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Abstract. In this work, a theoretical analysis is first presented to find the wave

equation corresponding to the propagation of disturbances in the air contained inside

a tube of variable cross section. In particular, the case of a tube with a circular cross

section whose area varies exponentially as a function of the axial coordinate is studied.

The hypotheses of the model used are discussed and the solutions of the wave equation

obtained are presented. Secondly, and with the aim of validating the model used,

measurements are made on a tube such as the one described, built using a 3D printer.

Keywords: Exponential Horn, Wave Equation, Normal Modes, Impedance.

1. Introduction

The study of resonance in air columns is a standard topic in introductory physics course

programs where, in general, experiments are described and performed in cylindrical

tubes of constant cross section containing air at atmospheric pressure [1]. The motion

of air molecules is modeled within the framework of the continuum hypothesis, meaning

that every volume element is large enough to contain millions of molecules and small

enough for the acoustic variables to be uniform throughout the element [2]. Pressure

perturbations (waves of compression and expansion) correspond to typical changes in gas

motion in the direction of propagation. In this context, the simplest mode of propagation

is the plane wave. This elementary case allows for a straightforward one-dimensional

treatment, approachable with the basic mathematical tools of junior undergraduate

students of physics. However, the problem of wave propagation in tubes with variable

cross section is rarely mentioned in the usual textbooks. From a historical perspective,

this can be understood as a consequence of the higher mathematical and experimental

complexities involved in the study of such systems. For reasons to be developed below,

we think it is didactically useful to introduce the subject at this level of teaching. First,
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Exponential horn revisited 2

by contrasting the traditional textbook approach for constant-section tubes with the

more general results of the variable-section ones, we can distinguish the specific from the

general aspects in the description of tubular acoustical systems. Second, an important

fact to note is that for some particular but interesting geometries, problems within this

class admit analytical solutions which can be readily contrasted with experimental data.

In fact, it is currently feasible to build experimental devices with the desired properties

using digital fabrication techniques like 3D printing, allowing the frequency spectrum

of the system to be measured and analyzed in an accessible way using typical teaching

laboratory facilities and resources [3]. Finally, the system can be related to common

wind musical instruments, a topic with intrinsic interest that can act as a motivation.

In the present work, we investigate the resonance frequencies and oscillation modes

of an air volume within a horn with cylindrical symmetry and exponentially growing

cross sectional area, a system which satisfies the aforementioned characteristics.

In mathematical terms, a horn can be defined as any surface in which any plane

perpendicular to a given line, in this case the x-axis, intersects that surface in a single

closed curve C, whose interior we denote by S [4]. In the basic theory of sound

propagation in horns, as in most studies done on these subjects, propagation is mainly

assumed to be in the form of plane waves. This is the approach we will use in this paper,

with the understanding that this is a simplification valid only for low frequencies. The

derivation of the propagation equation under the assumptions of infinitesimal amplitudes

and one-dimensional plane waves leads to the so-called Webster equation [5]. Usually

the Webster equation is obtained from the continuity equation, which expresses the

conservation of the fluid mass per unit length inside the tube, and the momentum

equation, introducing the concept of potential velocity. However, in this work we will

derive this equation in a more elementary way by following the guidelines of classical

undergraduate textbooks for the problem of tubes of constant cross section ([6],[7],[8]).

In our derivation, a careful analysis of the components of the reaction force of the tube

walls will be made, procedure that has not been described in detail in previous literature,

as far as we know. This sheds light on the effect of the section change on the balance

of the interactions and leads to a better understanding of the phenomenon described.

The study of wave equation solutions for horns of various shapes has been analyzed

by many authors. In particular, Campos [5] gives an exhaustive description of the

problem and its many approaches, detailing the analytical development and applying

it to different shapes of horns, for which solutions and cutoff frequencies are found.

Different models for the description of the horn ending (free, flanged, unflanged) lead

to different expressions for the mouth and throat impedances. The specific kind of

boundary condition leads to a particular set of values for the system normal modes

frequencies. The aim of the present study is to measure these frequencies in an

exponential horn and to compare them with the predictions of various theoretical

models. We also show that our method allows to recover the expected results for tubes
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Exponential horn revisited 3

in the limit of constant cross section.

