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Biogenic CO2 flux uncertainty: numerical experiments and validation 
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ABSTRACT 

Understanding carbon dioxide (CO2) surface fluxes is essential in the context of a changing 
climate. In particular, agriculture significantly contributes to CO2 fluxes. Recently, some studies 
have focused on understanding how synoptic-scale variability modulates CO2 fluxes associated 
with vegetation and agriculture, finding that frontal passages and precipitation events exert a 
strong influence on these fluxes. This variability is particularly relevant in the Argentinean Pampas, 
where large CO2 fluxes associated with extensive agriculture combine with strong synoptic 
variability. Numerical modelling provides a valuable tool for investigating surface CO2 fluxes 
and their variability, despite the uncertainties associated with the model’s limitations. In this 
work, we investigate simulated CO2 fluxes in the Argentinean Pampas using the Weather 
Research and Forecasting Model (WRF) coupled with the Vegetation, Respiration and 
Photosynthesis Model (VPRM) over three case studies representing different synoptic-scale 
conditions. In addition, we estimate the uncertainty in the simulations by comparing simulated 
CO2 fluxes using various WRF configurations and the ERA5 reanalysis. We found that the 
synoptic-scale conditions have a considerable impact on the magnitude of fluxes as well as 
the simulation uncertainty. Uncertainties in simulated CO2 fluxes can be as high as 60%, being 
larger at sunrise and sunset. Also, the largest uncertainty is associated with a case with a cold 
frontal passage and widespread precipitation. These results allow a more accurate estimation of 
CO2 flux uncertainty, which is key to understanding the effects of climate change.  

Keywords: carbon dioxide, ecosystem respiration, ERA5 reanalysis, frontal passages, gross 
primary productivity, model validation, model uncertainties, net ecosystem exchange, numerical 
modelling, sensitivity analysis, Weather Research and Forecasting, WRF. 

1. Introduction 

Providing correct estimates of greenhouse gases (GHG) exchanged between the land and 
the atmosphere and of GHG atmospheric transport is mandatory to test the validity of 
bottom–up and top–down approaches employed to calculate the national and regional 
carbon budgets necessary to adapt to climate change (Parazoo et al. 2008; Chevallier 
et al. 2019; Peiro et al. 2022). Terrestrial ecosystems emit and capture carbon dioxide 
(CO2) to and from the atmosphere through their ecosystem respiration (Reco) and their 
gross primary productivity (GPP) respectively. The net ecosystem exchange (NEE) is 
defined as NEE = Reco – GPP, and it represents the net CO2 flux exchanged between the 
atmosphere and an ecosystem. Recently, how frontal passages and precipitation events 
influence NEE and CO2 atmospheric transport was analysed (Hurwitz et al. 2004;  
Huxman et al. 2004; Lee et al. 2012; Pal et al. 2020; Hu et al. 2021). For instance,  
Hurwitz et al. (2004) quantified the influence of precipitation on Reco, GPP and NEE 
across time, and Hu et al. (2021) found a CO2 concentration gradient across frontal zones. 
Furthermore, colder and anticyclonic circulation areas behind cold fronts can enhance 
GPP and diminish Reco, leading to an increase in carbon uptake by vegetation. However, 
it is unclear to what extent these conclusions can be extrapolated to other regions and 
climatological contexts because each location has its own topographic, climatological, 
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soil and biological characteristics that influence NEE and 
CO2 atmospheric transport (Oke 2002; Parazoo et al. 2008;  
Baldocchi et al. 2018). 

NEE measurements through the eddy covariance tech
nique have provided significant understanding of a great 
deal of ecosystem functioning and its impact on CO2 atmo
spheric balance (Baldocchi 2020). These measurements are 
specific and representative of a very limited area associated 
with the annual footprint of a micrometeorological tower. 
However, the Vegetation Photosynthesis and Respiration 
Model (VPRM; Xiao et al. 2004; Mahadevan et al. 2008), 
recently implemented in the Weather Research and 
Forecasting Model coupled with Chemistry (WRF-Chem;  
Skamarock et al. 2019), has been an effective tool for 
modelling carbon dioxide exchange between vegetation 
and the atmosphere, and its atmospheric advection at a 
regional scale (Dayalu et al. 2018; Hu et al. 2021; Gourdji 
et al. 2022). VPRM needs as input variables WRF estimates 
of near-surface air temperature and solar radiation that 
arrives at the surface, which are highly correlated with 
Reco and GPP respectively (Lloyd and Taylor 1994; Lasslop 
et al. 2010; Baldocchi et al. 2018; Bautista et al. 2023). 

Numerical simulations of the atmosphere’s [measured] 
parameters, as produced by the WRF model, consist of 
solving the governing equations of atmospheric flow over 
a predefined three-dimensional grid inside a region of inter
est or domain. However, subgrid processes, such as turbu
lent mixing in the atmospheric boundary layer (ABL), and 
soil processes are not solved explicitly by the model and 
they need to be estimated by one of the many parameterisa
tion schemes included in WRF. The selection of these 
schemes is not trivial because it may lead to different fore
cast values of variables over time. Moreover, previous stud
ies suggest that there is no single combination of schemes 
that provides the best performance under all weather condi
tions and for all simulated variables (e.g. Ruiz et al. 2010;  
Alvarez Imaz et al. 2021; Casaretto et al. 2022). The uncer
tainty associated with parameterisation schemes can propa
gate as uncertainties in estimating Reco and GPP, the two 
components of CO2 flux. As an example of this, Reco is 
positively correlated with temperature (Lloyd and Taylor 
1994); thus, uncertainty in near-surface air temperature 
estimates will negatively influence the estimation of Reco
fluxes. Moreover, errors in the estimation of other variables 
can also propagate to CO2 flux uncertainties (Hilton et al. 
2014) if they influence air temperature. For instance, pre
cipitation events generate cold pools at the surface level 
(Markowski and Richardson 2011). If they are poorly repre
sented, the surface temperature will not be accurate, 
increasing the uncertainty in Reco estimation. As another 
example, ABL structure influences near-surface air tempera
ture through turbulent mixing (Stull 1988); thus, incorrect 
estimates of temperatures along the ABL will propagate to 
the surface temperature and, after, to the fluxes. These 
examples illustrate that it is necessary to estimate all the 

variables in the simulations to accurately represent the CO2
fluxes. 

Estimates from 2018 indicated that ~0.9% of total global 
GHG emissions (0.10 Pg C) came from Argentina, with 39% 
from agriculture, livestock, forestry and other activities, these 
being carried out in the most productive region of Argentina 
(MPRArg; Crippa et al. 2021; Ministerio de Ambiente y 
Desarrollo Sostenible 2021). The observed and projected 
increases in temperature, precipitation, global radiation and 
vegetation greenness have a positive effect on Reco and GPP 
(Barros et al. 2015; Long et al. 2023). However, changes in 
land cover types and management practices over the region 
have higher variability and uncertainty, which makes their 
effect on CO2 fluxes unclear (Stanimirova et al. 2022; Long 
et al. 2023). MPRArg latitudes are between 30 and 40°S, an 
area with high frontal activity, which is expected to increase as 
a result of global warming between 2070 and 2100 (Blázquez 
and Solman 2019). As this region is an important carbon 
source for the atmosphere, it is important to understand the 
impact of frontal passages on NEE and the atmospheric trans
port of CO2 over the territory. However, as a first step to 
conducting estimations of CO2 fluxes based on numerical 
simulations, it is important to investigate the uncertainty asso
ciated with these simulations and how these uncertainties can 
propagate to the estimation of CO2 fluxes over this region. 
Therefore, this study aims to evaluate the sensitivity of the 
most relevant variables directly or indirectly involved in CO2 
flux computation (2-m temperature, shortwave radiation and 
precipitation) to the choice of model configuration. We also 
aim to quantify how their uncertainties are propagated into 
the estimation of CO2 surface fluxes. Simulated variables will 
be compared with in situ observations to quantify their total 
uncertainty. We also aim to provide insights on the most 
appropriate combinations of schemes, focusing on sensitivity 
to the representation of radiative fluxes, microphysical pro
cesses, ABL processes and the choice of the land surface model. 

