Discrete Applied Mathematics 348 (2024) 122-131

Contents lists available at ScienceDirect

Discrete Applied Mathematics

journal homepage: www.elsevier.com/locate/dam

Note
Edge deletion to tree-like graph classes A

Check for
updates

Ivo Koch?, Nina Pardal “%* Vinicius Fernandes dos Santos ©

2 University of General Sarmiento, Argentina

b University of Sheffield, UK

¢ ICC-CONICET, Argentina

d University of Buenos Aires, Argentina

€ Computer Science Department, Federal University of Minas Gerais, Brazil

ARTICLE INFO ABSTRACT

Article history: For a fixed property (graph class) I7, given a graph G and an integer k, the I7-deletion
Received 13 July 2023 problem consists in deciding if we can turn G into a graph with the property IT by
Received in revised form 3 January 2024 deleting at most k edges. The I7-deletion problem is known to be NP-hard for most of

Accepted 22 January 2024

-) the well-studied graph classes, such as chordal, interval, bipartite, planar, comparability
Available online xxxx

and permutation graphs, among others; even deletion to cacti is known to be NP-hard

Keywords: for general graphs. However, there is a notable exception: the deletion problem to trees
Edge deletion problems is polynomial. Motivated by this fact, we study the deletion problem for some classes
Modification problems similar to trees, addressing in this way a knowledge gap in the literature. We prove
Sparse graph classes that deletion to cacti is hard even when the input is a bipartite graph. On the positive

side, we show that the problem becomes tractable when the input is chordal, and for
the special case of quasi-threshold graphs we give a simpler and faster algorithm. In
addition, we present sufficient structural conditions on the graph class I7 that imply the
NP-hardness of the IT-deletion problem, and show that deletion from general graphs to

some well-known subclasses of forests is NP-hard.
© 2024 The Author(s). Published by Elsevier B.V. This is an open access article under the CC
BY license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

A graph modification problem consists in deleting or adding edges or vertices to a graph so that the resulting graph
fulfills some pre-specified properties. More formally, for a fixed property IT that usually represents membership to a graph
class, given a graph G and an integer k, the I7-deletion (resp. completion, editing) problem consists in deciding whether
it is possible to modify the graph by deleting (resp. adding, or adding and deleting) at most k edges to obtain a new graph
that fulfills the property I1. There is one more version of this type of problems, which is the IT-vertex-deletion, that
consists in determining if there exists an induced subgraph with the property I7, obtained by deleting at most k vertices.
These are the decision versions of graph modification problems, which also admit an optimization version. When k is
not a part of the input, the most natural goal in graph modification problems is to find a minimum modification, that is,
to determine the smallest subset of edges or vertices that one has to delete or add to obtain a graph with the desired
property.

Graphs are very useful to model quite diverse real world and theoretical structures. In particular, graph modification
can be used to model and solve a wide variety of problems in many dissimilar fields, such as database and inconsistency
management [17], computer vision [6], and molecular biology [10,11], to name a few. Furthermore, many fundamental

* Corresponding author at: University of Sheffield, UK.
E-mail address: n.pardal@sheffield.ac.uk (N. Pardal).

https://doi.org/10.1016/j.dam.2024.01.028
0166-218X/© 2024 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/
licenses/by/4.0/).

https://doi.org/10.1016/j.dam.2024.01.028
https://www.elsevier.com/locate/dam
http://www.elsevier.com/locate/dam
http://crossmark.crossref.org/dialog/?doi=10.1016/j.dam.2024.01.028&domain=pdf
http://creativecommons.org/licenses/by/4.0/
mailto:n.pardal@sheffield.ac.uk
https://doi.org/10.1016/j.dam.2024.01.028
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

I Koch, N. Pardal and V.F. dos Santos Discrete Applied Mathematics 348 (2024) 122-131

problems in graph theory can be reinterpreted as graph modification problems. For example, the Connectivity problem
can be thought of as the problem of finding the minimum number of vertices or edges that disconnect the graph when
removed from it.

Most graph modification problems turn out to be intractable. Yannakakis [19] proved that finding a maximum
connected induced subgraph with a property IT is NP-hard not only for every “non-trivial” hereditary property IT, but
also for other properties that are not hereditary. One example of this are trees and stars: even though trees and stars are
not hereditary classes, every connected induced subgraph of a tree is a tree and every connected induced subgraph of a
star is a star. As a consequence of the aforementioned result by Yannakakis, removing the minimum number of vertices
to obtain a tree or a star turns out to be NP-hard.

As for the I7-deletion problem, there are no such general results. The relationship between the vertex and the edge
version of the problem is also not consistent. One example we might consider is the property IT of being a forest.
In this case, the IT-deletion problem is equivalent to that of finding a (maximum) spanning tree for each connected
component of the input graph, which can be done in linear-time using any standard search procedure such as DFS or
BFS. Whereas it follows from the results by Yannakakis that minimum vertex deletion for an induced forest is NP-hard.
Furthermore, concerning the I7-deletion problem there are some NP-hardness results that hold for some quite large
families of hereditary properties, such as the property of being cluster, Py-free,[9], or Ci-free [20] for some fixed k > 3.
An interesting characterization of the I7-deletion problem for a large and natural family of graph properties can be found
in [1], similar to the one given by Yannakakis. In that paper, the authors show the NP-hardness of the I7-deletion problem
for every monotone property I7 (i.e. a graph property closed under removal of vertices and edges) that holds for all
bipartite graphs. This encompasses many interesting properties, for example the one of being triangle-free.

The IT-deletion problem turns out to be hard for most graph classes (e.g. planar, chordal, bipartite, interval and proper
interval, split, threshold, etc.), but is polynomially solvable for trees (by finding a spanning tree via depth-first-search or
breadth-first-search, for example). This work is motivated by the exploration of the tractable-intractable threshold of the
IT-deletion problem when I7 is a graph class closely related to trees, namely constellations, caterpillars, and cacti.

