o4 entropy

Article

Propagation Speeds of Relativistic Conformal Particles from a
Generalized Relaxation Time Approximation

Alejandra Kandus

check for
updates

Citation: Kandus, A.; Calzetta, E.
Propagation Speeds of Relativistic
Conformal Particles from a
Generalized Relaxation Time
Approximation. Entropy 2024, 26, 927.
https:/ /doi.org/10.3390/e26110927

Academic Editor: Lamberto Rondoni

Received: 24 September 2024
Revised: 26 October 2024
Accepted: 26 October 2024
Published: 30 October 2024

Copyright: © 2024 by the authors.
Licensee MDPI, Basel, Switzerland.
This article is an open access article
distributed under the terms and
conditions of the Creative Commons
Attribution (CC BY) license (https://
creativecommons.org/licenses /by /
4.0/).

and Esteban Calzetta %3t

Departamento de Ciéncias Exatas, Universidade Estadual de Santa Cruz, Rodov. J. Amado km 16, Salobrinho,
Ilhéus 45662-900, BA, Brazil; kandus@uesc.br

Departamento de Fisica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires,

Ciudad Universitaria, Ciudad de Buenos Aires CP 1428, Argentina

3 Instituto de Fisica de Buenos Aires (IFIBA), y CONICET—Universidad de Buenos Aires,

Ciudad de Buenos Aires CP 1428, Argentina

Correspondence: calzetta@df.uba.ar

These authors contributed equally to this work.

Abstract: The propagation speeds of excitations are a crucial input in the modeling of interacting
systems of particles. In this paper, we assume the microscopic physics is described by a kinetic theory
for massless particles, which is approximated by a generalized relaxation time approximation (RTA)
where the relaxation time depends on the energy of the particles involved. We seek a solution of
the kinetic equation by assuming a parameterized one-particle distribution function (1-pdf) which
generalizes the Chapman-Enskog (Ch-En) solution to the RTA. If developed to all orders, this
would yield an asymptotic solution to the kinetic equation; we restrict ourselves to an approximate
solution by truncating the Ch-En series to the second order. Our generalized Ch-En solution contains
undetermined space-time-dependent parameters, and we derive a set of dynamical equations for
them by applying the moments method. We check that these dynamical equations lead to energy—
momentum conservation and positive entropy production. Finally, we compute the propagation
speeds for fluctuations away from equilibrium from the linearized form of the dynamical equations.
Considering relaxation times of the form T = To(fﬁyp”)*“, with —co < a < 2, where By, = u, /T
is the temperature vector in the Landau frame, we show that the Anderson-Witting prescription
a = 1 yields the fastest speed in all scalar, vector and tensor sectors. This fact ought to be taken into
consideration when choosing the best macroscopic description for a given physical system.

Keywords: relativistic hydrodynamics; relativistic kinetic theory; propagation speeds

1. Introduction

The success of hydrodynamics in the description of the early stages of relativistic
heavy ion collisions [1,2] and the promise of relevant cosmological applications [3-5] have
turned the study of strongly interacting systems of relativistic particles into an active
area of research [6-8]. Although kinetic theory provides the microscopic description for
these systems [9-12], the full Boltzmann equations are generally regarded as too complex,
and simpler schemes consistent with the most important physical features are sought.
Among these simpler schemes, the Relaxation Time Approximation (RTA), which assumes
a collision term parameterized by a relaxation time, stands out. The RTA includes the non-
linearities in the theory through the equilibrium of one particle distribution function (1-pdf)
towards which the system relaxes, and in this sense, the RTA ansatz contains the footprint
of the nonlinear and complete underlying kinetic theory that describes the microphysics.

The first implementations of Bhatnagar, Gross and Krook’s (BGK) RTA [13] to rel-
ativistic fluids are those of Marle [14,15] and Anderson and Witting (AW) [16,17]. Both
expressions are phenomenological ansatzes, proportional to (f — fy) and in each case, fj
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corresponds to different “frames” (see Section 3.3 below). In the case of Marle, the propor-
tionality factor is m /T, with m the mass of the gas particles, while in that of AW, itis u, p" /7.
In both cases, the parameter 7 is identified with a “relaxation time”. In principle the choice
of the proportionality factor must be guided by phenomenological considerations or else by
a systematic derivation form the Boltzmann equation, which is feasible in some cases; see
refs. [18,19]. However successful, both Marle and AW’s RTAs severely distort the structure
of the linearized Boltzmann equation, and their validity is doubtful for soft collision terms,
where the continuous spectrum of the linearized collision operator reaches up to the zero
eigenvalue associated with the hydrodynamic modes [20-22].

This has led to more general implementations of the RTA [23,24], where different
modes are allowed to relax at different rates. However, simply allowing the relaxation times
to be a function of energy other than constant or linear is not satisfactory as it may violate
the energy-momentum conservation [25,26]. Rather, the RTA must be implemented while
preserving the Hilbert space structure of the space of linearized one-particle distribution
functions (1-pdfs). A kinetic equation allowing for a momentum-dependent relaxation
time consistent with the energy—momentum conservation was introduced in [27,28]. In
this paper, we elaborate on this proposal. In particular, we show how to produce an RTA
matching any prescribed spectrum for the linearized collision operator, either soft or hard.
Not being able to do this is one of the main drawbacks of the usual formulations of the
RTA; see also [29-38].