2. Material and methods

2.1. Model simulations and description of the cases 

The WRF-Chem v.4.4.2 model was used to simulate the atmo
spheric dynamics over the MPRArg region with two nested 
domains. The resolutions of the outer and inner domains were 
12 and 4 km in the horizontal direction respectively; thus, no 
deep moist convection scheme was required for the inner 
domain (Fig. 1). Eight different combinations of WRF ABL, 
cloud microphysics and radiative parameterisations were run 
for three cases with different meteorological conditions. The 
reanalysis from the European Centre for Medium-Range 
Weather Forecasts (ERA5; Hersbach et al. 2023a, 2023b) 
available every 3 h was used as input and boundary condi
tions, and the WRF outputs were saved every hour. The most 
relevant parameters and configurations of the WRF simula
tions are shown in Table 1. 
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Each WRF simulation lasted for 30 h and was initialised at 
00:00 hours UTC (Coordinated Universal Time) on 19 
November, 24 November and 17 November 2018 (local 
time GMT–3); these cases were named sunny, cloudy and 
rainy respectively, owing to their dominant synoptic situa
tions. Fig. 2 shows the 2-m air temperature (T2) diel cycles at 
five surface weather stations, 925-hPa geopotential height 
from ERA5 and GOES-16 (Geostationary Operational 
Environmental Satellite) albedo from Band 2 centred at 
0.64 µm for the three selected events. The sunny case had 
mainly clear skies over the whole domain, except for a small 

cloudy area that lasted a few hours in the south-western part 
of the domain. By contrast, the domain was mostly covered 
by thin, high-level clouds during the cloudy case, but no 
significant precipitation was recorded during this event. 
The rainy case was associated with a cold front moving 
from south-west to north-east across the domain. This cold 
front triggered organised deep moist convection in the form 
of a mesoscale convective system at the north-east corner of 
the study region during the local afternoon, and the station- 
averaged recorded precipitation was 12.2 mm day−1 and the 
maximum was 57.0 mm day−1. These three cases represent 
increasing levels of complexity and presumably increasing 
uncertainty associated with the computation of surface CO2 
fluxes. 

To evaluate the sensitivity of CO2 flux computation, we 
performed simulations over the three selected cases using 
different combinations of the parametrisation schemes of 
short-wave radiation, ABL, microphysics and soil model. 
The Control experiment of WRF was designed by selecting 
the same set of parameterisations used by the National 
Meteorological Service of Argentina (Servicio Meteorológico 
Nacional, SMN) for their 2-day forecasts (Dillon et al. 2020). 
To test the sensitivity of the input variables to the model 
configuration, different runs were carried out changing only 
one of the schemes used in the Control setting (Table 2). 
Currently, over 70 physical parameterisations are available in 
WRF. A full analysis of all these would increase the complex
ity of the study beyond its scope. Therefore, we limited the 
number of WRF scenarios to eight. The selected schemes have 
been used widely by other researchers in the region with 
positive results (e.g. Ruiz et al. 2010; Ferreyra et al. 2016;  
Müller et al. 2016; Dillon et al. 2020, 2021; Alvarez Imaz 
et al. 2021; Casaretto et al. 2022; Suárez et al. 2022; Luque 
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Fig. 1. Outer (a) and inner (b, c) domains of the WRF simulations. The symbols indicate the location of the surface synoptic 
(crosses and circles) and upper-level (diamonds) weather stations used to validate the simulations. The greyscale in (a, b) 
indicates altitude and in (c) the dominant vegetation class. Measurements include 2-m air temperature (T2), shortwave incoming 
radiation at the surface (SWDOWN) and precipitaion (PP).   

Table 1. Simulation characteristics of the WRF runs.      

Outer domain Inner domain   

Initial and boundary 
conditions 

ERA5 Outer domain 

Horizontal grid 
resolution (km)  

12  4 

Number of vertical 
levels  

50  50 

Vertical levels below 
2500 m (approx.)  

23  23 

Time step (s)  30 A  10 A 

Spin up (h)  6  6 

Longwave radiation 
scheme 

rrtmg (longwave;   
Iacono et al. 2008) 

rrtmg (longwave;   
Iacono et al. 2008) 

Convection scheme Grell 3D ( Grell and 
Devenyi 2002) 

– 

AIn the cloudy case, the time step of the YSU scenario was diminished to 20 
and 6.67 s owing to numeric integration stability issues.  
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et al. 2024; Merino 2024). A brief description of the eight 
WRF configurations is detailed in the following subsections. 

2.1.1. Shortwave radiation schemes 
The shortwave radiation scheme used in most configura

tions was the Rapid Radiative Transfer Model for general 
circulation models (RRTMG_SW; Iacono et al. 2008), which 
solves the Radiative Transfer Equation (RTE) explicitly by 
integrating it using 14 spectral bands and the contribution 
of H2O, O2, O3, CO2 and CH4 at two vertical levels. Another 
shortwave radiation scheme tested was the Dudhia parame
terisation (Dudhia; Dudhia 1989), which does not solve the 

RTE explicitly but by applying a set of experimental rela
tionships. In this way, the opacity of the atmosphere is 
assumed to be fixed. The third shortwave radiation parame
terisation used in our experiments was the Goddard scheme 
(Goddard; Chou and Suarez 1994), which solves the RTE 
explicitly by integrating it along 11 spectral bands. It calcu
lates the effect of O3 with a climatological concentration 
value and of O2 and CO2 as empirical relationships (i.e. they 
are not explicitly included in the RTE). The CO2 default 
atmospheric concentration in RRTMG_SW is greater than 
in Goddard (409 and 401 ppm for 2018 respectively); 
thus, the atmosphere is less opaque in Goddard. 
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Fig. 2. T2 station data during the simulated cases for the (a) sunny, (d) cloudy and (g) rainy cases in Gualeguaychú, Rosario, 
Marcos Juarez, Río Cuarto and Reconquista stations (solid, dashed, dot-dashed, densely dotted and loosely dotted lines 
respectively). Their geographical coordinates ae −33.00, −32.92, −32.70, 33.12 and −29.18°S; −58.62, −60.78, −62.15, 64.23 and 
−59.70°W respectively. ERA5 geopotential height at 925 hPa in geopotential metres (mgp) from 16:00 hours UTC (13:00 hours 
local time) for the (b) sunny, (e) cloudy and (h) rainy cases. GOES-16 albedo from Band 2 centred at 0.64 µm at 16:00 hours UTC for 
the (c) sunny, (f) cloudy and (i) rainy cases.   
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2.1.2. Land surface schemes 
Two land surface models were tested in this study: the 

Noah Land Surface Model (Noah; Tewari et al. 2004) and 
the Noah-Multiparameterisation Land Surface Model (Noah 
MP; He et al. 2023). The former, Noah, is a scheme that 
estimates soil temperature and humidity in four layers and 
considers the snow fraction and frozen soil physics. Noah 
MP extends the original Noah by adding an extra vegetation 
layer over the soil and an explicit representation of its 
impact on the radiative balance. Furthermore, it adds 
more snow layers that are solved with more detail than 
in Noah. 