2. Derivation of the wave equation in a variable cross section tube

Consider air as a non-viscous fluid in contact with the pipe walls, which are considered

perfectly smooth. We will describe the behavior of the fluid macroscopically, within the

framework of the continuum model. We divide the cylinder into N identical slices of

thickness dx, as shown in Figure (1). The displacement of the fluid is the displacement

of the centre of mass of these volume elements, and the pressure and density refer to the

value taken by these variables in each one of these “little cylinders”. We will call ρ the

density and p the pressure. Both will be functions of x and t only. This is a simplification

of the description of the system that allows it to be considered one-dimensional, i.e. the

whole section of equal x coordinate moves under the action of the same forces.

dx x

Figure 1. Division of the tube of variable section in “little cylinders” of length dx.

We will always consider an infinitesimal volume element which is small from the

macroscopic point of view but large compared to the distances between molecules.

When we speak of its displacement, we mean the displacement of that volume element

containing a large number of molecules.

Implicit in the continuum model is the assumption that two neighbouring points

have very similar motions. This hypothesis allows us to describe the vector displacement

of all particles in a small environment around the point x, y, z by means of a continuous

vector field Φ(x, y, z, t). It is important to note that the x, y, z are the coordinates

of the equilibrium position of the particles. If the wave is a scalar, the perturbation is

a continuous scalar function of the position. For example, the pressure of an acoustic

wave p = p(x, y, z, t), from the mathematical point of view, is a continuous time-varying

scalar field.

Let us first analyze the change that occurs in a volume element inside the tube

when it is perturbed by the wave passing through it. This is depicted schematically in

Figure 2. We assume that before the wave passes through, the air is at an equilibrium

pressure p0 and has a volume density ρ0. Therefore, in the equilibrium state, the volume
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Exponential horn revisited 4

ρ0 , p0

x x+dx

ρ , p

x+Φ(x, t) x+dx+Φ(x+dx, t)

Figure 2. Representation of a volume element when perturbed by the wave Φ(x, t).

of that element is V0 = S(x)dx (itself another approximation) and the mass of air will

be ρ0V0 (see Figure 2, left-hand side).

When the wave reaches that volume element, its boundary surfaces move (see Figure

2, right-hand side) and the perturbed volume is given by the expression

V = S(x+ Φ(x, t)) · [x+ dx+ Φ(x+ dx, t)− (x+ Φ(x, t))]

=

(
S(x) +

dS(x)

dx
Φ(x, t)

)(
dx+

∂Φ(x, t)

∂x
dx

)
. (1)

Disregarding higher-order terms, we obtain the change in volume as

∆V = V − V0 ≈
∂

∂x
(S(x)Φ(x, t)) dx . (2)

Multiplying and dividing by the section S(x), the relative change in volume results in

∆V

V0
=

1

S(x)

∂

∂x
(S(x)Φ(x, t)) . (3)

We define the sound or acoustic pressure pe(x, t) as the first order deviations of the

air pressure with respect to the equilibrium value, p(x, t) = p0 + pe(x, t), being |pe(x, t)|
(at least) four or five orders of magnitude smaller than p0. Then, we can relate the

acoustic pressure to the relative variation of the volume given in equation (3) through

the following expression:

pe(x, t) = −B∆V

V0
= − B

S(x)

∂

∂x
(S(x)Φ(x, t)) , (4)

where B is the adiabatic bulk modulus. In the case of constant cross section, we recover

the usual textbook relation pe = −B ∂Φ/∂x.

2.1. Equilibrium state

It is important to note that, even in equilibrium state, the forces acting on the cross

sections bounding a given volume element are not balanced due to the change in the

cross section (see Figure 3). And therefore, this volume element would acquire an

acceleration. But this is not observed, due to the presence of a force that maintains the
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Exponential horn revisited 5

p0 p0

S(x)

p(x, t)

x

S(x+dx)

p(x+dx, t)

x+dx

dV

O L

d~F

d~F

d~Fx

d~Fy

d~Fy

Figure 3. Forces on a volume element due to existing pressures and wall reaction.

equilibrium: this force comes from the reaction that each point of the wall of the tube

exerts in its normal direction on the volume element considered. As a consequence of

axial symmetry, the resultant force acts in the direction of this axis.