Although a general solution of the RTA kinetic equation may be attempted, this leads
to an integral equation for the equilibrium 1-pdf, which must be related to the actual 1-pdf
through some prescription, which will be different for different choices of the relaxation
time. For example, under the Marle prescription, the equilibrium 1-pdf leads to the same
particle current as the actual one, while under the Anderson-Witting prescription, the
equilibrium and actual 1-pdfs are matched though the energy current. This obscures
the physical features of the system, which close enough to equilibrium is dominated by
the hydrodynamic modes and a few long-lived non-hydrodynamic modes. To capture
this behavior, it is best to assume a parameterized form for the 1-pdf, supplemented by
dynamical equations for the parameters. In this paper, we obtain these dynamical equations
by taking moments of the kinetic equation.

Of course, this poses the challenge of finding a suitable parameterization for the 1-pdf.
The parameterization should be general enough to allow for an accurate description of
physically meaningful processes but not so general as to make the ensuing theory unwieldly.
Many proposals have been advanced in the literature [39-44].

In this paper, we adopt the point of view that the parameterization must include the
Chapman-Enskog (Ch-En) solution to the kinetic equation as a particular case [45]. In other
words, we use the second order Ch-En as a template, generalizing it to obtain a family of
parameterized 1-pdfs, still containing the actual Ch-En solution as a particular case.

One reason for working this way is the fact that in the Ch-En expansion, as in
DNMR [46] and IReD [47], each order is determined by the power of a certain small
parameter. Thus, it is easy to identify the intensity of the deviation from the local ther-
mal balance.

The procedure we propose yields parameterizations with an increasing complexity
depending on which order the Ch-En solution is computed to. In this manuscript we work
to the second order [48-50], which in the AW case returns the theory already analyzed
in [51].

Once the parameterization has been chosen, the next step is to find equations of
motion for the parameters. We require that these equations both conserve energy and
momentum and enforce the Second Law. Note that even if the kinetic theory allows for
an H-theorem, a positive entropy production in the parameterized theory does not follow
automatically, because the parameterized 1-pdf is not a solution of the kinetic equation. As
shown in [52], a suitable set of equations of motion is derived by taking the moments of the
kinetic equation against the same irreducible phase-space functions which appear in the
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parameterization, see below, Equation (17). Observe that in principle, this method does not
require linearization on deviations from equilibrium (see also [53]), though in general, the
resulting theory is too complex unless severely restricted by symmetry considerations.

The ultimate goal of this paper is to compute the propagation speeds for collective
modes of a conformal real relativistic system of interacting particles [54-59]. We define the
propagation speed as the velocity of a front across which the parameters are continuous,
but their first derivatives are not. To derive the hydrodynamic equations, we apply the
moments method to a kinetic equation under the RTA. We work in the Landau frame of
the fluid and generalize the usual RTA by allowing an arbitrary dependence of relaxation
time on the particle energy [27,28]. Different choices for this dependence mean different
underlying kinetic theories or equivalently, microphysics.

One crucial step in this procedure is the choice of which moments of the 1-pdf are
considered. As mentioned above, we adopt the criterion of choosing the functions of
momentum which yield a second-order Chapman-Enskog solution. In other words, we
work within a restricted class of 1-pdfs which generalizes the second-order Chapman—
Enskog solution, retaining it as a particular case. This choice leads us to parameterize
the 1-pdf in terms of functions of momentum which themselves depend on the way the
relaxation time relates to energy, see Equation (65) below. Because of this, different choices
of the functional dependence of the relaxation time lead to different dynamical equations
for the system, not only in the terms which derive from the moments of the collision
integral, where the dependence on the relaxation time is explicit, but also in the derivative
terms. We thus obtain a family of dynamical theories with different phenomenology
according to the choice of the relaxation time as a function of energy. We can understand
this dependence as the remaining footprint of a nonlinear and complete kinetic theory,
which is approximated by a mathematically more tractable RTA.

In summary, assuming the relaxation time dependent upon energy [25-28] we show,
on one hand, how to compare the predictions from different choices of this dependence,
and on the other hand, that those different choices lead to macroscopic models that are
clearly distinguishable (in this case by producing different propagation speeds).

The propagation speeds of a theory are of course fundamental to determining causality.
The theory we are considering here is thermodynamically stable by construction, and our
results confirm the expectation that it is causal as well [60-66].

Propagation speeds are also relevant for the discussion of shocks [54,67,68]. The
propagation speed in kinetic theory is the velocity of the fastest particle for which the 1-pdf
is not zero, so it can be arbitrarily close to the speed of light ¢ for a suitable 1-pdf [69]. There
are also examples from field theory where the propagation speed is arbitrarily close to
that of light [70]. Hydrodynamics, on the other hand, usually has a fastest propagation
speed which is less than ¢ by a finite amount [58]. For this reason, strong enough shocks
in hydrodynamics are discontinuous. This discontinuity is not observed in kinetic theory
and may be regarded as an artifact of the hydrodynamic approximation. When considering
approximations to the full kinetic equations, as in this paper, the issue of which setup yields
the fastest speed becomes most relevant, as this is also the framework which provides the
best description of shocks.