2.1.3. Microphysics schemes 
The microphysics schemes used in this study were the 

Single-Moment 6-Class Scheme (WSM6; Hong and Lim 
2006), the Thompson scheme (Thompson; Thompson et al. 
2008) and the Double-Moment 6-Class Scheme (WDM6; Lim 
and Hong 2010). All of these classify hydrometeors into six 
categories (water vapour, cloud water, cloud ice, snow, 
graupel and rain). The drop size distribution of each category 
is described as a gamma function with either one or two 
degrees of freedom. In this way, WSM6 calculates only the 
mixing ratio of each category; that is, all the gamma functions 
have one degree of freedom. Thompson estimates the mixing 
ratio and the particle number for cloud ice and rain catego
ries, and WDM6 does the same though for cloud water, rain 
and the cloud condensation nuclei number. This means that 
for each of these categories, there are two associated pre
dicted variables, which results in larger variability and a 
more realistic representation of particle size distribution. 

2.1.4. ABL and surface layer schemes 
Three ABL parameterisations were analysed in this work. 

The Mellor–Yamada–Janjic scheme (MYJ; Janjic 1994) con
siders only local mixing by using a 1.5-order (2.5-level) 

turbulence closure model based on the prediction of the 
turbulent kinetic energy (TKE). By contrast, the Yonsei 
University parameterisation (YSU; Hong et al. 2006) is a 
non-local scheme with a first-order closure that diagnoses 
the eddy viscosity coefficient as a function of the altitude, 
K(z), for each ABL stability condition. The third model used, 
the Asymmetric Convective Model v.2 (ACM2; Pleim 2007), 
considers local and non-local contributions in a similar first- 
order closure employing K(z) profiles, but with the addition 
of an eddy diffusion term. In previous works over the region, 
schemes with local and non-local mixing showed large dif
ferences in the representation of non-resolved turbulence 
(Ruiz et al. 2010; Alvarez Imaz et al. 2021; Suárez et al. 
2022; Luque et al. 2024; Merino 2024). Therefore, including 
local and non-local mixing parameterisations of the ABL, 
like MYJ and YSU, in our analysis would provide greater 
sensitivity in the results. 

Surface layer schemes are predefined by the choice of the 
ABL scheme in WRF. That is, each ABL parameterisation is 
compatible with only a few surface layer models. In this way, 
Janjic Eta (Janjic 2019) is compatible with the MYJ ABL 
scheme, whereas the fifth-generation Penn State–National 
Center for Atmospheric Research mesoscale model scheme 
(Revised MM5; Jimenez et al. 2012) fits with YSU and ACM2. 
Both schemes make use of the Monin–Obukhov similarity 
theory (Monin and Obukhov 1954) and their main differ
ences are in the stability functions used to calculate heat, 
water and momentum exchanges between the atmospheric 
surface layer and the surface, and between the surface layer 
and the residual or mixing layers. Moreover, Janjic Eta 
includes parameterisations of the laminar sublayer above 
land and water, which are not included in MM5. 

2.2. Validation data 

Conventional weather stations from the SMN and automatic 
weather stations from the Instituto Nacional de Tecnología 

Table 2. Parameterisations used to define each WRF configuration.        

Scenario Shortwave 
radiation scheme 

Land 
surface 
scheme 

Microphysics 
scheme 

ABL 
scheme 

Surface 
Layer 
scheme   

Control RRTMG_SW Noah MP WSM6 MYJ Janjic Eta 

Dudhia Dudhia Noah MP WSM6 MYJ Janjic Eta 

Goddard Goddard Noah MP WSM6 MYJ Janjic Eta 

Noah RRTMG_SW Noah WSM6 MYJ Janjic Eta 

WDM6 RRTMG_SW Noah MP WDM6 MYJ Janjic Eta 

Thompson RRTMG_SW Noah MP Thompson MYJ Janjic Eta 

YSU RRTMG_SW Noah MP WSM6 YSU Revised 
MM5 

ACM2 RRTMG_SW Noah MP WSM6 ACM2 Revised 
MM5 

The schemes that are different from Control are in bold. Acronyms are described in the text.  
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Agropecuaria (INTA) inside the MPRArg were used to vali
date WRF-simulated T2, incoming shortwave radiation at 
the surface (SWDOWN) and precipitation (PP; Fig. 1). 
Among all available stations within the model domain, a 
subset was selected seeking a more homogeneous spatial 
distribution (i.e. reducing the station density in highly pop
ulated areas). The characteristics and locations of the sur
face weather stations used in the validation of the 
simulations are presented in the Supplementary material 
(Supplementary Tables S1–S3). 

The selected dates allowed us to validate the results with 
measurements from RELAMPAGO-CACTI (Nesbitt et al. 
2021; Varble et al. 2021) and Mar Chiquita (Bautista et al. 
2023) micrometeorological field campaigns. The perform
ance of the WRF simulations in representing ABL structure 
was validated using atmospheric soundings from the RELA
MPAGO-CACTI campaign. The dataset consisted of 5, 5 and 
13 sounding profiles respectively launched during the sunny, 
cloudy and rainy cases at Villa María del Río Seco, Córdoba, 
Ezeiza and Santa Rosa (Fig. 1). All radiosonde launching 
times were matched to the closest WRF output hour. 

WRF-simulated SWDOWN was validated using data from 
the INTA automatic surface weather station network. This 
dataset was complemented with extraordinary observations 
from the flux station measurements from RELAMPAGO- 
CACTI (Nesbitt et al. 2021; National Center for 
Atmospheric Research Earth Observing Laboratory In situ 
Sensing Facility and Oncley 2021; Varble et al. 2021) and 
from the Mar Chiquita flux station (Bautista et al. 2023). It is 
important to highlight that, even with the extended data
base, the stations measuring radiation were limited to the 
centre and south-east regions of the inner domain; thus, 
SWDOWN validation was restricted to that area. 

In addition to in situ measurements, hourly outputs from 
ERA5 were used to compare T2, SWDOWN, PP and ABL 
structure with the WRF simulations and with the surface and 
sounding measurements. 

2.3 Processing and validation 

The model was evaluated using the bias, Root Mean Squared 
Error (RMSE) and Pearson correlation index (ρ), which are 
defined as follows: 

X X
N

Bias =
( )i

N mod measi i (1) 

X X
N

RMSE =
( )i

N mod meas
2

i i (2) 

X X X X
N

=
( ¯ )( ¯ )i

N mod mod meas measi i i i (3)  

where Xmodi 
and Xmeasi 

are the respective modelled and 
observed variables, and N is the number of available 
observations. 