Therefore, in the equilibrium state, for any infinitesimal volume element inside the

tube, the instantaneous acceleration of the centre of mass is the null vector. Hence, the

scalar equation takes the form∑
Fext = p0S(x)− p0S(x+ dx) + dF 0

x = 0 , (5)

and therefore

dF 0
x = p0 (S(x+ dx)− S(x)) = p0

dS

dx
dx . (6)

Thus, equation (6) represents the force describing the interaction between the tube wall

and the air inside the tube, which is not usually considered in detail in the literature.

In Appendix A we include a detailed calculation of this interaction for the case of

a finite exponential horn.

2.2. Analysis of non-equilibrium state

We will now analyze the out-of-equilibrium situation, where the pressure p(x, t) =

p0 + pe(x, t). Analogous to the equilibrium situation, now instead of equation (6), the

x−component of the wall reaction will be

dFx = p(x, t)
dS

dx
dx . (7)

Then, taking into account that the mass of the volume element under consideration is

dm = ρ0V0 = ρ0S(x)dx, the equation of motion now takes the form:∑
Fx = p(x, t)S(x)− p(x+ dx, t)S(x+ dx) + p(x, t)

dS(x)

dx
dx

= −∂ (p(x, t)S(x))

∂x
dx+ p(x, t)

dS(x)

dx
dx
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Exponential horn revisited 6

= −∂pe(x, t)
∂x

S(x)dx = ρ0S(x)dx
∂2Φ(x, t)

∂t2
. (8)

Dividing by S(x) dx, we become independent from the volume element

−∂pe(x, t)
∂x

= ρ0
∂2Φ(x, t)

∂t2
. (9)

And expressed as a function of the displacements, we use equation (4):

∂

∂x

[
1

S(x)

∂

∂x
(S(x)Φ(x, t))

]
=

1

c2
∂2Φ

∂t2
(x, t) , (10)

where c =
√
B/ρ0 is the speed of sound. The latter expression is the equation for waves

in tubes of variable cross section. In the case of a constant cross section, S 6= S(x), the

classical wave equation is recovered.

∂2Φ

∂x2
=

1

c2
∂2Φ

∂t2
, Φ = Φ(x, t) . (11)

3. Exponential horn

We will study a particular case of a variable cross section tube: the exponential horn.

It has a circular cross section whose area varies exponentially as a function of the

axial coordinate. Each cross section of the tube is located with the x coordinate,

corresponding to a given point on the chosen longitudinal axis. The section S(x = 0) =

St is called the throat, while the section S(x = L)= Sm is called the mouth of the horn.

According to the chosen coordinate system, the area S(x) of the circular section of the

tube grows exponentially with the x coordinate according to the following expression:

S(x) = St e
ax . (12)

Then, we have

a =
1

S(x)

∂S(x)

∂x
. (13)

The equation of motion (10), then, takes the form

∂2Φ

∂x2
(x, t) + a

∂Φ

∂x
(x, t) =

1

c2
∂2Φ

∂t2
(x, t) , (14)

and the relationship (4) between the acoustic pressure and the displacements results in

pe(x, t) = −B
(
a+

∂

∂x

)
Φ(x, t) . (15)

The effect of the variable cross section appears as an additional term−BaΦ. Considering

a harmonic solution of the form Φ(x, t) = ψ(x) · eiωt and substituting it in equation (14)

results

d2ψ(x)

dx2
+ a

dψ(x)

dx
+ k2ψ(x) = 0 , (16)

where ω is the angular frequency and k = ω/c is the wave number.