To make the discussion more concrete, we consider a particular family of generalized
RTAs where the relaxation time takes the form T = 75(—p,p*) ™", with —co < a < 2, where
Bu = uy /T is the temperature vector in the Landau frame of the fluid. This family covers
both the case where hard modes thermalize faster than soft modes and the converse. It also
contains Marle and AW’s RTAs as the 2 = 0 and a = 1 particular cases, respectively. The
upper limit in a is necessary to avoid infrared divergences in the equations of motion.

We find that the AW choice a = 1, where we recover the results of [51], yields the
fastest speeds.

To summarize, the main results of this paper are (a) the construction of a generalized
RTA designed to match the spectrum of any linearized kinetic equation, (b) the derivation
of a parameterized theory which is causal and stable and enforces both energy-momentum



Entropy 2024, 26, 927

4 of 25

conservation and positive entropy production, (c) the computation of the propagation
speeds for scalar, vector and tensor perturbations away from equilibrium for a family of
generalized RTAs containing Marle’s and AW’s as particular cases, and (d) the verification
that AW’s RTA yields the fastest speed within this family.

This paper is organized as follows: In Section 2, we shortly review the features of
kinetic theory, and in Section 3, we elaborate on the generalized RTA as a substitute for
the actual kinetic equation as derived from microphysics. In Section 4, we deduce the
1-pdf Ch-En solution to the Boltzmann equation up to the second order in gradients, for
a momentum-dependent RTA. We then introduce a 1-pdf after the pattern of the Ch-En
solution and derive the set of moment equations, which for the purposes of finding the
propagation speeds may be particularized at the free-streaming regime. In Section 5,
we perform a scalar—vector—tensor decomposition and write down the equation system
corresponding to each sector. To have a glimpse of their solutions, we consider the family
of RTA’s given by T = 1o(—pB,p") ™% with —co < a < 2 to avoid infrared divergences.
In Section 6, we summarize the main conclusions. Details of the derivation of the Ch-En
solution are given in Appendix A.

We work with natural units # = ¢ = kg = 1 and signature (—,+,+, +).

2. Relativistic Kinetic Theory

The central object of a kinetic description is the one-particle distribution function
(1-pdf), which gives the probability of finding a particle within a given phase-space cell, at
a particular event and with a particular momentum, constrained to be on a mass shell and
to have positive energy [71-74]. For simplicity, we consider only gases whose equilibrium
distribution is of the Maxwell-Jiittner kind (Equation (2)). The 1-pdf is advected by the
particles and changes because of collisions among particles. Therefore, the kinetic equation
has a transport part and a collision integral which gives the change in the 1-pdf due to
collisions per unit particle proper time, as in

)
pnyy = Zeonl @)

There is fairly universal agreement about the transport part, while different kinetic ap-
proaches posit different collisions operators [6]. A collision integral must be consistent with
energy-momentum conservation (for simplicity, we deal below with massless particles,
and thus we do not impose particle number conservation) and allow for an H-theorem, the
entropy production being zero only for Maxwell-Jiittner 1-pdfs

fo = ePur” @

where B, = u, /T, with T being the fluid temperature and u, the velocity in a frame to be
chosen below, with u2 = —1. Then,

Zeon [fO] =0 3)

The energy-momentum tensor (EMT) and entropy flux are

™= / Dp p*pf (4)
S = / Dp p"f[1 ~Inf] ®)

where \
Dp =2 (gnigé (=r*)o(r") )

is the Lorentz invariant momentum space volume element. Energy—-momentum conserva-
tion then implies that
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and the H-theorem
B /DP lnfIcoll >0 8)

for any function f. If f is a solution of the kinetic equation Equation (1), this leads to
positive entropy production Sf;l > 0.

The Landau-Lifshitz prescription provides a way to associate an inverse temperature
vector to any 1-pdf, even if it is not of the Maxwell-Jiittner kind. Namely, we identify the
four-velocity with the only timelike eigenvector of the EMT

T)u" = —pu 9)

whereby we identify p as the energy density, and then we derive a temperature from p by
imposing the equilibrium dependence

3 4
Having identified ¥, we may build the corresponding Maxwell-Jiittner 1-pdf fy, Equation (2).
Moreover, the fact that In f appears explicitly in the H-theorem Equation (8) suggests we
decompose f as

f = foe* (11)
Without loss of generality, we may also write
Zeonlf] = folcou[x] (12)

By virtue of Equation (7), In fy does not contribute to entropy creation, and then
we find

Shhi=— / Dp fo x Lou[x] >0 (13)

if f is a solution of the kinetic equation.

The ansatz Equation (11) guarantees a positive one-particle distribution function, even
in a full nonlinear theory. Moreover, the entropy production Equation (13) already singles
out the logarithm of the one-particle distribution function as playing a most important role.
Using this feature, we introduce below an ansatz for the collision term (see Equation (34))
which leads to positive entropy production to all orders in deviations from equilibrium
(see Equation (35)).