The indices from Eqn 1–3 were used to quantify and 
characterise the uncertainties of the model. In particular, 
non-zero biases are systematic errors that lead to over- and 
under-estimations by the model. However, this index can be 
zero even when there are large discrepancies between the 
model and the observations, as long as the mean is accu
rately estimated. In those cases, the RMSE comes in handy 
because large errors result in a high RMSE. Nevertheless, 
neither bias nor RMSE gives insights into the diel cycle of 
the variables. This aspect can be elucidated by examining ρ. 
A ρ close to 1 or −1 signifies that the two variables are 
respectively nearly in phase or counterphase. Conversely, a 
ρ value close to zero suggests that they share neither a phase 
nor a counterphase relationship. 

The observation data were interpolated in time to the 
WRF output time using a nearest neighbour approach. This 
applies to INTA, RELAMPAGO-CACTI and Mar Chiquita 
datasets, whose sampling frequency is of the order of a 
few minutes. The nearest-neighbour approach was used to 
interpolate WRF model data to the location of the weather 
stations. In this way, the grid point closest to the observation 
location was selected in the WRF and ERA5 domains. The 
only exception was WRF PP, where the four grid points 
closest to the station’s location were averaged to smooth 
out the small-scale spatial variability from the model output. 
However, radiosonde data were compared with simulated 
data at the ERA5 vertical levels. WRF and radiosonde data 
were interpolated to ERA5 vertical levels using the same 
nearest-neighbour approach that was used to interpolate the 
horizontal grid. 

2.4. CO2 flux uncertainties 

We calculated uncertainties in the CO2 flux estimations for 
two Reco models and one GPP model: the Reco and GPP 
models developed by Mahadevan et al. (2008) and already 
implemented in VPRM-WRF (RecoM and GPPM), and a mod
ified version of RecoM model developed by Gourdji et al. 
(2022) (RecoG). They are represented by Eqn 4–7: 

R T= +ecoM (4) 

T P WGPP = EVI SWDOWN
1 + SWDOWN/PAR0M scale scale scale

(5) 

T T T T T
T T T T T T

= ( )( )
( )( ) ( )scale

min max

min max opt
2 (6) 

R T T EVI k W

k W T k W T

= + + + +

+ +
ecoG 1 1 2

2
1 scale

2 scale 3 scale 2 (7)  

In Eqn 4–7, where T is the near-surface temperature (in this 
study, we use T2), β, α, λ, PAR0, Tmin, Tmax and Topt are 
parameters that represent the baseline ecosystem respira
tion, the temperature sensitivity of ecosystem respiration, 
the maximum quantum yield, the half-saturation value of 
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photosynthetic active radiation, and the minimum, maxi
mum and optimal temperatures for photosynthesis respec
tively, whose value is defined in the VPRM-Europe table 
(Ahmadov et al. 2009). All these parameters depend on 
the type of vegetation. However, β1, α1, α2, γ, k1, k2 and 
k3 are parameters that quantify the influence of each term 
on Reco whose values are taken from Gourdji et al. (2022); 
EVI, Pscale, Wscale and Tscale are parameters ranging from 0 to 
1 respectively representing greenness, leaf age, water stress 
and influence of T2 on vegetation photosynthesis. Absolute 
errors for all the models can be calculated after expanding  
Eqn 4–7 by the Gaussian Error Propagation method, result
ing in the following error expressions: 

R TError = decoM (8) 

T P WErrorGPP = EVI

× dSW(1 + SWDOWN/PAR0) dSWSWDOWN /PAR0
(1 + SWDOWN/PAR0)

M scale scale scale

2

2

(9) 

TError =

T A A A A A

T A A A A A
A A Ascale

d {( ) + ( )}{( )( ) ( ) }

d ( )( ){( ) + ( ) 2( )}
{( )( ) ( ) }

max min min max opt 2

min max max min opt

min max opt 2 2

(10) 
R T T T k W T

k W T T

Error = d + d + d

+ d
ecoG 1 2 2 scale

3 scale (11)  

Eqn 8–11 represent the absolute errors of RecoM due to T2 
(Eqn 8), GPPM due to SWDOWN (Eqn 9), Tscale due to T2 
(Eqn 10), and RecoG due to T2 (Eqn 11). Amin, Aopt and Amax 
are respectively T − Tmin, T − Topt and T − Tmax. We used 

the T2 RMSE obtained during the validation as dT and the 
SWDOWN RMSE as dSW. Then, we calculated relative errors 
for the main vegetation types over the inner domain, which 
are crops, grass and shrub. We fixed the parameters EVI, 
Pscale, Wscale and Tscale to 1 when calculating the relative 
errors of the RecoG model to get its upper bound. Regarding 
relative GPPM errors due to T2, the parameters EVI, Pscale 
and Wscale were not relevant because they cancelled each 
other out, which made their results equal to relative errors 
in Tscale. 

3. Results 

3.1. Overall performance of the simulations 

As shown in Fig. 3, the simulation for the sunny case shows 
almost no quantity of condensates (QC) and no precipita
tion. The simulation for the cloudy case shows higher con
densate contents but almost no precipitation, and the 
simulation for the rainy case shows substantially higher 
condensate concentrations as well as higher precipitation 
values. YSU and ACM2 had the lowest QC during the cloudy 
and rainy cases, although the lowest rainy case PP occurred 
in WDM6 and Thompson. However, in the cloudy and rainy 
cases, ERA5 had QC higher than the WRF simulations that 
used WSM6 as their microphysics scheme, but lower than 
WDM6 and Thompson. Regardless, the resulting ERA5 pre
cipitation in the rainy case was the highest. 

Front areas denote strong gradients of equivalent poten
tial temperature (θe) due to large temperature and humidity 
contrasts. In each simulation made during the rainy case, 
the θe = 330 K line, which approximately follows the loca
tion of the cold front in this case, had a similar shape 
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(Fig. 4a). In particular, in YSU and ACM2 runs, the front was 
located ~0.5° to the south, suggesting a slower front dis
placement than in the other scenarios. In the case of ERA5, 
its θe = 330 K line was ~1° further to the south between 64 
and 60°W and ~0.5° furhter to the north between 60 and 
57°W compared with the simulations (Fig. 4b). 

These results indicate that the WRF model adequately 
captured the main characteristics of these three events in 
terms of cloud formation and precipitation. The comparison 
also shows that differences among WRF simulations are 
smaller than the difference between WRF and ERA5. This 
is expected behaviour because ERA5 data are based on a 
global model with lower effective resolution in which pro
cesses such as deep convective clouds are parametrised. 

3.2. Impact of different parametrisation schemes 
on VPRM input variables 

3.2.1. 2-m air temperature 
In this subsection, we present the validation results for 

T2. We averaged the metrics from Eqn 1–3 over all the 
stations for each run. All configurations had ρ greater than 
0.87, RMSE lower than 2.5°C and negative bias, except for 
YSU and ACM2, which had positive biases during the cloudy 
(both) and rainy (ACM2) cases (Fig. 5). ACM2 had the best 
performance of the WRF configurations during the sunny 
case. Dudhia and WDM6 had the lowest RMSE in the cloudy 
case, and ACM2 outperformed all the other configurations 
during the rainy case, even though the smallest bias was in 
YSU. However, ERA5 was the best model in the sunny and 

rainy cases, although it was slightly worse than Dudhia in 
the cloudy case. 