We find that the decision version of all these problems is NP-complete, even when the input is a bipartite graph.
Though the general problem for cacti is already known to be hard [9], this refines the intractability result for this graph
class, while providing new results for the deletion problem into the other aforementioned tree-like graph classes. We
also provide sufficient structural properties for the graph class IT to ensure that I7-deletion is NP-hard, even restricted to
some subclasses of bipartite graphs. Even though not as general as those of Yannakakis [19], this provides a framework
for showing hardness results for some non-trivial graph classes. Then we delve into cactus deletion and prove that this
problem can be solved in polynomial time when the input is restricted to chordal graphs, and give a simple and efficient
polynomial-time algorithm for quasi-threshold graphs.

This article is organized as follows. Section 2 presents basic definitions, in Section 3 we start by proving NP-
completeness for cactus deletion when the input is restricted to bipartite graphs. Then, in Section 3.2, we propose sufficient
structural properties for a graph class T so that the I7-deletion problem results NP-hard even within bipartite graphs.
We finish the section by showing NP-completeness for constellations and caterpillars, two known subclasses of forests.
Section 4 focuses on positive results: we start by showing that cactus deletion is polynomial-time solvable when the
input graph G is chordal; a specialized, efficient procedure is presented for quasi-threshold graphs in Section 4.2. Finally,
Section 5 is devoted to conclusions and future work directions.

2. Definitions

All the graphs in this paper are undirected and simple, unless explicitly stated otherwise. Let G be a graph, and let
V(G) and E(G) denote its vertex and edge sets, respectively. We denote by n the number of vertices and by m the number
of edges. Further, we use the standard notation N(V’) for the neighborhood of a subset V' of V. Whenever it is clear from
the context, we simply write V and E and note G = (V, E). For basic definitions not included here, we refer the reader
to [5].

Given a graph G and S C V, the subgraph of G induced by S, denoted by G[S], is the graph with vertex set S such that
two vertices of S are adjacent if and only if they are adjacent in G. When G’ and G[S] are isomorphic for some S C V, by
abuse of terminology we say that G’ is an induced subgraph of G. If V' C V and E’ C E, we simply say that H = (V', E’)
is a subgraph of G, whether E’ consists of all the edges between vertices in V' or only a subset of those. For any family 7
of graphs, we say that G is F-free if G does not contain any graph F € F as an induced subgraph. If F € F is the unique
element of 7, we may write F-free, instead. If a graph G is F-free, then the graphs in F are called the forbidden induced
subgraphs of G. A graph property [T is hereditary if IT is inherited by every induced subgraph of a graph.

A graph is complete if all its vertices are pairwise adjacent. A vertex is universal if it is adjacent to all the vertices in a
graph. A clique in a graph G is a complete induced subgraph of G. Also, we will often use this term for the vertex set that
induces the clique. We denote by K,, the complete graph of n vertices.

Let G = (Vq1,E1) and G, = (V5, E;) be two graphs with V; NV, = @. The union of G; and G, is the graph
G1 UGy = (V41 UV,, E{ UE,), and the join of G; and G, is the graph G; & G, = (V1 U V5, E{ UE, UV x V). A graph G is
a cograph if it is P4-free. Any cograph can be constructed from K; by repeated application of union and join operations.
A graph is quasi-threshold if it is {P4, C4}-free. These graphs are also known as trivially perfect graphs. Analogously as for

123

I Koch, N. Pardal and V.F. dos Santos Discrete Applied Mathematics 348 (2024) 122-131

cographs, quasi-threshold graphs can be defined recursively from K; by either repeatedly considering disjoint unions, or
adding a universal vertex.

A graph is cluster if it is the union of cliques. A graph is a block graph if every maximal 2-connected component
(i.e. every block) is a clique.

A graph is subcubic if every vertex has degree at most three.

A graph G is an interval graph if it admits an intersection model consisting of intervals on the real line, that is, a family
7 of intervals on the real line and a one-to-one correspondence between the set of vertices of G and the intervals of 7
such that two vertices are adjacent in G if and only if the corresponding intervals intersect. A proper interval graph is an
interval graph that admits a proper interval model, this is, an intersection model in which no interval is properly contained
in any other.

A graph G is a bipartite graph if its vertex set can be partitioned into two sets Vi, V, of pairwise nonadjacent vertices.
A bipartite graph is complete if every pair of vertices v; € Vi, v, € V5 is an edge of the graph and, if |V;| = nand |V,| = m,
we denote it by Ky m.

A forest is an acyclic graph. A tree is a connected acyclic graph. The vertices of degree 1 of a graph are called pendant
vertices and pendant vertices of a tree are called leaves. A path is a sequence of vertices vy, v,, ..., vy such that v; and
vit1 are adjacent for each 1 <i < k — 1 and vjv; is not an edge for every pair of non-consecutive vertices v; and v;. We
denote by Py a path with k vertices.

A graph G is even-hole-free if it contains no induced cycles with an even number of vertices.

The distance between two vertices u and v in a graph G is the number of edges in a shortest path between them. The
kth power of a graph G is the graph G* having the same vertex set as G such that any two vertices are adjacent if and only
if the distance between them is at most k. A graph G is a power of a path if it is the kth power of a path P, for some k > 2.

A graph G is a caterpillar if G is a tree in which the removal of all the leaves results in a path (called the spine or central
path).

A star is a complete bipartite graph K; , for some n > 0. In particular, the star K 3 is called a claw. A constellation is a
forest where each connected component is a star.

A graph G is a cactus if G is connected and every edge of the graph lies in at most one cycle. If each connected component
of a graph G induces a cactus, we say that G is a forest of cacti. Given a graph class IT, we say that a subgraph H of G is a
maximum spanning IT if H belongs to IT and the number of edges is maximum among all the /7-subgraphs of G. A graph
G is chordal if it contains no induced cycles of length greater than 3.

A graph G is planar if it admits a planar embedding, this is, there is a way to draw it on the plane such that its edges
intersect only at their endpoints.

A hamiltonian path (resp. cycle) is a path (resp. cycle) that visits each vertex of a graph exactly once. A dominating set
of a graph G = (V, E) is a subset D C V such that each vertex in V \ D is adjacent to at least one vertex in D.