Parameterized Kinetic Theory

Let us look for solutions of Equation (1) of the form

f= fhydro = eLa=o CaX® (14)

In Equation (14), the C,, denote tensor fields in space-time, while the X* are tensor fields in
phase space. Note that « is not itself a tensorial index, it just numbers the different tensors
in the theory. The contractions C, X* are world scalars. In particular, we choose X° = p#
and Cyp = B, or equivalently, in the terms of Equation (11)

X = f Ca X" (15)

a=1

We assume C,(x) are totally symmetric, traceless and transverse tensors, for « > 1. Of
course, if we allowed the X* functions to form a complete set in phase space, we could
seek an exact solution of the kinetic equations under this form. However, we truncate the
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sum in Equation (15) at a finite value of 1, to be specified below, so we obtain only an
approximate solution.

The EMT and entropy flux are obtained by substituting f;,4,, into Equations (4)
and (5). We obtain the four conservation laws (7) but these equations are not enough
to determine the evolution of the whole set of C, functions, for which we must provide
supplementary equations.

Our guiding principle is to obtain positive entropy production. Now,

pﬂfhydro,y (16)

. n
H — o
Shydro,y - / Dp Z CaX
: a=1
The problem is that we cannot call upon the H-theorem to enforce positive entropy pro-
duction, because fj4, is not a solution of the kinetic equation. We demand instead the
moment equations

/Dp Xlx{pyfhydm,‘u - fOIcoll [X]} =0 17)

which for a« = 0 is just EMT conservation. We now are allowed to substitute

Shydrop = —/ Dp foxleonlx] =0 (18)

The moment Equation (17) are thus the equations of motion of the parameterized theory.

This setup enforces positive entropy production but does not tell us how to choose the
X* functions, beyond a = 0. We return to this vexing question in Section 4, after we have
introduced the relaxation time approximation.

3. Relaxation Time Approximation

Physically, the role of the collision term in the kinetic Equation (1) is to force x to
relax to zero, or at least to a multiple of p#, the only possibilities leading to vanishing
entropy production. A realistic kinetic equation such as Boltzmann’s typically leads to
a very complex collision term. However, it may be expected that the essentials of the
relaxation of x may be captured by a much simpler collision term, linear in x

Lou[x](x, p) = / Dy’ fo(x,p")K[p, p'|x(x, p') (19)

The linearization of the Boltzmann collision term yields an operator K which is symmetric
in the space of momentum functions with the inner product [20,21,75]

X'lx) = / Dp fox'x (20)

namely,
/DP fOX,Icoll [X] = /DP fOXIcoll [X/] (21)

Ioi1[x] has exactly four null eigenvectors corresponding to the hydrodynamic modes x, = py;
this enforces energy-momentum conservation. Moreover, the H-theorem Equation (13) re-
quires that all nonzero eigenvalues of the collision operator be negative.

We call a kinetic equation with a collision term as in Equation (19) a generalized
relaxation time approximation. The first relativistic RTA was Marle’s [14,15], who wrote
the collision operator of the form

1007 = C0p g7 (22)

T
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We must mention that Marle’s original expression has a mass m and not a temperature T.
But as we work with massless particles, the only relevant dimensionful parameter is T.
Energy-momentum conservation requires

/ ppp|f—£M] = / Dp pif —nut =0 (23)

where n = T%/7? would be the particle density for massless particles. Thus, Marle’s
equation requires us to work in the so-called Eckart frame: we identify the velocity and
temperature by matching the particle current of the actual 1-pdf [76].

After Marle, Anderson and Witting [16,17] proposed

1y = L) g ga] (24)
SO NOW .
/ Dp ptuyp® {f—fé’qw)] =u, T" 4+ put =0 (25)

where p = 3T*/7? is the energy density for a conformal fluid; we see that in the AW
formulation, fj is the equilibrium solution in the Landau-Lifshitz frame [77]. Both Marle
and AW’s choices seriously distort the Boltzmann dynamics and are actually disfavored by
experimental data from relativistic heavy ion collisions [23,24].

3.1. Generalized Relaxation Time Approximation

Concretely, our concern is to go beyond the Marle and Anderson-Witting RTAs by
allowing the relaxation time to depend on the energy of the particle in nontrivial ways.
It is clearly seen that trying to improve on Marle or AW’s equations by allowing T to
be momentum-dependent, while keeping the Eckart or Landau-Lifshitz prescriptions to
identify the inverse temperature vector, leads to a contradiction [25,26]. In this section,
we review the collision term proposed in [27,28], which overcomes this difficulty. For
simplicity we work in the Landau-Lifshitz frame throughout; this has the appealing feature
that it may be determined from the properties of the macroscopic energy—-momentum
tensor alone.

We introduce the notation

(x) = (1%) = [ Dp fo X (26)

where fj is the Maxwell-Jiittner distribution Equation (2) built from the Landau-Lifshitz
temperature and velocity. We assume the constraint

u(pt'p”x) =0 (27)

which follows from applying the Landau-Lifshitz prescription to a linear order in the
deviation from equilibrium .

