those in the CDM simulation,
ith the latter tending to be more elongated. We have also tested
 radial variation modelling that considers a relation between the
ass elongation and the projected radial distance. The results show
 higher slope of the power law for the shape radial variation for the
aloes in the SIDM simulation, describing rounder mass distributions
owards the centre. The shape parameters roughly agree with the
easured in CDM simulation at the mean virial radius of the stacked

ample. 
We also notice that all the lensing results are supported by the

rends of the measured shapes based on the the whole particle
istribution included in the analysis. For both models, with and
ithout a radial dependent shape variation, we systematically obtain
 more elongated distribution of the neighbouring mass component
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Figure 12. Radial variation of the semi-axis ratio predicted according to the fitted quadrupole components for the main halo (solid lines) and for the neighbouring 
mass distribution (dotted lines). Results are shown for the stacked haloes in the SIDM and CDM simulations. Shadow regions correspond to the expected sampling 
error computed using the bootstrapping technique. Darker colours indicate the radial ranges in which the components are expected to be more dominant and are 
set at the mean R vir of the stacked haloes. 

Figure 13. Ratio between the fitted halo semi-axis ratio from the stacked DM particle distribution enclosed within the projected radius r . We show in 
green and dashed lines the results from stacking only the bound particles of the haloes and in purple solid line the correspondent for the whole particle 
distribution within a 10 h −1 Mpc box centred in each halo. Shadow regions correspond to the expected sampling error computed using the bootstrap resampling 
technique. 

f  

m
e
B  

s
p

 

w  

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/528/2/3075/7515285 by guest on 13 M
ay 2024
or the combined haloes in the SIDM simulation. This result is
ore significant for the lower-mass haloes and those in denser local 

nvironments. The results obtained agree with those presented in 
anerjee et al. ( 2020 ) where a more coherent infall from larger
cales is expected for the haloes when considering self-interacting 
articles. 
It is important to take into account that the results derived in this

ork are bound to the fact that we neglect the impact of the baryon
MNRAS 528, 3075–3091 (2024) 
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hysics in shaping the haloes. Nevertheless, the fitted radial ranges
nclude information well beyond the halo radial extension, where
he impact of baryons is expected to be less significant. In fact,
imulations that include baryon physics found that shape differences
n the DM distributions persisted out to large radii and that the shape
ifferences between CDM and SIDM were significantly larger than
hose between DM-only and hydrodynamical simulations (Robertson
t al. 2019 ). Another effect that will be important to take into
ccount is the estimate of the main-cluster orientation. In the analysis
resented, we use the particle distribution in order to align the haloes
or the stacking. These orientations are in principle unknown in
bservational studies, which consider luminous proxies such as the
alaxy member distribution in order to constrain them. Although the
ember distribution has been shown to offer a good prediction for

he halo main orientation (Gonzalez et al. 2021b ), hydrodynamical
imulations will be necessary to test the impact of this misalignment
n the analysis and to account for possible systematic effects. 

Although other effects need to be assessed to impro v e the
alibration of the presented methodology, its application shows a
trong potential in capturing the differences introduced by dark-
atter particle candidates. In view of the new upcoming large-scale

urv e ys, such as the Le gac y Surv e y of Space and Time (Ivezi ́c et al.
019 ) and Euclid (Laureijs et al. 2011 ), that will provide high-
uality measurements of lensing statistics, our findings show lensing
echniques as a promising approach in order to test the nature of the
ark-matter particle. 
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