Given a graph G, the decision problem HAMILTONIAN PATH consists in deciding if there is a hamiltonian path in G, or
not. For its part, given a graph G and an integer k, the decision problem DOMINATING SET consists in determining whether
there is a dominating set of G of size at most k. Both problems are known to be NP-complete, even when the input is
restricted to subclasses of bipartite or chordal graphs (see, for example, [2,3,7,12,21]).

3. Complexity results for edge-deletion to classes close to trees

This section is organized as follows. First, in Section 3.1 we study the complexity of the edge-deletion problem to cacti
when the input is a bipartite graph. In Section 3.2 we generalize the hardness results for IT-deletion when the input
is a bipartite graph by obtaining sufficient structural conditions for the target class 7. Finally, Section 3.3 is devoted to
showing that the problem is intractable when I7 is either the class of constellations or caterpillars.

3.1. Cacti

Edge-deletion to cacti is known to be NP-hard [9]. Our first target is to shed some light on how should we restrict the
input to obtain tractability for cactus deletion.

Theorem 3.1. DELETION TO CACTUS is NP-complete for bipartite graphs.

Proof. Membership in NP is clear. For the NP-hardness, we reduce from PARTITION INTO P3:

Given a graph G = (V, E), the problem PARTITION TO P3 (PIP3) consists in deciding whether there exists a partition of
V into vertex-disjoint Ps’s. PIP3 is known to be NP-hard, even for subcubic bipartite graphs [15].

Let G be a subcubic bipartite instance of PIP3, with bipartition {X, Y}. We may assume that |V(G)| is divisible by 3,
otherwise the answer is trivially negative. Let H be a graph with

e V(H)=V(G)U {x,y,x, ¥},
e EH)=EG)U{xv|veX}U{yv|veYU({xy xx, Xy, yy}

124

I Koch, N. Pardal and V.F. dos Santos Discrete Applied Mathematics 348 (2024) 122-131

X Y X Y
SN
z - = y a y
— _
o o
' Yy’ ! Yy’
(a) (b)

Fig. 1. The transformation from G to H is displayed in subfigure (a). In subfigure (b) we show the spanning cactus (green+blue) obtained from
the PIP3 partition (green) of G. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this
article.)

Notice that H is bipartite. Let k = |E(H)| — 4|V(G)|/3 — 4. We will show that there is a partition into Ps’s for G if and only
if there is a spanning cactus subgraph of H that is obtained by removing at most k edges from E(H). See Fig. 1 for a visual
aid on the transformation and the reduction.

First, suppose G has a partition P into (induced) P5’s, and let E(P) be the set of edges appearing in P. Let S be the set
of endpoints of each P; in P, Sy = SN X, and Sy =SNY. Now, let

E=EP)U{xv|veSx}U{yv|veSyU{xy xx', xy, yy}.

It is easy to see that H' = (V(H), E') is a cactus with 4|V(G)|/3 + 4 edges, where the cycles of H' are the union of a P5 in
G and x or y. In particular, H' is a subgraph of H, obtained by deleting exactly k edges from H.

For the other direction, let H' be a cactus subgraph of H obtained by deleting at most k edges. From the definition of k,
it follows that |[E(H')| > 4|V(G)|/3 + 4, thus implying H’ is not acyclic. Let ¢ the number of cycles in H’, and let ¢4, ..., £,
be their respective lengths.

Claim 3.1.1. The number c of cycles in H' equals |V(G)|/3 + 1 = (|[V(H')| — 1)/3.

Proof of Claim 3.1.1. Deleting an edge of each cycle of H would turn it into a tree. Hence, |[E(H')| = |V(H')|+c— 1=
[V(G)| + ¢ + 3. On the other hand, |[E(H’)| > 4|V(G)|/3 + 4, thus it follows that |V(G)| + ¢ + 3 > 4|V(G)|/3 + 4. Hence,
this implies that ¢ > |V(G)|/3+ 1 = (|V(H")| — 1)/3.

Since H' is bipartite, ¢; > 4 for every cycle in H’, thus it follows that |[E(H")| > Y_ ¢; > 4c. But then |V(H')|+c—1 > 4c,
which implies ¢ < (JV(H’)] — 1)/3. This finishes the proof of the claim. ™

Notice that by replacing c in the equation |E(H)| = |V(H’)| + ¢ — 1, it follows that exactly k edges were removed from
H. Also note that the equality must hold in |[E(H’)| >)_¢; > 4c, implying that £; = --- = £, = 4 and that each edge
belongs to exactly one C,. Since x’ and y’ belong to exactly one cycle, namely C = xx'y’yx, all the other cycles must contain
vertices from G. Finally, every degree 2 vertex of each cycle C in H' that is not C lies in G. Consider a partition into P3’s
as follows. For each cycle C such that either x € C or y € C, take the P; consisting of C \ {x} or C \ {y}, respectively. We
will show that for each C such that all its vertices lie in G, exactly one of its vertices v lies in another cycle of the cactus.
Notice that exactly one edge incident to v is either xv or yv. Suppose without loss of generality that this is xv. Since G
is a subcubic graph, each vertex v in such a cycle C lies in at most two cycles of the cactus. More precisely, v belongs to
the cycle C and at most to a cycle C’' given by traversing the remaining neighbor w of v in G, if there is one, and then
completing the cycle traversing through x, X, y, ¥’ and then back to v. Suppose that there are two vertices v and v’ in
C such that both lie in other cycles D and D’ like the ones described in the previous paragraph. Then, the edges of the
vv’-path in C also belong to another cycle, namely the one obtained by concatenating the paths v...v’, v'x and vx, using
edges of E(H’) \ C, a contradiction. Hence, if v is the only vertex of such a cycle C belonging to another cycle, we may
take the P5 consisting of C \ {v}. This gives a partition into P3’s of G. H

3.2. Sufficient conditions for hardness results within bipartite graphs
The previous edge-deletion problem remains hard even if the input graph is bipartite. In this section, we give a set of
sufficient conditions for a property I7 such that /7-deletion remains hard within bipartite graphs.