Page 6 of 16AUTHOR SUBMITTED MANUSCRIPT - EJP-107753.R1

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60 A

cc
ep

te
d 

M
an

us
cr

ip
t



Exponential horn revisited 7

Stressing the formal analogy of equation (16) with the equation of motion for a

damped harmonic oscillator, we propose the following solution in the spatial variable x

ψ(x) = e−
a
2
x ·
(
C1e

iβx + C2e
−iβx) , (17)

where

β =
√
k2 − a2/4 . (18)

In general, for any value of ω, the solution of the wave equation is

Φ(x, t) = e−
a
2
x
(
C1e

iβx + C2e
−iβx) eiωt , (19)

therefore, using equation (15),

pe(x, t) = −B
[(a

2
+ iβ

)
C1 e

−(a
2
−iβ)x +

(a
2
− iβ

)
C2 e

−(a
2
+iβ)x

]
eiωt. (20)

In particular, in order for a wave to propagate, the following must be met

k2 − a2

4
> 0 ⇒

(ω
c

)2
>
a2

4
⇒ ω >

ac

2
. (21)

The value ωc = c(a/2), thus constitutes a cut-off frequency and therefore propagating

waves with frequencies lower than this value will not be observed.

4. Impedance and normal modes

To find and analyze the normal modes of the horn, we must consider that it has limited

dimensions and we must impose boundary conditions at the ends, appropriate to what

is to be investigated; that is, in order to compare the results of the different theoretical

models with the values obtained from experimental measurements.

SmS(x)St

L

x

0 x

Figure 4. Scheme of the studied system. The area S(x) of the circular section

increases exponentially with the x coordinate.

A schematic of the system studied is shown in Figure 4. The horn has length L.

In this section we will use the concept of acoustic impedance. Defining the volume

flow as U = Sv, where v = ∂Φ/∂t is the velocity of the volume elements, and considering

pe(x, t) = p̃(x)eiωt, the acoustic impedance is written as follows

Z(x) =
pe
U

=
p̃(x)

S(x)iωψ(x)
. (22)

Page 7 of 16 AUTHOR SUBMITTED MANUSCRIPT - EJP-107753.R1

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60 A

cc
ep

te
d 

M
an

us
cr

ip
t



Exponential horn revisited 8

Impedances in the mouth and throat are related.

Then, using eqs. (17) and (20), we can calculate (22) at x = 0. Thus, the impedance

at the throat results as follows

Zt = Z(0) =
iρ0c

2

Stω

(
a
2

+ iβ
)
C1 +

(
a
2
− iβ

)
C2

C1 + C2

. (23)

In the same way but now for x = L, we have that the impedance at the mouth is

Zm = Z(L) =
iρ0c

2

Smω

(
a
2

+ iβ
)
C1 e

iβL +
(
a
2
− iβ

)
C2 e

−iβL

C1 eiβL + C2 e−iβL
, (24)

Working with these expressions, we can write the impedance at the throat Zt as a

function of the impedance at the mouth Zm as

Zt =

(
ρ0c

St

)
ZmSm (β cosβL− (a/2) sinβL) + ikρ0c sinβL

ρ0c (β cosβL+ (a/2) sinβL) + ikZmSm sinβL
. (25)

4.1. Open ends

If both the mouth and throat behave as open ends, we can search for normal modes by

imposing different values to the impedances at the ends, what from now on we will call

boundary conditions.

4.1.1. Zero impedances at both ends. The simplest case results from imposing zero

impedances at both ends. This accounts for an ideal situation, where at the open

ends the pressure is atmospheric and therefore the sound pressure is cancelled. Then,

imposing Zt = 0 in (23), results

C2 = −(a/2 + iβ)

(a/2− iβ)
C1 . (26)

Moreover, if we make Zm = 0 in (25), we get

Zt =
ρ0c

St

ik sin(βL)

(β cosβL+ (a/2) sinβL)
. (27)

and for Zt = 0 to be satisfied, it must be verified that

sin(βL) = 0 ⇒ βn = nπ/L , n ∈ N.

From the expression (18) the following values can be obtained for the eigenfrequencies

fn =
c

2π

√(nπ
L

)2
+
a2

4
. (28)

Therefore, we can plot the displacement and acoustic pressure wave functions, which

show the behavior of the air inside the tube for the different normal modes.