We write the collision integral as in Equation (12). Energy-momentum conservation
requires I, [x] to be orthogonal to the four null eigenvectors p/. To satisfy this requirement,
we introduce a projection operator Q such that for any g

(p'Qlgl) =0 (28)
It is symmetric
(§'Qlgl) = (sQ[g']) (29)
and
Qsl=¢ < (g =0 (30)

These properties suggest that
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Qlg] =g — P' Ty, (P78) (31)
with
T = {p"p") =p [u’*u” + ;Aﬂ (32)
(where A*Y = " + u/u") is the energy—momentum tensor built from fj, and
Ty = ;[uyuv + 3Au0] (33)

From (p"Qlg]) = 0 and the symmetry of Q, we conclude that (gQ[p#]|) = 0, and since g is
arbitrary, it must be Q[p"] = 0, which is easily verified explicitly. Conversely, if Q[g] = 0,
then ¢ = 6p,p" for some momentum-independent coefficients . Finally, acting with Q
on both sides of Equation (31), we see that Q%> = Q, so Q is indeed a projection.

We may now define the collision integral. To preserve the symmetry, we propose

TZ
Leonn [X} = _?Q[FQ[X” (34)

where ¢ is a dimensionless relaxation time, and F = F[—p,,p"] is a dimensionless function.
The entropy production Equation (13) becomes

T2

—(Fan?) (35)

Therefore, the H-theorem requires F > 0.

The rationale of the proposed Equation (34) is to retain the fundamental features of the
Boltzmann equation within a single mathematical structure yet keeping it flexible enough
to accommodate phenomenological considerations. Among the former, the feature we
want to keep is that the linearized Boltzmann operator is a symmetric operator in a certain
Hilbert space [75], which may be therefore diagonalized, and whose spectrum bears basic
information about the physics of the system, most notably whether we deal with a hard
or soft collision term—in the former case, the ever-present zero eigenvalue is an isolated
eigenvalue, while in the latter, it is part of the continuous spectrum [20-22]. We elaborate on
this in Section 3.2. Note that the double projection operator Q in Equation (34) both makes
the collision term symmetric and enforces energy momentum conservation within a single
frame regardless of the function F. In this paper, we choose to work in the Landau frame
throughout and expect to explore different frame choices in forthcoming work [78-80].

On the other hand, we leave a window open for phenomenology through the choice
of the function F in Equation (34). By far the most common choices for F are Marle’s
(F = constant) and Anderson-Witting’s (F o« —u,p"), to be discussed in more detail
below (Section 3.3). However, phenomenological considerations in the context of RHICs
have led to the proposal of more general power laws [23,24], which in some cases may
be systematically derived from the Boltzmann equation [18,19] and are actively under
research [22,25,26,29-38]. In this paper, we only consider functions F defined through
power laws; even within this restricted class we find propagation speeds are strongly
dependent on the function F.

3.2. Spectral Considerations
Let us analyze the equation
Qlgl=nh (36)
We have the integrability conditions (p*h) = 0 (or else, Q[k] = Q*[g] = Qlg] = h), so h
itself is a particular solution. Since the p/’s are homogeneous solutions (note that here, y is

not a world index, it simply distinguishes each of four different functions from each other),
the general solution is
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g =h+cup" (37)

We may now analyze the spectrum of I.,;;. Suppose
QIFQIZAll = Ala (38)

If A =0, then FQ[Z,] = cyp¥, and then

cup”
QI = - (3)

Therefore, we must have the integrability condition

UV

¢ < pF”> —0 (40)

but this is impossible unless ¢, = 0 as well. Thus, we must have Q[Z,] = 0. We conclude
that the only null eigenvectors are indeed the p# functions.
Now, assume A # 0. Then, Q[{)] = (), and therefore, we may write

Q[FZa] = AZa (41)
with general solution (see Equation (37))
FOy = A0y +cuph (42)
If F[p#] # A for every p#, then
_ cup” (43)
=1

but this is not possible because it violates the integrability condition for Equation (41)
(p*Cx) = 0. Therefore, we conclude that the spectrum of the collision operator is included
in the image of F.

Now, assume that F[p#] = A for some pf{. Let us work in the Landau-Lifshitz rest
frame where u" = (1,0,0,0). Then, the solution to Equation (42) is

in = fa mzs(P—/\) +PV{;;TZ\} (44)

for some function f). We have two possibilities. If

<P”f)\ {5]5(1‘" - A)> =0 (45)

then from (p*7,) = 0, we conclude that the ¢, themselves are zero. Otherwise, we obtain
a linear equation from which we determine the ¢, coefficients. Thus, we see that we may
easily find a function F to match any preordained spectrum for the collision operator.

3.3. Marle and Anderson-Witting

To conclude this section, we discuss whether it is possible to regard Marle’s Equation (22)
and AW’s Equation (24) as particular cases of the collision term Equation (34)

To make contact with AW’s Equation (24), we set F = F(4W)[x] = x. Recall that
since we are defining the velocity and temperature according to the Landau-Lifshitz
prescription, when we split the 1-pdf as in Equation (11), Equation (27) follows, and we
obtain (p"Fx) = —B.,(p"p"x) = 0,50 Q[Fx] = Fx.