First, notice these useful facts:

Remark 3.2. Edge-deletion maintains bipartiteness.

125

I Koch, N. Pardal and V.F. dos Santos Discrete Applied Mathematics 348 (2024) 122-131

Remark 3.3. A bipartite claw-free acyclic graph is a union of disjoint paths.

The following result summarizes sufficient conditions for the graph class IT in order to obtain hardness for the
IT-deletion problem.

Theorem 3.4. Let IT be a graph class such that all of the following conditions hold:

(i) IT contains P,, for all n;
(ii) IT is claw-free;
(iii) IT is even-hole-free.

Then, IT-deletion is NP-hard, even when the input is restricted to planar bipartite graphs of maximum degree 3, or chordal
bipartite graphs.

Proof. Assume that the input is a bipartite graph. It follows from Remark 3.2, (ii) and (iii) that the final graph obtained
after I7-deletion will be a bipartite claw-free acyclic graph. Moreover, it follows from Remark 3.3 and (i) that a solution
exists and that the resulting graph is a union of paths.

For the NP-hardness, we give a reduction from HAMILTONIAN PATH.

Let us consider a bipartite graph G. From the previous observations, any subgraph belonging to IT has at most |V(G)|—1
edges. Furthermore, the equality holds if and only if the resulting graph is a path, implying that the original graph has a
hamiltonian path. On the other hand, if the original graph has a hamiltonian path, removing all other |[E(G)| — (|V(G)| — 1)
edges will turn the graph into a path. Hence, G is hamiltonian if and only if there is a IT-deletion of size |[E(G)|—(|V(G)|—1).

Finally, since HAMILTONIAN PATH is hard even for planar bipartite graphs of maximum degree 3 and chordal bipartite
graphs, the same argument shows that I7-deletion is hard even restricted to these classes. H

We illustrate the generality of Theorem 3.4 by instantiating it with some well-known graph classes in Corollary 3.5.

Corollary 3.5. The IT-deletion problem is NP-hard when IT is the class of proper interval graphs, claw-free chordal, power of
paths, even if the input is a bipartite graph.

To the best of our knowledge, these are the first proofs of NP-hardness for claw-free chordal graphs and power of
paths. The case of proper interval graphs is proven in [13]; our contribution to this specific result is by restricting the
input class to bipartite graphs.

Notice that one could include paths in the previous corollary since they fulfill the listed properties in Theorem 3.4.
However, the problem for paths is exactly the hamiltonian path problem, which is already known to be NP-hard even
when the input is restricted to bipartite graphs.

Finally, an interesting remark is that, if a class has bounded treewidth, it follows from [16] that deletion to proper
interval graphs is polynomial-time solvable. In particular, this implies that the problem is easy for trees, cacti, and
outerplanar graphs, which is a nice contrast with the hardness for planar bipartite graphs of maximum degree 3 and
chordal bipartite graphs.

3.3. Subclasses of forests

Inspired by the fact that modification problems turn out to be tractable when restricting the target class to trees, we
study the deletion problem from general graphs to certain graph classes that are somewhat similar to trees. The first
target class we consider is constellations.

Constellations. We have the following theorem for constellations.
Theorem 3.6. The problem DELETION TO CONSTELLATIONS is NP-complete for general graphs.
Proof. To prove this, we show DELETION TO CONSTELLATIONS is equivalent to DOMINATING SET in the following way.

Claim 3.6.1. A graph G has a dominating set of size k if and only if it is possible to turn G into a constellation by deleting
|E(G)| — |V(G)| + k edges.

Let G = (V,E) be a graph. Let D C V be a dominating set of G such that |D| = k. Let us consider the subgraph H of G
as follows. Let V(H) = D U N(D) = V(G), and for each v &€ D, choose exactly one edge incident to a vertex u € D. Those
are all the edges of H, and we denote this set by F. Notice that |F| = |V(G)| — |D| = |V(G)| — k. Hence, H can be obtained
from G by deleting |[E(G)| — |V(G)| + k edges.

Conversely, let H be a spanning constellation of G obtained by the deletion of |[E(G)| — |V(G)| + k edges, and let
D = {u | uis the center of a star in H}. Notice that |[E(H)| = |V(G)| — k and, since it is acyclic, it contains exactly k
connected components. Hence |D| = k, as the connected components of H are stars and D has precisely one vertex from
each star. Since D is a dominating set of H, it is also a dominating set of G. This finishes the proof of the claim, and clearly
the result of the theorem follows. ®

126

I Koch, N. Pardal and V.F. dos Santos Discrete Applied Mathematics 348 (2024) 122-131

G e G H

(a) (b)

Fig. 2. Transformation of G to H (a). Vertices from V(G) are in black while new vertices are in red. In (b), from the Hamiltonian Path P in G (in
blue), it is possible to find an spanning caterpillar in H (green and blue). Blue edges in H correspond to the subdivision of P, and for each edge
e = uv € E(G) — E(P), the green edges uu,, v,v € E(H) are also added to the caterpillar . (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)

Remark 3.7. Notice that DELETION TO CONSTELLATIONS remains hard for any graph classes for which DOMINATING SET is
hard. In particular, this problem remains hard for planar bipartite graphs [21] and split graphs [2,7].

Note that the equivalence stated in Claim 3.6.1 also allows us to derive positive results.

Corollary 3.8. DELETION TO CONSTELLATIONS can be polynomially solved within cographs and outerplanar graphs [18].

Caterpillars. We continue studying the general deletion problem by considering another subclass of trees, namely
caterpillars, as the target class.

Theorem 3.9. The problem DELETION TO CATERPILLAR is NP-complete for general graphs.

Proof. The problem is clearly in NP. We prove the hardness of DELETION TO CATERPILLAR by reducing from HAMILTONIAN
PATH.