For the first two normal modes, we plot in Figure 5 the envelopes of displacement

and acoustic pressure as a function of the x coordinate (solid orange line). As can be seen

in the graphs of Φ vs. x, both at the throat and at the mouth, the slope is not zero, as

in the case of tubes of constant cross section under these boundary conditions, because
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Figure 5. Envelopes of the functions (left) Φ vs. x and (right) pe vs. x, for different

boundary conditions considered. Above in the fundamental mode and below when

oscillating in the second mode.

now the acoustic pressure is not directly proportional to the deformations of the volume

elements because an additional term appears aΦ (see equation (15)). Furthermore, in

the regions where ∂Φ/∂x = 0 it is not verified that pe vanishes. However, as in the case

of a constant cross section tube, an antinode of sound pressure coincides with a node of

displacement.

When comparing the plots for the different boundary conditions in Figure (5), we

can observe a shift of the nodes towards the mouth when we consider that it radiates,

which is linked to a decrease in the eigenfrequencies.

4.1.2. Radiation impedance at the mouth When the system is in resonance in one of its

normal modes, the mouth will be radiating energy with the highest efficiency, a fact that

is seldom mentioned in undergraduate physics textbooks. In order to compare with the

experimental values, we must use in the theoretical calculations expressions for radiation

impedance that take into account the environment surrounding the circular aperture.

We use two expressions for the mouth impedance. The first one (Zr
m) considers a circular

opening in an infinite baffle, is computationally simpler and is usually found in acoustics

textbooks [10]. The second one (Zr
M) corresponds to a disk in free space [11], is slightly

involved but is more representative of our experimental setup, so we expect it will give

better agreement with our measurements (see section 5). Details for both expressions
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Exponential horn revisited 10

can be found in Appendix B.

From imposing Zm = Zr
M , using equation (25) Zt can be calculated. To find the

eigenfrequencies (values of f that cancel Zt), we plot 1/|Zt| and determine the values of

f where the graph has peaks, as we can see in the left plot of Figure 6.

362.8 658.9 973.4 1296.2 1624.3 1956

0.25

0.50

0.75

1.00

1.25

f (Hz)

1/
|Z

t|
(1

0−
5

m
3 /P

a·
s)

Zt = 0,Zm = Zr
M

512 860.9 1208.3 1555 1901.7

0.25

0.5

0.75

1

f (Hz)

1/
|Z

t|
(1

0−
4

m
3 /P

a·
s)

Zt = 0,Zm → ∞

Figure 6. Eigenfrequencies considering the boundary conditions Zt = 0 and (left)

Zm = Zr
M (right) Zm → ∞. The numerical values correspond to the designed

exponential horn (see Section 5).

To obtain the eigenfunctions, as Zt = 0, the relation between the C1 and C2

constants is given by the equation (26). The first two resulting modes are included

in Figure 5 with a violet dashed line.

4.2. Closed mouth

If we now close the tube at the mouth but we keep the throat open, we will have to

consider that Zm →∞. Consequently,

Zt = −i ρ0c
kSt

(β cotβL− (a/2)) . (29)

The right-hand side of Figure 6 shows the graph of 1/|Zt|.
The values of the abscissae correspond to the normal frequencies that verify the

condition Zt = 0.

When plotting the normal modes, it should be taken into account that the relation

between C1 and C2 depends on the value of Zt: when Zt = 0 these constants are related

through equation (26).

The plots of the first two normal modes are shown in Figure 7, both for Φ and for

pe.

5. Experimental setup and results discussion

The photo in Figure 8 shows the devices used to carry out the experiment. From left to

right, oscilloscope, waveform generator, signal amplifier, speaker and exponential horn.

We constructed the horn with a 3D printer using PLA. As can be seen in the photo,
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Figure 7. Envelopes of the functions (left) Φ vs. x and (right) pe vs. x, for the closed

mouth case, considering Zt = 0, in the first (solid lines) and second (dashed lines)

modes.

the device lies in a horizontal position and the speaker, located at a distance of 0.01 m

from the throat, was controlled by a signal generator. The horn was constructed with a

total length (L) of 0.5 m. The area of the circular cross section increases exponentially

along its axial axis, from radius r0 = 0.01 m at the throat to rL = 0.05 m at the mouth.