Assume we also have (pfx) = 0 besides Equation (27). Then, Q[x] = x, and so
Q[FQ[x]] = Q[Fx] = Fy, yielding the AW RTA. In the following, we refer to F[x| = x as
the Anderson-Witting prescription.
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When we implement Marle’s proposal, we must take into account that Marle’s fiducial
equilibrium 1-pdf is built from matching the particle rather than the energy flux, namely,

T(M)3 T3
[Dppr g™ = a0 = [Dp pif = —ut - (piy) (46)

Therefore, writing TM) = T(l +5TM) and uMi = y# 4 sy (Mp (with uy5u(M)” = 0),
we obtain

o = )
373 H
712
ouM = AP (47)
It follows that
B = fo[1+ P Tod (v (48)

From Equation (31), we see that the Marle collision integral Equation (22) is just the collision
integral from Equation (34) with F = 1.

In the following section we implement this formalism to obtain a second-order theory
of relativistic conformal fluids.

4. Hydrodynamics from the Second-Order Chapman-Enskog Solution

As mentioned in the Introduction, the first (and probably main) challenge in seeking a
parameterized solution to the kinetic theory is to find a suitable parameterization of the
kinetic 1-pdf. Our proposal is to use the second-order Ch-En solution as a template. This
means we work out the second-order Ch-En solution and then write it as in Equation (14),
thus identifying the X*(x, p) functions. Of course, in the actual solution, these functions
are multiplied by given coefficients built from p# and its derivatives. We later replace these
coefficients by unknown functions C, obeying the equations of motion (17), thus obtaining
a parameterization that generalizes the Ch-En solution.

The Ch-En solution is a systematic expansion of the 1-pdf in powers of the dimension-
less relaxation time ¢ introduced in Equation (34) [45]. We therefore have a hierarchy of
solutions, depending on which order we extend the expansion to.

In the moments’ or grad approximation on the other side, there is no explicit small
parameter with respect to which we can perform a perturbative expansion. Thus, it is
not clear a priori how many moments of the 1-pdf must be included to describe a given
departure from equilibrium. To circumvent this situation, in this paper, we take the point of
view that the parameterized 1-pdf should take the form of Equations (14) and (15), where
the X, are the same functions of momentum as they appear in a Ch-En solution at some
given order.

We use a fiducial temperature Ty to build explicit dimensionless quantities, namely, we
define t = T /Ty, and similarly, we make all other quantities non-dimensional by dividing
or multiplying by Tj as required. For simplicity, we do not introduce new names for the
dimensionless quantities. The dimensionless Boltzmann Equation (34) reads

9 Q[F[-pvp"]Ql]]
K = —
plagf=—fo g (49)
To implement a perturbative scheme, we expand
X= 2 6¢"xn (50)

n=1

and replacing into Equation (49), we obtain
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Py{ [Pvﬁv,u <1 + i Q”Xn)
n=1

where we have linearized the transport term, which is accurate enough for the discus-
sion below.

The Ch-En procedure aims at obtaining a solution of this equation as a expansion in
powers of ¢. Space derivatives in the left-hand side of Equation (51) are considered to be of

+ng} ZGQ[tZ ~Bup'1Q]] 6

n=1

“zeroth order”, while time derivatives, defined as X = u* X 1, have their own development

in powers of g
X=Y ¢"xm (52)
n=0

Replacing in Equation (51) and matching powers of ¢, we obtain

- Py”y{P 51/ +2Pl3n "xm + ZX” m)}

m=1 m=1
+ SuopPALPY Buy + PPALPY BuyuXn + PP D X
—Q|[PF[=Bup"1Qlxn 1] (53)

Because of the projector in the right-hand side, at each order, we have an integrability
condition

0 = _”ﬂ{<P prpt B + Z<p PP K ) B+ Z< AP ’”>>}
+ 0u0B (PP P )Bug+ A5 (PP X VB + B (PP K ) (54)

We shall simplify these expressions by further linearizing on the t and u,, derivatives. Then,
Equation (53) reduces to

—P%{ )+ Z X m)} + 80P Ay Y Buy + PP Dh Xy = —Q[tzFQ[anﬂ (55)

and Equation (54) yields

0= —”u{<P prpt )AL + Z < At >} + 00085 (PP B+ 5 (PP i) (56)
Solving these equations (see Appendixes A.1 and A.2), we find the first order
X1 = —%% (57)
where 0y, is the shear tensor
Oy = A;jgua,ﬁ (58)
A = | ASAD + ASAL — %AwMﬁ (59)

If we were to stop at this order and take F = const. we would parameterize y with just
the function X; = A;‘(‘;pp p” /const. This would lead us to the Israel-Stewart theory, which
is not satisfactory; in particular, it yields no dynamics for tensor modes [51]. This is one of
the reasons why we go one order further:
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Lo p'php? 1 AP PP
X2 = RZVH T3 T TSMPIMTAP; 23F2
1 D, O] ptu phug, \ 2
—ohp | 2+ 2 L) -D 60
Tosp%el | F ey T\ 3 (€0)
The tensor X, is found from the decomposition
2 2
AP PP rpr = PP e + 5 (pu) P06 (61)
where X, is transverse, symmetric and traceless,
olel 72
D2 = 506l ~ ol (62)
372 2
and )
(O} 0] 02
Dy = |Dy—2 — <4> 4+ =5 (63)
] \e§) ©f
with the functions
o~ L / a0 (64)
"2 Fmu

We observe that the whole second line of Equation (60) vanishes when the Anderson—
Witting collision term is chosen. This is to be expected because in this limit, these terms
collapse into two terms proportional to p* and to p*/u,pf, which do not show up when
the Anderson-Witting prescription F[x] = x is used from scratch.