Let G = (V, E) be an instance of HAMILTONIAN PATH. We define an instance H, k of DELETION TO CATERPILLAR as follows.
Let H = (W, F) be a graph obtained by subdividing each edge of G precisely twice. In other words, for each edge
e = uv € E, add two vertices u,, v, such that uu,, ueve, vev € F (see Fig. 2). Finally, let k = |[E(H)| — |V(H)| + 1.

Suppose that there is a hamiltonian path in G. Consider the following spanning caterpillar C of H. The spine is the
hamiltonian path of G, where instead of traversing the edge e = uv € E, we traverse the path u, u,, ve, v in H. Notice that
the only vertices that are not visited by the spine in H are those intermediate new vertices u,, v, for some e = uv € E
that is not in the hamiltonian path. For these pairs of unvisited vertices, add the edges uu, and v.v to C. The resulting
subgraph is a spanning caterpillar of H. Since every caterpillar is a tree, we know that |E(C)| = |V(C)| — 1 = |V(H)| — 1,
implying that C can be obtained from H by removing exactly k = |[E(H)| — |V(H)| + 1 edges.

Conversely, let C be a spanning caterpillar of H, with spine S. Clearly, |[E(H) — E(C)| = k. Let us see that we can extract
a hamiltonian path in G from this spine. Suppose that there is a vertex u € G that is not a part of the spine S in H. Notice
that, in a spanning caterpillar of H, all vertices should be incident to at least one edge in C. The vertex u in H is adjacent
only to intermediate new vertices, thus there is an edge u.u € C and such that u, € S. However, the only vertex adjacent
to u, besides u is another intermediate vertex v.. Hence, both u,, v. € S and therefore we can consider u as a vertex in
S. The hamiltonian path is precisely the path resulting of traversing the edges uv € G for which the path u, u,, v, v is a
part of the spineof CinH. ®

Corollary 3.10. DELETION TO CATERPILLAR remains hard for graphs classes that are closed for double subdivision of edges and
for which HAMILTONIAN PATH is hard, which is the case for planar bipartite graphs [12]. The same proof given for Theorem 3.9
suffices to show this.

4. Algorithms for cactus deletion

For the natural classes considered in Section 3, the complexity of DELETION TO CONSTELLATIONS and DELETION TO
CATERPILLAR is very well understood, since they are closely related to the extensively studied HAMILTONIAN PATH and
DOMINATING SET problems. In this section we devote our attention to DELETION TO CACTI. Recall that this problem is NP-
complete even for bipartite graphs. This motivated the search for positive results on this problem. In Section 4.1 we study
the problem within chordal graphs, showing that it turns out to be polynomial-time solvable. However, this result does
not lead trivially to such an algorithm. With this in mind, in Section 4.2 we focus on subclasses of chordal graphs, and
give an explicit efficient algorithm when the input is a quasi-threshold graph.

127

I Koch, N. Pardal and V.F. dos Santos Discrete Applied Mathematics 348 (2024) 122-131
4.1. DELETION TO CACTI within chordal graphs

In this section we will prove that cactus deletion from chordal graphs is polynomial-time solvable. To do this, we will
resort to the following result by Lovasz:

Lemma 4.1 ([14]). Given a 3-uniform hypergraph, finding the maximum Berge-acyclic subhypergraph can be solved in
polynomial time.

We start this section by giving some definitions that will be useful in the sequel. Afterward, given a chordal graph G,
we define an auxiliary hypergraph and use the aforementioned result by Lovasz to find a maximum spanning cactus of
G.

A hypergraph is a pair # = (V, £) where V is a finite set and £ is a set of nonempty subsets of V. A subhypergraph
S = (V/, &) of H is a hypergraph such that V/ C V and & C £. Two vertices of a hypergraph are called adjacent if some
hyperedge contains both of them.

A Berge-cycle is a sequence (Eq, X1, ..., E,, x,) with n > 2 such that:

1. E; are distinct hyperedges,
2. x; are distinct vertices, and
3. for every 1 < i < n, x; belongs to E; and E;;q, where subindices are modulo n.

A hypergraph is Berge-acyclic if it contains no Berge-cycle. A Berge-acyclic subhypergraph of # is maximum if it contains
the maximum possible number of hyperedges of H.

Let G = (V, E) be a chordal graph. We denote by #(G) = (V, &) the hypergraph whose hyperedges are precisely those
subsets that induce a 3-cycle in G.

Notice that, if G’ is a subgraph of G such that G’ is a cactus and each cycle has length 3, then #(G’) is a Berge-acyclic
subhypergraph of #(G) (otherwise G’ would contain adjacent vertices belonging to more than one cycle). Also notice that
two vertices are adjacent in H(G) if there is a hyperedge that contains both of them, this is, if both vertices lie in some
3-cycle of G. In particular, this implies that there is an edge in G that joins them.

Given a set of edges E' C E, we denote by G[E'] the subgraph G’ = (V',E’) of G where V' = {v € V(G) : Je €
E’ incident to v}. Given a hyperedge e € &, we denote by G[e] the subgraph of G induced by edges of G that are contained
in the hyperedge e. Analogously, given a subset of hyperedges & C &, we define G[£'] as |, . Gle]. Intuitively, the
vertices of G[£'] are the vertices that occur in hyperedges of £, and two vertices u and v are adjacent in G[£'] if there is
some e € &£ such that {u, v} Ce.

Lemma 4.2. Let G be a chordal graph, and let H#'(G) = (V’, &’) be a Berge-acyclic subhypergraph of H(G). If F1, F,, ..., F are
the connected components of G[£'], then F, F,, ..., Fy is a forest of cacti and every cycle of F; is a 3-cycle, foreach 1 <i < k.