A full description of the spatial and temporal distribution 
of these errors is presented in the Supplementary material 
(Supplementary Fig. S1–S4). One advantage of high- 
resolution models is in the representation processes associ
ated with complex terrain. To investigate if this has a 
particular impact on our simulations, Fig. 6 shows the per
formance of WRF simulations at stations located over 200 m 
in altitude and below that value. The 200-m threshold was 
reached after binning the stations by height into five cate
gories, with 20% in each group. All the Student’s t-tests had 
P values higher than 0.15 except for WDM6 in the rainy 
case and for ERA5 in all cases (Fig. 6). This implies that 
ERA5 estimated T2 for stations located above 200 m worse 
than for those situated below 200 m, whereas all the WRF 
configurations but WDM6 during the rainy case performed 
similarly regardless of this threshold. Therefore, complex 
topography added uncertainty to ERA5 estimates that did 
not reduce the performance of the WRF configurations. 
The complete statistical results are presented in the 
Supplementary material (Supplementary Table S4). 

During the rainy case, the precipitation systems are asso
ciated with enhanced mesoscale variability in surface 
variables such as T2. This enhanced variability at smaller 
spatio-temporal scales is also linked with increased uncer
tainty in the simulations, which can result in higher uncer
tainty in the simulated CO2 fluxes. One feature frequently 
connected with mesoscale convective systems is the cold 
pool. All simulations in the rainy case show a large and 
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intense cold pool over the north-eastern part of the domain 
at 15:00 hours UTC (Fig. 7). This cold pool is well ahead of 
the lower-temperature region that is observed in the south- 
western part of the domain and that is associated with the 
cold front. 

The cold pool varied its intensity depending on the radi
ation scheme used, but had the same location in all of them 
(Fig. 7a–c). However, in Thompson and WDM6, the cold 
pool extended to the south, merging with the colder air 
behind the cold front (Fig. 7e–f). The distance between the 

(a)

0.98

0.96
0.94 0.91

0.87

0.90
(b) (c)

Control

Dudhia

1.9

–1.5 –1 –0.5

Bias (°C)

0 0.5 –1.5 –1 –0.5

Bias (°C)

0 0.5 –1.5 –1 –0.5

Bias (°C)

0 0.5

2.0

2.1

2.2

R
M

S
E

 (
°C

) 2.3

2.4

2.5

Goddard

Noah

WDM6

Thompson

YSU

ACM2

ERA5

Sunny Cloudy Rainy

Fig. 5. RMSE vs bias in degrees Celsius for T2 and the mean ρ calculated over the hourly T2 time series for each run during the 
(a) sunny, (b) cloudy and (c) rainy cases. Solid lines represent the RMSE and bias from the Control case, the dashed line represents 
bias = 0°C and the symbol size is the mean ρ.   

(a)

1

2

3

4

<200 m >200 m

R
M

S
E

 (
°C

)

(b)

1

2

3

4

R
M

S
E

 (
°C

)

(c)

1

2

3

4

R
M

S
E

 (
°C

)

Control Dudhia Goddard Noah WDM6 Thompson YSU ACM2 ERA5

Sunny

Cloudy

Rainy

Fig. 6. Boxplots calculated over the hourly T2 time series for each run during the (a) sunny, (b) cloudy and (c) rainy cases in 
stations with altitude below or above 200 m. The boxes and whiskers indicate the 25th–75th and the 5th–95th percentiles 
respectively. White rectangles and triangles are the medians and means respectively. Horizontal lines represent the means from 
the Control scenario. Single and double asterisks indicate P-values from the mean t-test smaller than 0.15 or 0.01 respectively.   

www.publish.csiro.au/es                                                     Journal of Southern Hemisphere Earth Systems Science 74 (2024) ES24027 

9 

https://www.publish.csiro.au/es


cold pool and the front was longest in ACM2 (Fig. 7h). Its 
position was very similar among the runs, where the most 
important differences were in Noah and YSU as it was 
located slightly to the north and south in these scenarios 
respectively (Fig 7d, g). ERA5 had the cold pool with the 
lowest intensity and split into two smaller pools in the 
west–east direction (Fig. 7i). This behaviour is expected 
considering that deep moist convection is not explicitly 
accounted for in ERA5 so that cold pool generation and 
maintenance processes are only partially represented. 

3.2.2. Incoming shortwave radiation at the surface 
In this subsection, we present the validation results for 

the 24-h integrated SWDOWN and for its diel cycle. Fig. 8 
shows the RMSE and bias for the daily-averaged SWDOWN 
and the correlation coefficient computed from the hourly 

SWDOWN values. We averaged their values over all the 
stations for each run. The differences among the simulations 
were dominated by the radiation scheme in the sunny case, 
but the other parameterisations were also important in the 
other two cases. Error metrics were highest during the rainy 
case and smallest during the sunny case, whereas ρ had the 
opposite behaviour (Fig. 8). The only exception was WDM6 
with a higher RMSE and smaller ρ in the cloudy case; this is 
consistent with the relatively worse performance of this 
configuration for T2 in this same case. In the sunny and 
rainy cases, Dudhia outperformed all the WRF simulations, 
but YSU had the best RMSE during the cloudy case. It is 
interesting to note that although Dudhia performs best in 
the sunny case in terms of shortwave radiation, it produces 
the worst results in the same case in terms of T2. This 
indicates that producing the right radiative forcing may 
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not lead to the optimal results in terms of temperature, 
probably owing to model errors in terms of other processes 
such as turbulent mixing within the ABL or land surface 
processes. 

All the models simulated SWDOWN with similar biases 
during the sunny case, but there were large differences 
between the models in the cloudy and rainy cases. For 
instance, for the station with the largest differences across 
the configurations, located at −31.85°S, 60.54°W, its bias 
respectively ranged from −20.6 to 1.9 MJ m−2 day−1 and 
from −4.0 to 12.2 MJ m−2 day−1 in the cloudy and rainy 
cases. The SWDOWN diel cycle was similar to measured 
radiation in the sunny case, but the differences in its pat
terns were larger during the other two cases. A detailed 
presentation of the figures that illustrate these examples 

is given in the Supplementary material (Supplementary 
Fig. S5–S8). 

3.2.3. Total precipitation 
The simulated PP was validated by applying Eqns 1, 2 to 

24-h accumulated precipitation. As this variable has a 
higher small-scale spatial variability than T2 and 
SWDOWN, WRF-simulated PP was interpolated to the sta
tion location using the average of the closest four grid points 
to each station. 

In the sunny and cloudy cases, PP errors were below 
0.5 mm day−1; thus, the analysis was focused on the rainy 
case. In this case, all the simulations had a positive bias 
except WDM6, Thompson and ACM2, which respectively 
had negative, negative and zero biases (Fig. 9). However, 
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the RMSE of PP was below 12.7 mm for all the simulations, 
which is of the same order of magnitude as the average of 
12.2 mm measured across all the stations. The lowest RMSE 
of the WRF simulations was achieved in Goddard, with a 
value of 7.5 mm day−1. WDM6 and Thompson produced the 
largest difference in terms of RMSE with respect to the 
Control run. This is expected because the cloud micro
physics parameterisation is the most closely related to 
rain. However, other schemes such as Noah (land surface 
processes) and Dudhia (radiation processes) produce similar 
impacts in terms of RMSE. This behaviour may be related to 
the complex dynamics associated with precipitating sys
tems, which can be significantly affected by the ABL struc
ture, which in turn depends on surface fluxes and radiative 
forcing. Moreover, the chaotic behaviour of the atmosphere 
is exacerbated in these situations owing to the existence of 
rapid instabilities that accelerate error growth. 