According to equation (12)

a =
ln(Sm/St)

L
= 4 ln(5) m−1 ≈ 6.44 m−1 . (30)

Figure 8. Arrangement of the exponential horn and other experimental devices.

On the other hand, from (21) we have that the cut-off frequency is

fc =
ωc
2π

=
ac

4π
≈ 175.7 Hz , (31)

where the propagation velocity was estimated from the expression c =
√
γRT/M using

the ambient temperature measurement.

In order to obtain the eigenfrequencies of the exponential horn in a unique record,

the loudspeaker was excited by white noise. The sound signal emitted by the horn

was recorded with the Ultra Linear Measurement Condenser Microphone (Behringer

ECM8000) placed in the vicinity of the mouth. These sound recordings are processed by

means of the Fast Fourier Transform (FFT) and the obtained results are then compared

with the theoretical ones and are shown in Figures 9 and 10.

There is an excellent agreement between experimental and theoretical values.
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FFT

Figure 9. Results of the exponential horn with both ends open when excited with

white noise. The green solid line is the FFT of the sound recorded by a microphone.

The other curves are theoretical ones, corresponding to different boundary conditions

(for the impedance) at the mouth. In all cases, Zt = 0 is considered.

500 1000 1500 2000

0.25

0.50
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1.00

1.25
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1/
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4
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3 /P
a·

s)

Zm → ∞
FFT

Figure 10. Results of the exponential horn closed at the mouth when excited with

white noise. The green solid line is the FFT of the sound registered by a microphone.

The dashed orange line depicts a theoretical curve, corresponding to the boundary

conditions Zt = 0 and Zm →∞.

• The theoretical peaks are slightly shifted towards greater frequencies than the

experimental ones obtained by means of FFT.

• This difference increases at higher frequencies, but the relative difference remains

almost constant.

• In the case of the open mouth, these results can be seen in Figure 11. Imposing

zero impedances at both ends the relative differences are between 5 and 9%. But if

it is taken into account that the mouth is radiating energy, the relative differences
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Exponential horn revisited 13

drop below 1.7% for the case of Zm = Zr
m, and under 0.6% for Zm = Zr

M .

• In the case of the closed mouth, considering ZM → ∞, the relative differences do

not exceed 2%.

• If we took into account the uncertainty in processing experimental data with the

FFT by choosing different windows and window sizes, those differences would have

been covered.

1 2 3 4 5 6 7 8 9
0

0.6

1.7

5.0

8.9

mode

re
la

tiv
e

di
ff

er
en

ce
(%

)

Zm = 0
Zm = Zr

m
Zm = Zr

M

Figure 11. Relative differences between the measured values and the theoretical ones

obtained for various boundary conditions at the open mouth.

6. Conclusions

In summary, we studied theoretically and experimentally the problem of acoustic waves

propagating inside a horn. With this aim, we obtained the wave equation for the air

contained in a tube with variable cross section. We also derived in detail the expression

of the reaction force exerted by the tube walls on the air, whose interaction is not

usually considered in the literature. We showed that the classical wave equation found

in textbooks is recovered from our expression in the limit of constant cross section.

We then solved the wave equation for the specific case of a tube with exponentially

growing cross section, finding exact solutions. By considering time-harmonic solutions,

we arrived to the important result that acoustic waves must have frequencies above a cut-

off frequency in order to propagate inside the exponential horn. Finally, we studied the

standing wave solutions (normal modes) that arise when imposing boundary conditions.

These conditions were given in terms of the acoustic impedance at the ends of the

horn, an original approach that we consider enlightening and complementary to those

found in standard textbooks. Various boundary conditions were addressed, including

the “ideal” open-open and open-close conditions at the ends of the horn, and two more

Page 13 of 16 AUTHOR SUBMITTED MANUSCRIPT - EJP-107753.R1

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60 A

cc
ep

te
d 

M
an

us
cr

ip
t



Exponential horn revisited 14

realistic models with a radiating mouth. In all cases we were able to calculate the

eigenfrequencies and normal modes, stressing the differences with respect to the known

results for constant cross section tubes.