Proof. First, let us see that every cycle in F; is a 3-cycle. Toward a contradiction, let C = x1x; . .. x,x; be an induced cycle
in F; of length n > 3 such that C is not a hyperedge (see Fig. 3). Notice that, by definition, every edge in C is contained
in at least one hyperedge in #/(G). Since C is an induced cycle, there are no chords between vertices in C. Thus, every
hyperedge that intersects C contains at most two vertices of C. Furthermore, each hyperedge that shares two vertices
with C contains precisely two consecutive vertices of C, for if not we find a chord in the cycle C. In addition, notice that
no edge in F; lies in two distinct hyperedges of #'(G) since it is a Berge-acyclic subhypergraph of #(G). For simplicity, let
us denote by (E;, x;) the hyperedge in #'(G) that gives us the edge x;x;;1 in the cycle C. However, {(E;,x;) :i=1,...,n}
is a Berge-cycle in #/(G) and this results in a contradiction. Hence, each induced cycle has 3 vertices and those vertices
form a hyperedge of H'(G).

Also notice that, if C; and C, are two distinct induced cycles in F;, then C; and C, share at most one vertex. This
follows once more from the fact that no edge in F; lies in two distinct hyperedges of #'(G). It follows immediately from
the previous discussion that each F; is a cactus. ®

Let D C E be those edges that do not lie in any 3-cycle of G. Notice that these edges are not considered when obtaining
H(G).

Remark 4.3. Let #'(G) = (V’/, &) be a maximum Berge-acyclic subhypergraph of H(G). Then, G[£'TUD is a forest of cacti.

Consider first G = G[£'] U D, for some maximum Berge-acyclic hypergraph #'(G) = (V’, &) of H(G). Let F; and F,
be two connected components of G’ such that F; and F, are connected in the original graph G by some missing edges
of G. The missing edges belong to 3-cycles that are not considered in #'(G). Indeed, the only possible way F; and F, are
connected in G is via the edges of a 3-cycle C in G, since all edges that belong to no 3-cycle in G are already present in
G/, namely in the set D. In addition, two edges of C must exist between vertices of F; and vertices of F,, otherwise #'(G)
would not be a maximum Berge acyclic subhypergraph of #(G). We conclude that there exists a vertex x in F; such that
x is adjacent (in G) to two distinct vertices y1, y, in F,, and such that {x, y;, y»} is a hyperedge of H(G) \ #'(G), or vice
versa. Let us assume without loss of generality that x is in Fy. This gives a procedure to construct the spanning cactus, in
the following way:

128

I Koch, N. Pardal and V.F. dos Santos Discrete Applied Mathematics 348 (2024) 122-131

(a) (b) ()

Fig. 3. In (a) and (b) we show two induced cycles (C) that are not hyperedges themselves, and the hyperedges that induce them. In (c) we show
a Berge-cycle of length two. The hyperedges of #'(G) are colored in gray. The existence of these structures is ruled out by the proof of Lemma 4.2.

1. Do while there is more than one connected component in G’
2. Find two connected components F; and F, such that they can be joined by a single edge e that belongs to E \ E(G').
Define F := F{ UF, U {e}.

Let us denote with X(G’) the resulting subgraph.
We call a spanning cactus of a graph G a triangular-SC of G if each of its cycles has length 3.

Lemma 4.4. Let G be a connected chordal graph. There is always an optimal spanning cactus that is a triangular-SC of G.

Proof. Towards a contradiction, consider an optimal spanning cactus H of G that is not a triangular-SC such that

(i) H maximizes the number of triangles among all optimal spanning cacti, and
(ii) subject to (i), H has a cycle that is not a triangle that has the minimum possible length.

Let C = {x1, ..., X} be such a minimum cycle with k > 3. Since G is chordal, G[C] contains a chord. Without loss of
generality, let x;x; be said chord. We claim that H' = (V(H), E(H) — {x1x,} U {x1x;}) is an optimal spanning cactus of G.
Note that C" = {1, x;, ..., x¢} is a cycle in H" and, since each edge of E(C’) \ {x1x;} belongs to exactly one cycle of H,

it also belongs to exactly one cycle in H’, namely C’. Moreover, edges in {xjxj;1 | 2 < j <i— 1} belong to one cycle in H
and to no cycle in H'. Hence H’ is an optimal spanning cactus of G.

If |C’'| = 3 we reach a contradiction since H’ has more triangles than H contradicting (i). Otherwise, H" has a cycle of
length still greater than 3 and smaller than C, contradicting (ii). W

We have the following remark as a direct consequence of the previous lemma

Remark 4.5. A sub-optimal triangular-SC of G always has fewer triangles than an optimal triangular-SC of G.

Using all the previous results, it follows that:

Theorem 4.6. Let G = (V(G), E(G[£]) U D), for some maximum Berge-acyclic hypergraph H'(G) = (V', &) of H(G). Then,
X(G') is a maximum spanning cactus of G.

Proof. If this is not true, then there is an optimal triangular-SC Y such that |Y| > |X|. It follows from Remark 4.5 that Y
has more triangles than X. If we consider the corresponding hypergraph for Y, with one hyperedge for each triangle in
Y, then this gives us a Berge-acyclic subhypergraph of #(G) that is bigger than the maximum #'(G) = (V’, &) that we
found before. This results in a contradiction. B

4.2. Cactus deletion from quasi-threshold

In the previous subsection, we provided proof that cactus deletion is polynomial when the input graph is chordal.
Nevertheless, the algorithm is not combinatorial, and relies on much more general results of matroid theory. The following
results complete the section by giving a simple and efficient procedure for an interesting subclass of chordal graphs,
namely, quasi-threshold graphs.

Lemma 4.7. Let G = Gy @ G; be a cograph. Then, there is a spanning cactus subgraph H with maximum number of edges
such that each cycle of H is either a C5 or a C4 and has a vertex in V(G;) and a vertex in V(G,).