This concludes the construction of the second—order Ch-En solution. We now must
use x1 and )2 as templates whereby to identify which functions of momentum to include
into a general parameterization of .

4.1. Dynamics from the Moments Approach

Assuming a parameterization of the form Equation (15) begs the question of which
functions X* ought to be included. In search of guidance, we look at the functions of mo-
mentum which actually show up in the second-order Ch-En solution. From Equations (57)
and (60), we see that the second-order x may be regarded as a linear combination of four
tensor fields

X' = ﬁAKipAPT
X2 — 6t;1-"2 AR A gt
X3 m%FAKi A T[_“;t;’y_,y}
w o= e B gt (5) o) “
where o3
y = 62 (66)

and A%g is the projection over transverse, totally symmetric and traceless third-order
tensors. The coefficients of the linear combination are the four tensors C, that represent
the different parameters of the theory and have the same symmetry properties as the

corresponding coefficients in Equations (57) and (60). The X* tensors are totally symmetric,



Entropy 2024, 26, 927

13 of 25

traceless and transverse with respect to the Landau-Lifshitz velocity, and moreover, they
obey the orthogonality condition

< pOx® Xﬂ> o 6% (67)
The equations of motion are the moment Equation (17), where x = Z;t:l CxX*, which is

consistent with the constraint Equation (27), and fy = ePr?" The equation corresponding
to &« = 0 is just the energy-momentum conservation.

4.2. The Complete Set of Equations of Motion

As our ultimate goal is to compute propagation speeds, we develop here the linear
form of the transport part of the equations in (17) for the different C,’s. We begin by writing

4
fu=fo <,3v/upv + Z sz,ﬂxlx> (68)
a=1

The moments of the transport term include the energy—-momentum conservation

4
<PAPy (ﬁw?v +) waa> > =0 (69)
a=1

and the moment equations

4
<X7pV (ﬁm,pv + ; Ca,yX"‘> > =... (70)

with o = 1,...,4. The right-hand sides of Equation (70) are immaterial because they
contain no derivative terms, while propagation speeds are defined by the principal terms
in the equations [81] .

Working in the rest frame where u#* = (1,0,0,0) and setting t = 1, we have

(P°P"p" )Bu +E[Ca<( >2X“>+Ca,i<pip0X“>] - 0
<P’p” >ﬁvy+ [ <p p]X”‘>—|—C <pipixa>}:0

(XTpHp") Buy + i[Ca<X7 0X“>+CM<X’VpX“>] - 0 (71)

The constraint Equation (27) implies that ((p°)2X*) = (p%p/X*) = 0, so Equation (71)
simplify to

(Pp"p"YBus = O )
(Pp"p >ﬁm+ZCaz<ppr“> =0 (73)
<Xﬁpipj>ﬁi,j+;{C0¢<XﬁpoX’X>+Ca,i<XﬁpiX“>} =0 (74)

Computing the averages as defined in Equation (26), we find the full set of equations in the
free-streaming regime
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£ o1
Loy =
; + 3”,]' 0
O % ) + Lotamiic,,, . + AN, = 0
3\ U 5 o4 lppj T 5 3ppj T
. 1
Oy A" My, + OFAMH Cypy + ;921\” VR G e + FAFYMCyp 0 = 0
@’g‘AyvApakClpa,k + @%Ayv)xptrrc'zplﬂ + GAHW\pgkCE}pa,k - 0
1 .
AAw/kluk,l + §GAyvklmnC21mn,k + GA;u/leskl + KAyVlkCM,k - 0
1 1 .
gFAP‘”Pkap,k + gKAP‘“Pkcg,Vp,k + MAMCy = 0 (75)
The different coefficients in the equations read
A = [@3-10]]
i ) 05 1
F = |Dy®]— @—365 + @} — D30}
L 3
G = [0}-10]
- ol
K = |Dy©3— 6§®2 +©@% — D3@% — oF
L 3
el\’ e! ol
M = |D}@3+ (%) ©+07+D30)-2D,—20] —2_10} +2D,03
03 03 03
@1
— 2D,D3@} + 2%@%@}1 —2D;03 (76)
3

Observe that these coefficients depend explicitly on the microphysics, due to the
presence of the function F in (64). In particular the coefficients D,, D3 and 7, defined in
Equations (62), (63) and (66), respectively, vanish in the AW ansatz for the RTA.