In order to validate the theoretical results, we built a horn with the desired

geometrical properties using 3D printing technology and compared the results with

experimental measurements obtained by exciting the horn throat with white noise and

recording the response with a condenser microphone. By Fourier transforming the

recorded audio signal, we identified the system resonant frequencies. We found moderate

agreement between the experimental values and the theoretical results for the case of

both ends open (zero impedance), with relative differences in eigenfrequencies between

5 and 9% for the first 9 modes. However, the agreement improves noticeably when the

radiation condition is taken into account, with the relative differences dropping below

1.7% for the case of Zm = Zr
m, and under 0.6% for Zm = Zr

M . This indicates that

radiation cannot be underestimated, but this aspect is barely mentioned (if treated at

all) in traditional textbooks. Finally, the fact that the theoretical frequencies always

overestimate, albeit slightly, the experimental ones, could be explained from energy

losses not taken into account, such as through the walls or the throat.

Appendix A. Calculation of the force exerted by the sidewall on the air

inside the exponential horn

In the particular case of the horn we have constructed, the S(x) area of the circular

section of the tube grows exponentially with the x coordinate according to the following

relation:

S(x) = S0 e
ax = πr2(x) , (A.1)

where S0 = S(x = 0) = πr20, and r(x) is the radius of the exponentially growing horn

in the x coordinate, measured from the axial axis. Then

r(x) = r0e
ax
2 . (A.2)

Consequently, r′(x), the derivative of r with respect to x evaluated in the x coordinate,

gives us the tangent of the angle θ formed by the sidewall of the horn with the x-axis,

as shown in Figure A1:

r′(x) =
a

2
r0e

ax
2 = tan θ(x) . (A.3)

Then

dFx = p0 dS sin θ(x) = p0 2πr(x)dl sin θ(x) = p0 2πr(x)dx tan θ(x) (A.4)

taking into account that dx = dl cos θ(x), and dl is the thickness of the ring of the lateral

surface dS. Integrating over the whole length of the tube, we have

Fx =

∫ L

0

dFx =

∫ L

0

p0 2πr0e
ax
2
a

2
r0e

ax
2 dx
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axial
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x x+dx

d~F

d~Fx

d~Fy

θ

θ
r(x)

Figure A1. Reaction force of the wall pushing on the air inside the exponential horn.

= p0 πr
2
0 a

∫ L

0

eaxdx = p0(SL − S0) (A.5)

where SL = S(x = L) = πr20 e
aL = πr2L.

Appendix B. Different radiation impedance models

We work with two different expressions for the radiation impedance.

• The first expression corresponds to that of a circular opening in an infinite baffle

[10]

Zm = Zr
m =

(
ρ0c

Sm

)(
1− J1(2krL)

krL
+ i

H1(2krL)

krL

)
, (B.1)

where J1 is the first-class Bessel function, H1 is the first-class Struve function and

rL is the radius of the mouth cross section.

• The second one, presented in section VI of [11], presents an expression for the

acoustic radiation impedance Zr
M of a disc in free space. This is obtained from the

expressions corresponding to the real Gr and imaginary Br parts of the acoustic

radiation admittance:

Yr = Gr + iBr , (B.2)

where

Zr
M =

2ρ0c

Sm

1

Yr
=

2ρ0c

Sm
(Rr + iXr) , (B.3)

and Rr is the resistance and Xr the reactance, real and imaginary components of

the acoustic radiation impedance. As from

Gr = 1 +
J1(2krL)

krL
− 2J0(2krL)

− π[J1(2krL)H0(2krL)−J0(2krL)H1(2krL)] , (B.4)
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Exponential horn revisited 16

Br =
2krLH1(2krL)

(krL − J1(2krL))2 + (H1(2krL))2
, (B.5)

we can obtain

Rr =
Gr

G2
r +B2

r

, Xr =
Br

G2
r +B2

r

. (B.6)
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