Proof. Let H be a spanning cactus subgraph of G with the maximum number of edges, such that it contains a cycle
Cy = vo, ..., k1. If H has a C; with k > 4 containing vertices from both G; and G,, then C; has at least one chord uv in

129

I Koch, N. Pardal and V.F. dos Santos Discrete Applied Mathematics 348 (2024) 122-131

G, and we can replace C, with a smaller cycle by adding uv and deleting an edge connecting u and one of its neighbors
in C,. If k < 4 and G, has a vertex in V(Gq) and a vertex in V(G,) the result follows. Let us now assume without loss of
generality that the vertices of C; are all contained in V(G;). We will construct another spanning cactus H’' from H having
the same number of edges, such that Cy is transformed into a set of cycles, each of them having a vertex in V(G¢) and a
vertex in V(G,). The graph H' starts as a copy of the spanning cactus H. Let v € V(G,), and let v; be the vertex of C; at
a shortest distance from v in H'. Notice that every path from a vertex of C; to v in H’ passes through v;. Consider now
vertices v;_; and v (the sums and subtractions are considered modulo k), which are the neighbors of v; in Ci. Delete
edges v;_jv; and vjviyq from H'. For the resulting path P,_; obtained by removing these two edges from C, extract a
maximum matching M of P;_; and delete the remaining edges E(P;_1) \ M from H’. Finally, for each edge e = uju; € M,
add the edges vu; and vu, from G to H'. Moreover, if k — 1 is odd, then there is an unsaturated vertex w in P,_;. Add
the edge vw from G to H'. These edges exist in G, since uy, U, w € V(G1) and v € V(G,). As the reader may easily verify,
the resulting graph H' is a spanning cactus of G, in which the cycle C, has been replaced by a collection of cycles having
a vertex in V(G;) and a vertex in V(G,). Moreover, the new cactus H' has (k — 1) — |[E(P,_1) \ M| — 2 more edges than H,
which was optimal. We conclude that k has to be either 3 or 4. Furthermore, the repeated application of this procedure
allows to transform any spanning cactus H having C3 or C4 entirely contained in V(G;) or V(G,) into another spanning
cactus H' in which these cycles have a vertex in V(G;) and a vertex in V(G,), and such that |[E(H')| = |[E(H)|. W

Theorem 4.8. Let G be a connected quasi-threshold graph. Then, a minimum deletion to cacti can be computed in polynomial
time.

Proof. It follows from the definition of quasi-threshold graph that G has a universal vertex v, since it is connected. In
other words, G is the join of a graph G containing a single vertex and another quasi-threshold graph G,. From Lemma 4.7,
it follows that there is a subgraph H having the maximum possible number of edges such that v belongs to each cycle
of H. Without loss of generality, we may assume that each cycle is a triangle, otherwise we can transform a C4 into a
triangle plus an extra edge incident to v using the same number of edges of the cactus.

Therefore, to find such cycles it is enough to find a maximum matching in G,. ®

5. Conclusions and future work

In this work, we study the I7-deletion problem in some classes similar to trees. We obtain hardness results for
cactus deletion restricted to bipartite graphs, and for IT-deletion when IT is the property of belonging to the class of
constellations or caterpillars. We also provide a list of properties that are sufficient to determine that, if the graph class
IT fulfills these conditions, then I7-deletion is NP-hard even when the input is a bipartite graph. Given the hardness of
these results, we then focus our study on positive results for DELETION TO CACTI by restricting the input graph to chordal
and quasi-threshold graphs. One possible future direction for this work is to deepen the study of DELETION TO CACTI within
other graph classes. We know that DELETION TO CACTI is polynomial-time solvable for quasi-threshold graphs, thus a natural
question arises regarding the complexity of this problem in superclasses of quasi-threshold graphs that are not chordal,
such as cographs. Another interesting graph class to restrict the input of the problem are planar graphs.

We now briefly discuss Fixed Parameter Tractability (FPT) of the problem when considering the natural parameter k
(that is, the number of edges k that we are allowed to delete). It is known that cacti can only have a number of edges
linear on its number of vertices. Let f(n) be the maximum number of edges in a cactus with n vertices. A graph having
more than f(n)+ k edges cannot be modified into a cactus with k edge deletions. Thus, FPT of the problem becomes trivial
if the graph has “too many” edges. It is easy to see that, if G is a graph and H = (V(G), E(G) \ S) is a cactus, then the
treewidth of G is at most 2|S| + 2. As a consequence of this, the clique-width of G is also bounded by a function of k. This
result also follows from [4] and the fact that cacti are precisely those graphs that do not contain the diamond as a minor.
Since minor-closed classes of graphs are MSO expressible [8], it follows that there exists a linear-time FPT algorithm for
DELETION TO CACTI parameterized by k, the number of allowed deletions. However, those algorithms would be impractical.
Other research direction includes structural parameterizations, in particular those that do not necessarily grow with the
density of the graph. Another direction for future work could be to restrict the input of cactus deletion to graph classes
having bounded clique-width, in order to use their structural properties to design efficient algorithms for this problem.

Finally, we present an interesting related question: given a spanning tree T of a graph G, is the problem of completing
T to a maximum spanning cactus by using only edges of G polynomial? Notice that the same problem is NP-hard if we ask
for a maximum spanning chordal graph: consider a graph G, and add a universal vertex u. Consider the spanning tree T
to be the star centered in the universal vertex u. Hence, the problem is equivalent to that of deletion to chordal in the
original graph.

Data availability

No data was used for the research described in the article.

130

I Koch, N. Pardal and V.F. dos Santos Discrete Applied Mathematics 348 (2024) 122-131

Acknowledgments

Nina Pardal was partially supported by a CONICET postdoctoral fellowship, by UBACyT Grant 20020190200124BA, and
by DFG grant VI 1045/1-1. Vinicius dos Santos was partially supported by CNPq Grants 312069/2021-9 and 406036/2021-7
and FAPEMIG Grant APQ-01707-21.

References

[1] N. Alon, A. Shapira, B. Sudakov, Additive approximation for edge-deletion problems, in: 46th Annual IEEE Symposium on Foundations of
Computer Science (FOCS 2005), 23-25 October 2005, Pittsburgh, PA, USA, Proceedings, IEEE Computer Society, 2005, pp. 419-428.

[2] A.A. Bertossi, Dominating sets for split and bipartite graphs, Inform. Process. Lett. 19 (1) (1984) 37-40.

[3] A.A. Bertossi, M.A. Bonuccelli, Hamiltonian circuits in interval graph generalizations, Inform. Process. Lett. 23 (4) (1986) 195-200.