Regarding the spatial distribution of the errors, all the 
WRF simulations had a positive bias at most stations but a 
negative bias over the ones located near the north-east 
corner of the domain, where a pre-frontal mesoscale con
vective system took place. The largest differences among the 
WRF simulations were observed in this region. The spatial 
distribution of PP errors is presented in the Supplementary 
material (Supplementary Fig. S9–S10). 

3.2.4. Atmospheric boundary layer structure 
To validate how WRF simulations represent the ABL struc

ture, we applied Eqn 1 and 2 to compare model outputs and 
observations vertically interpolated to a common set of 10 
vertical levels between 975 and 750 hPa, evenly spaced 
25 hPa apart. Error metrics were then averaged over all the 
available soundings. The resulting potential temperature 
RMSE and bias within the ABL were respectively below 1.3, 
1.2 and 2.8°C during the sunny, cloudy and rainy cases. ACM2 
had the best metrics among the WRF simulations, but ERA5 
outperformed all of them. The only exceptions were the cloudy 
case bias where YSU was slightly better than ACM2 and the 
rainy case RMSE where ACM2 was better than ERA5. 

Fig. 10 shows the vertical profiles of RMSE and bias 
averaged over all available soundings. Potential tempera
ture bias and RMSE below 900 hPa were respectively 
between −3.5 and 3.0°C, and below 6.0°C. They were 
larger below 950 hPa, except in the rainy case, where the 
highest errors were between 950 and 850 hPa. The three 
cases had cold biases for all the WRF simulations and verti
cal levels, except for YSU and ACM2, which were hotter near 
the surface. These results are consistent with the warm T2 
bias presented earlier for these two configurations. The WRF 
simulations had the worst performance in the rainy case, but 
ERA5 had the worst score in the sunny case. However, dew 
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point temperatures showed the opposite behaviour. They 
were better below 950 hPa than in the upper layers, and 
they had the lowest errors in the rainy case. Readers inter
ested in the individual soundings are referred to the 
Supplementary material (Supplementary Fig. S11–S13). 

3.3. Impact of VPRM input variable uncertainties 
on the CO2 flux simulation 

We propagated the T2 and SWDOWN RMSEs estimated in the 
previous sections into the Reco and GPP models to estimate 
their impact on CO2 flux simulation. In the case of the daily 
accumulated SWDOWN, we divided its RMSE by 13.5 h to 
convert it to the appropriate units required by WRF-VPRM 
(W m−2 s−1). We chose 13.5 h because it is close to the 
number of daytime hours for the domains and cases simulated. 
In the same way, we analysed the relative errors due to T2 and 
SWDOWN within the relevant ranges of these variables for the 
domain and cases simulated, which were ranged from 8 to 
38°C and from 50 to 2500 W m−2. The following subsections 
illustrate RecoM, RecoG and GPPM errors through Fig. 11 and 12. 

3.3.1. Impact of 2-m air temperature on the CO2 flux 
simulation 

The impact of T2 on Reco estimation is illustrated in  
Fig. 11. Relative RecoM errors due to T2 were larger with 

lower temperatures because the fluxes approach zero when 
T2 is close to the critical temperature of the vegetation. By 
contrast, RecoG errors were smaller at colder temperatures 
because the choice of Wscale = 1 resulted in larger – and 
non-zero – fluxes at 0°C. Shrub land use type and the rainy 
case errors were the highest, whereas grass land use type 
and the cloudy case produced the lowest errors. All the runs 
had similar errors, with the highest differences occurring 
when T2 was below 15°C. 

Temperature affects CO2 uptake by vegetation when esti
mated by the GPPM model. Relative errors in GPPM due to 
T2, which are equivalent to relative errors in Tscale due to 
T2, were lowest when T2 was close to Topt and highest when 
it approached the parameters Tmin or Tmax (Fig. 11). This is 
expected behaviour because GPP is highest at the optimal 
temperature for photosynthesis, Topt, and zero when T2 is 
close to the minimum and maximum temperatures for pho
tosynthesis, Tmin and Tmax. When looking at the different 
cases, the sunny and rainy cases had similar errors, being 
smaller in the cloudy case, except for WDM6, which had the 
highest in that case. In a similar way, the difference between 
the vegetation types was small at higher temperatures. 
Errors for grass and shrub were close to each other, but 
errors for crops were larger at colder temperatures. As 
with Reco models, all runs had similar GPPM errors because 
their T2 RMSEs were within a narrow range. 
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3.3.2. Impact of incoming shortwave radiation at the 
surface on the CO2 flux simulation 

The impact of SWDOWN on GPP estimation is illustrated 
in Fig. 12. GPPM relative errors due to SWDOWN were larger 
when this variable approached zero because photosynthesis 
ceases. This was most evident in the rainy case, where 
relative errors increased faster. In these situations, Dudhia 
had the lowest errors in the sunny and rainy cases, and YSU 
in the cloudy case. However, relative errors diminished 
rapidly with increasing SWDOWN values in every case. 
When looking at the vegetation types or at different runs, 
their differences were small because their SWDOWN RMSEs 
were within a narrow range. The highest differences among 
the vegetation types were between crop and shrub, which 
had the lowest and highest relative errors, espectively. 

4. Discussion 

4.1. Sensitivity of the most relevant variables 
involved in the CO2 flux simulation to the 
choice of model configuration 

Hourly T2 errors from the WRF simulations made in this 
study were smaller than 2.5°C in all cases (Fig. 7). On 
average, ERA5 performed better than WRF with errors 
below 1.9°C, but its performance was worse than WRF for 
stations with complex topography. Over the MPRArg, Ruiz 
et al. (2010) tested different schemes in lower-resolution 

forecasts (40 km) and obtained a spatially averaged RMSE 
between 2.4 and 3.1°C in the hourly T2 prediction for all 
schemes evaluated. Another study from the same region,  
Müller et al. (2016), evaluated 15-km resolution WRF fore
casts for a 2-year period between 2012 and 2014. They 
reported absolute mean errors of daily mean temperatures 
up to 2.7°C. In the same way, Dillon et al. (2021) validated 
10-km resolution WRF forecasts with different microphysics 
and ABL schemes during 44 days from 2018 over the 
MPRArg. Their averaged RMSE and bias over the 36-h fore
casts were respectively below 3.0 and 1.0°C. In summary, 
other studies from the region had errors larger than in our 
study. Given that other sensitivity analyses conducted in this 
region and documented in the scientific literature exhibit 
lower resolution, a comparison will be drawn with simula
tions from different regions such as the United States, China 
and Greece (Giannaros et al. 2013; Wyszogrodzki et al. 
2013; Ju et al. 2022). These authors performed simulations 
with respective horizontal grid spacings of 4, 3 and 2 km, 
and the maximum reported error in T2 was 3.1°C. 