[4] H.L. Bodlaender, A partial k-arboretum of graphs with bounded treewidth, Theoret. Comput. Sci. 209 (1-2) (1998) 1-45.

[5] J.A. Bondy, U.S. Murty, Graph Theory, first ed., Springer Publishing Company, Incorporated, 2008.

[6] F.R. Chung, D. Mumford, Chordal completions of planar graphs,]J. Comb. Theory Ser. B 62 (1) (1994) 96-106.

[7] D.G. Corneil, Y. Perl, Clustering and domination in perfect graphs, Disc. Appl. Math. 9 (1) (1984) 27-39.

[8] B. Courcelle,]. Engelfriet, Graph Structure and Monadic Second-Order Logic: A Language-Theoretic Approach, in: Encyclopedia of Mathematics
and its Applications, Cambridge University Press, 2012.

[9] E. El-Mallah, C. Colbourn, The complexity of some edge deletion problems, IEEE Trans. Circuits Syst. 35 (3) (1988) 354-362.

[10] P.W. Goldberg, M.C. Golumbic, H. Kaplan, R. Shamir, Four strikes against physical mapping of DNA, J. Comp. Biol. 2 (1995) 139-152.

[11] M.C. Golumbic, H. Kaplan, R. Shamir, On the complexity of DNA physical mapping, Adv. Appl. Math. 15 (3) (1994) 251-261.

[12] A. Itai, C.H. Papadimitriou, J.L. Szwarcfiter, Hamilton paths in grid graphs, SIAM J. Comput. 11 (4) (1982) 676-686.

[13]].M. Lewis, M. Yannakakis, The node-deletion problem for hereditary properties is NP-complete, J. Comput. System Sci. 20 (2) (1980) 219-230.

[14] L. Lovasz, Matroid matching and some applications, J. Comb. Theory, Ser. B 28 (2) (1980) 208-236.

[15] J. Monnot, S. Toulouse, The path partition problem and related problems in bipartite graphs, Op. Res. Lett. 35 (5) (2007) 677-684.

[16] T. Saitoh, R. Yoshinaka, H.L. Bodlaender, Fixed-treewidth-efficient algorithms for edge-deletion to intersection graph classes, in: WALCOM:
Algorithms and Computation - 15th International Conference and Workshops, WALCOM 2021, Yangon, Myanmar, February 28 - March 2, 2021,
Proceedings, 2021, pp. 142-153.

[17] RE. Tarjan, M. Yannakakis, Simple linear-time algorithms to test chordality of graphs, test acyclicity of hypergraphs, and selectively reduce
acyclic hypergraphs, SIAM]. Comput. 13 (3) (1984) 566-579.

[18] M. Vatshelle, New Width Parameters of Graphs (Ph.D. thesis), The University of Bergen, 2012.

[19] M. Yannakakis, The effect of a connectivity requirement on the complexity of maximum subgraph problems, J. ACM 26 (4) (1979) 618-630.

[20] M. Yannakakis, Edge-deletion problems, SIAM]. Comput. 10 (2) (1981) 297-309.

[21] LE. Zvervich, V.E. Zverovich, An induced subgraph characterization of domination perfect graphs, J. Graph Theory 20 (3) (1995) 375-395.

131

http://refhub.elsevier.com/S0166-218X(24)00039-8/sb1
http://refhub.elsevier.com/S0166-218X(24)00039-8/sb1
http://refhub.elsevier.com/S0166-218X(24)00039-8/sb1
http://refhub.elsevier.com/S0166-218X(24)00039-8/sb2
http://refhub.elsevier.com/S0166-218X(24)00039-8/sb3
http://refhub.elsevier.com/S0166-218X(24)00039-8/sb4
http://refhub.elsevier.com/S0166-218X(24)00039-8/sb5
http://refhub.elsevier.com/S0166-218X(24)00039-8/sb6
http://refhub.elsevier.com/S0166-218X(24)00039-8/sb7
http://refhub.elsevier.com/S0166-218X(24)00039-8/sb8
http://refhub.elsevier.com/S0166-218X(24)00039-8/sb8
http://refhub.elsevier.com/S0166-218X(24)00039-8/sb8
http://refhub.elsevier.com/S0166-218X(24)00039-8/sb9
http://refhub.elsevier.com/S0166-218X(24)00039-8/sb10
http://refhub.elsevier.com/S0166-218X(24)00039-8/sb11
http://refhub.elsevier.com/S0166-218X(24)00039-8/sb12
http://refhub.elsevier.com/S0166-218X(24)00039-8/sb13
http://refhub.elsevier.com/S0166-218X(24)00039-8/sb14
http://refhub.elsevier.com/S0166-218X(24)00039-8/sb15
http://refhub.elsevier.com/S0166-218X(24)00039-8/sb16
http://refhub.elsevier.com/S0166-218X(24)00039-8/sb16
http://refhub.elsevier.com/S0166-218X(24)00039-8/sb16
http://refhub.elsevier.com/S0166-218X(24)00039-8/sb16
http://refhub.elsevier.com/S0166-218X(24)00039-8/sb16
http://refhub.elsevier.com/S0166-218X(24)00039-8/sb17
http://refhub.elsevier.com/S0166-218X(24)00039-8/sb17
http://refhub.elsevier.com/S0166-218X(24)00039-8/sb17
http://refhub.elsevier.com/S0166-218X(24)00039-8/sb18
http://refhub.elsevier.com/S0166-218X(24)00039-8/sb19
http://refhub.elsevier.com/S0166-218X(24)00039-8/sb20
http://refhub.elsevier.com/S0166-218X(24)00039-8/sb21

	Edge deletion to tree-like graph classes
	Introduction
	Definitions
	Complexity results for edge-deletion to classes close to trees
	Cacti
	Sufficient conditions for hardness results within bipartite graphs
	Subclasses of forests

	Algorithms for cactus deletion
	Deletion to cacti within chordal graphs
	Cactus deletion from Quasi-Threshold

	Conclusions and future work
	Data availability
	Acknowledgments
	References