Daily integrated SWDOWN errors were respectively smal
ler than 2.2, 6.7 and 7.8 MJ m−2 day−1 during sunny, cloudy 
and rainy situations (Fig. 8). Over the southern portion of the 
domain, monthly mean SWDOWN ranges between 
8.0 MJ m−2 day−1 in winter and 30.0 MJ m−2 day−1 in 
summer, and has been increasing over the past decades 
(Fernández et al. 2021). Numerical estimations for this varia
ble over the region are scarce and involve models different 
from WRF. Among them, Pessacg et al. (2014) validated 
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(a, d, g), middle (b, e, h) and right columns (c, f, i) correspond to the crop, grass and shrub vegetation types respectively.   
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several regional models with a grid spacing of 50 km using 
satellite data. They found biases up to 1.7 MJ m−2 day−1 for 
the period 1990–2008. In other regions, there are numerical 
studies focusing on cloudy cases. For instance, 1.3-km resolu
tion simulations of the AROME model over France during 
2020 produced a maximum RMSE of 4.8 MJ m−2 day−1 in 
cases where there were clouds in the model and in the obser
vations (Magnaldo et al. 2023). As another example, 4- and 
1.5-km resolution runs of the Met Office Unified Model 
(MetUM) during 2017–18 over South Africa had respective 
errors of 4.6 and 5.2 MJ m−2 day−1 (Mendes et al. 2023). 
SWDOWN estimations by WRF have been validated in regions 
different from the MPRArg. Examples of these studies involv
ing high-resolution WRF simulations include a 5-km resolu
tion experiment over the Iberian Peninsula during the period 
2000–2009. It produced daily SWDOWN RMSEs up to 
3.1 MJ m−2 day−1 (Perdigão et al. 2017). Also, a validation 
of 3-km resolution simulations over north-eastern Germany in 
87 frontal passages resulted in a maximum RMSE of 
9.3 MJ m−2 day−1 (Mierzwiak et al. 2023). In all the numeri
cal experiments mentioned, we assumed an average of 12 
daytime hours to extrapolate their results from watts per 
square metre (W m−2) to megajoules per square metre per 
day (MJ m−2 day−1). In consequence, from the information 
stated before, SWDOWN errors from the present study share 
the same order of magnitude as other simulations and expand 
previous works by providing high-resolution WRF simulations 
over the region. 

Accumulated PP forecasts inside the MPRArg have been 
studied using WRF in Ruiz et al. (2010), Müller et al. 
(2016), Casaretto et al. (2022) and Dillon et al. (2021). In 
our rainy case, PP averaged 12.2 mm across all stations, 
and its bias and RMSE were respectively bounded between 
−2.5 and 2.7 mm day−1 and between 7.5 and 
12.7 mm day−1 (Fig. 9). This range is smaller than the 
bias range found in Ruiz et al. (2010), which was between 
−10.0 and 15.0 mm day−1 in the MPRArg during summer 
(December, January and February) with a 40-km resolu
tion model, and higher than the 5.0 mm day−1 from Müller 
et al. (2016) with a 15-km resolution model in a 2-year 
period between 2012 and 2014. In the same way, using 4- 
and 3-km resolution models, Casaretto et al. (2022) 
obtained PP biases between −5.0 and 5.0 mm day−1 dur
ing 43 days of November–December in a smaller region 
with complex terrain inside the MPRArg, with an average 
of 3.3 mm day−1. However, Dillon et al. (2021) compared 
10-km resolution WRF forecasts with PP satellite estimates 
over 44 days inside the MPRArg during 2018. They found 
the average bias of precipitation events to be below 3.0 mm 
grid−1. Even though PP is particularly sensitive to the 
method of validation chosen, like using nearest- 
neighbour interpolation with one grid point or averaging 
a few grid points surrounding a station, daily PP from our 
simulations is in agreement with other assessments from 
the same region. 

Temperature biases and RMSEs within the ABL were 
respectively between −3.5 and 3.0°C, and below 6.0°C 
(Fig. 10). Over the region, the ABL structure has been 
analysed in Ruiz et al. (2010) for YSU and MYJ schemes 
using a 40-km resolution model and soundings from 
Resistencia and Santiago del Estero stations (27.45°S, 
59.05°W; 27.77°S, 64.30°W). In Resistencia, the biases 
were bounded by 2.0°C and they were cold near the surface 
and warm at higher levels. However, the bias at Santiago del 
Estero was cold, reaching up to 3.0°C within the ABL, with 
YSU errors being warmer at lower heights, as happened in 
our work. The ABL structure showed greater sensitivity to 
the choice of both ABL and surface layer schemes in the 
rainy case. Therefore, warmer, wetter and more unstable 
ABLs in YSU and ACM2 were generated. The ABL structure 
has been studied with higher-resolution models in other 
regions of the world. Nevertheless, our RMSE values were 
higher than those calculated by Coniglio et al. (2013) where 
the RMSE for the ABL potential temperature was below 
1.0°C for a 4-km resolution model over the United States. 
Similarly, their ABL structure sensitivity was smaller than in 
our case. In their experiments, the errors were almost con
stant above 100 m, which is similar behaviour to that found 
for the sunny case in the present study. This is an expected 
result because Coniglio et al. (2013) considered only the 
soundings obtained under clear-sky conditions. Our study 
expands their analysis by showing that potential tempera
ture errors can show a different vertical structure within the 
ABL under synoptically active conditions. 

Each target variable was more sensitive to a particular 
physical process depending on the synoptic situation. For 
instance, the ABL–surface layer and radiation schemes ana
lysed had the largest T2 and SWDOWN bias spread in most 
cases. This result highlights the importance of choosing 
appropriate ABL–surface layer and radiation schemes 
when analysing CO2 fluxes in simulations. Selecting ill- 
performing parameterisations for these processes can 
increase the CO2 flux errors. For that reason, it is important 
for future studies to carefully consider their selected 
schemes. Specifically, based on our results, we recommend 
including a set of ABL parameterisations with local and non- 
local mixing schemes. Future research can enhance the 
robustness of this analysis by incorporating additional case 
studies, extending time periods and using independent vali
dation data. It would also be beneficial to evaluate the 
performance of similar analyses using different combina
tions of schemes than those selected here. Attention should 
be paid to the ABL–surface layer combination, as Maroneze 
et al. (2021) demonstrated that they significantly affect the 
simulation of the stable boundary layer. 

4.2. Uncertainties of CO2 flux simulations 

In this study, we investigated the impact of temperature and 
SWDOWN errors on CO2 fluxes. The Reco and GPP models 
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from the original VPRM – RecoM and GPPM – had larger 
relative errors when either T2 or SWDOWN approached 
zero, which are common daytime conditions in the antic
yclonic flow behind a cold front. The former was due to Reco 
and GPP being smaller at colder temperatures when the 
vegetation is close to its Tmin. In a similar way, as plants 
decrease their photosynthesis rate when SWDOWN is scarce, 
GPPM relative errors are larger at sunrise or sunset. As a 
consequence, when both effects are considered, the highest 
relative errors are expected during sunrise and just behind 
the front zone, where temperature and incoming radiation 
are low. This outcome can be mitigated if a respiration 
model with low uncertainties at cold temperatures is used, 
like RecoG, instead of RecoM. 

Li et al. (2020) performed a sensitivity analysis of the 
original VPRM to its parameters. They found the highest 
NEE uncertainties to be up to 60%, occurring near the local 
solar noon when SWDOWN was highest. Our study comple
ments their results by pointing out that uncertainties in the 
environmental variables simulated by a numerical model 
increase the NEE relative errors during the morning and 
evening, accounting for ~20% of the cases assessed in 
their work (Fig. 11 and 12). Furthermore, at least over the 
MPRArg, the CO2 flux uncertainty will be larger in areas 
with complex topography during rainy cases because T2 and 
SWDOWN errors were larger. Therefore, when both sources 
of uncertainty are taken into account, daytime relative 
errors may be greater than 60%. 

Even though the simulations from our study were similar, 
slight differences will change the fluxes. For instance, as the 
nocturnal cooling rate in ERA5 was slower than in the WRF 
simulations in most locations, nighttime Reco fluxes calcu
lated with ERA5 will be higher, leading to a more positive 
CO2 daily budget. By contrast, the nighttime carbon balance 
will be more negative in simulations that use Noah as the 
land surface scheme because its nocturnal cooling rate was 
faster. 

Regarding the effect of precipitation on near-surface tem
peratures, there were runs with larger cold pools, like 
Thompson and WDM6, that result in smaller Reco fluxes. 
Moreover, the position of the cold pool may also influence 
Reco in the presence of high spatial variability in the vegeta
tion type. For example, the cold pool simulated in the 
Control setting covered a smaller percentage of grass than 
in YSU because it was slightly shifted to the west. Therefore, 
differences in the location of the cold pools result in uncer
tainties in the NEE fluxes. Mislocation of cold pools is not 
the objective of our study and should be studied in depth in 
future work. 

It is important to highlight that most of the runs that used 
MYJ as the ABL scheme underestimated T2 and overesti
mated SWDOWN. This will result in Reco and GPP fluxes 
smaller and larger than the real ones respectively, and the 
combined effect over NEE will depend on the specific values 
of both variables. This suggests that ABL schemes with non- 

local mixing, like YSU or ACM2, are more appropriate for 
the region. Even though these schemes had positive T2 
biases during the cloudy and rainy cases, they would result 
in lower Reco and GPP errors. 

The CO2 flux uncertainty depended on the dominant 
synoptic situation of the case. In this way, GPP errors in 
cloudy weather were slightly larger than in fair (sunny) 
weather but much smaller than in rainy conditions. This 
implies that the uncertainty added by the front and the 
mesoscale convective system was more important than 
that produced by clouds alone. In consequence, future GPP 
estimates should consider each particular synoptic situation 
separately and then adjust its uncertainty level accordingly. 

The Intergovernmental Panel on Climate Change (IPCC) 
includes CO2 atmospheric concentration estimates for the 
near, mid and long-term futures based on global climate 
models able to account for CO2 emissions from biogenic 
sources (Canadell et al. 2021; Friedlingstein et al. 2022). 
These models utilise flux inventories as prior information 
through a Bayesian approach. The priors can be based on 
observations, simulations from models like VPRM or a com
bination of both. As we have shown here, the uncertainty in 
the CO2 fluxes can be very high and may depend on the 
synoptic situation. This fact added to other sources of error 
not analysed in this study, like model selection, parameters 
and resolution, contribute to the total uncertainty. 
Therefore, our results strongly suggest a more extensive 
investigation of the uncertainties associated with the repre
sentation of physical processes in the global and regional 
climate models, in particular those that are directly associ
ated with the variables that modulate surface CO2 emissions 
from biogenic sources. We recommend that future studies 
employ global and/or regional climate models capable of 
accounting for CO2 emissions from biogenic sources to con
duct sensitivity analyses similar to ours, while carefully 
considering all sources of error, particularly the uncertainty 
associated with the parametrisation of unresolved scale pro
cesses in the CO2 flux. 

4.3. Most appropriate WRF schemes for simulating 
CO2 fluxes on each dominant synoptic 
situation 

The performance of the WRF parameterisations tested in this 
study characterised the uncertainty associated with the 
selection of different parameterisations on atmospheric vari
ables, essential for computing surface CO2 fluxes over the 
MPRArg. Overall, all performed better than ERA5 in stations 
surrounded by complex topography. Among the radiation 
schemes, RRTMG_SW and Goddard outperformed Dudhia in 
the estimation of near-surface temperatures, but the latter 
produced more accurate estimates of shortwave radiation 
fluxes during the three synoptic situations simulated. The 
Noah MP land surface model produced better simulated 
near-surface temperatures and shortwave radiative fluxes 
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than Noah. Also, Thompson microphysics parameterisations 
were better than WDM6 in the simulation of near-surface 
temperature. WSM6 and WDM6 were the best microphysics 
schemes to simulate shortwave radiation fluxes during the 
cloudy and rainy cases respectively. Non-local ABL schemes, 
YSU and ACM2, surpassed MYJ when simulating near- 
surface temperatures in the sunny and rainy cases. The 
opposite occurred in the cloudy case and with shortwave 
radiation fluxes in all situations. All in all, even when the 
sensitivity to a change in the parameterisation chosen was 
very small in many cases, it was possible to provide insights 
about an appropriate set of WRF schemes for each particular 
synoptic situation that can be used in future study cases. 

Overall, relative NEE errors due to T2 were similar in all 
the configurations and cases tested, with the exception of 
WDM6 in the cloudy case, which propagated larger errors. 
When considering relative NEE errors due to SWDOWN, 
Dudhia outperformed the other configurations in the 
sunny and rainy cases, whereas the same happened for 
ACM2 in the cloudy case. Relative errors were smaller 
when T2 was close to Topt and when SWDOWN was high; 
thus, all the configurations tested in this analysis will have a 
similar performance in study cases with these atmospheric 
conditions, like, for example, temperate and sunny cases. 
However, the spread of relative errors due to T2 and 
SWDOWN was larger when T2 was close to Tmax or Tmin 
and when SWDOWN was low respectively. These conditions 
happen at sunrise and sunset and just behind the front zone. 
Therefore, it is possible to get smaller relative NEE errors in 
study cases involving frontal passages when choosing 
Dudhia or ACM2 over the other schemes tested. 

5. Conclusions 

This study expanded previous results about high-resolution 
WRF simulations and CO2 flux uncertainties. In particular, 
we implemented a high-resolution model in the most pro
ductive region of Argentina, an area with high frontal activ
ity and high CO2 fluxes from agriculture. We added a new 
description of the errors in the simulated near-surface tem
peratures, shortwave radiation fluxes, precipitation and 
atmospheric boundary layer structure over the region. All 
the error ranges were in agreement with previous work done 
in similar conditions, i.e. the same region, dominant synop
tic situation, or model configuration. Although fair weather 
conditions are expected to be associated with low uncertain
ties, cloudy conditions introduce challenges in the computa
tion of shortwave radiation at the surface, involving 
complex interactions between the microphysics and the 
radiation schemes, whereas rainy conditions introduce com
plex feedbacks between precipitating systems, radiation and 
surface temperature. The CO2 flux relative uncertainties due 
to errors in the near-surface temperature and shortwave 
radiation fluxes from this work were larger at sunrise and 

sunset and just behind the front zone, adding to previous 
studies that linked other sources of errors with a high CO2 
flux uncertainty during the afternoon. It is important to 
highlight that the effect on CO2 flux will depend on the 
flux model chosen and on its specific coefficients, which in 
turn rely on vegetation type. This implies that other system
atic errors, like cold pool mislocation, will propagate to the 
flux, a topic that should be studied in depth in future work. 
Lastly, this study provided insights on the choice of appro
priate combinations of WRF schemes to estimate CO2 fluxes. 
Therefore, the results presented here allow a better quanti
fication of the uncertainty of WRF simulations and CO2 flux 
estimates in different weather conditions, both of which are 
key to improve the reliability of GHG budgets and to under
stand their role in the past and future effects of climate 
change. 

Supplementary material 

Supplementary material is available online. 
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