5. Propagation Speeds

We are now ready to derive the propagation speeds v for linearized fluctuations
around an equilibrium solution B, = g, = constant, C* = 0 and « = 1 —4. These
fluctuations represent collective modes of the system of interacting particles. As we show
in the following, the propagation speeds v may be derived from the dispersion relations
obtained from the Fourier transform of Equation (75), which take the form w = vk. To
derive this dispersion relations from the principal terms only is equivalent to considering
the full dispersion relations, including dissipative terms, in the limit k — cc.

It is important to highlight that working with the equation system (75) does not make
the choice of the function F in the collision term irrelevant, because the tensors X* which
make up x depend on it, see Equations (65) and (76). This has stemmed from enforcing the
integrability conditions at each order in the Ch-En development, which are essential for
the second law of thermodynamics to be fulfilled. Thus, we have written a parameterized
1-pdf general enough to include a second-order Ch-En solution of the collisional theory
and work with Equation (75) to investigate the front propagation speeds. We find that the
propagation speeds depend on the microphysics through the choice of the function F, and
for a wide range of choices, are maximized by the AW ansatz F[x] = x.
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5.1. Relating Front Propagation Speeds to the Dispersion Relations

Regardless of the actual form of the collision term, it is clear that after linearizing
around an equilibrium solution and going to the equilibrium rest frame, the equations
in (17) take the form

C 4 Ng"‘cﬁ +13CP =0 (77)

where only the last term comes from the collision integral.

Let us seek a solution representing a front (namely, a surface where the fluid variables
are continuous but their first derivatives are not) moving into a fluid in equilibrium
along the direction k. The solution depends on time and space only through the variable
& = k- x — vt, where v is the front velocity. Let the front position be & = &. At that point,
the C*’s are continuous, but the lateral ¢— derivatives C', and C'* are different ( + and —
denote the upstream and downstream parts of the fluid). Therefore, taking the difference of
Equation (77) in front of and behind the front, the terms from the collision integral cancel,
and we obtain ‘

oo+ 1INy | (€ — ) =0 (78)
with a prime denoting a ¢-derivative.

On the other hand, suppose we seek the dispersion relations which follow from
Equation (77). Then, we propose a solution of the form C* = Cgei[k""‘"t] and obtain

[(—iw)3} +iNj'k; + I5]Ch =0 (79)
It is clear that Equation (78) are the same as Equation (79) under the identification w = vk,
k = kk. We take advantage of this fact and evaluate the propagation speeds from the
Fourier transform of system (75). This is not an approximation but rather the definition of
the propagation speeds.

5.2. SVT Decomposition

As it is well known, the equations of motion can be further decoupled by decomposing
the deviations from equilibrium into scalar, vector and tensor quantities. We then write

u = 94V (80)
Cy = c4+Viey (81)
Ciij = (viv]- - ;Ai]-v2>cl + c1i,j + 1, + C1f (82)
Csij = <viv]- - ;AijV2>C3 + caij + 37 + C3if (83)

Coie = {vivjvk = %(Aijvk + ARV + A]«kvi)vz] e
1 2 1 2 1 2
+ (vivj — 505V >c2k+ (vivk — 20V )czj + (vkv]- — 504V )czi
+  Vicgjk + Vijesix + Vicaij + Caiji (84)

Here, quantities with no indexes are scalars, quantities with a single index are vectors
(namely, divergenceless), and quantities with more than one index are tensors (divergence-
less and traceless).

We shall discuss in some detail the simplest tensor sector and give the results for the
vector and scalar ones, which follow the same structure. The homogeneous equation for
Cojjk reduces to ¢ = 0, and we do not discuss it.

5.2.1. Tensor Sector

Considering only tensor quantities in Equation (75), we obtain
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O2Cyj + @IV, = 0
5C1ij + 7% 2ij =
®2C11’]’ + 3@%C21] + GC31']' =0
3 .
G[?VZCQZ‘]‘ + C31']'] =0 (85)
Therefore, the dispersion relation is derived from the roots of the determinant
@2 (—iw) —303k? 0
det (O3 303 (—iw) G =0 (86)
0 —3GK2  G(-iw)
Explicitly,
3GO20% (iw)[w? — ;kz] =0 (87)

Observe that although the determinant in Equation (86) becomes singular for the AW RTA,
where G = 0, the dispersion relation is well defined there and yields the propagation
speeds 1/+/7 and 0, independently of the choice of the function F, in agreement with [51].

As we now show, the propagation speeds do depend on the choice of the function F in

the vector and scalar sectors.

5.2.2. Vector Sector

The vector terms in Equation (75) are

o2 2
@5 + g@}tvzcli + gAV2C3i =0
24 |
Y [@}11% +203¢1; + 35 OV2eyi + Feyi| = 0
1 2 2]
(V]Vk — 5AjkV2) {3@2011‘ + ®%C2i + gGCSi =0
24, . ]
V| AY; + ﬁGV 2i +2GC3 + Kegi| = 0
2 2 2 2 .-
EFV c1; + EKV c3i+Méy = 0

wherefrom we obtain the characteristic equation

0)(—iw) —2K?O} 0 —2k2A 0
0 20%(-iw) —-3K’6} 0 F
det 0 0} ©j(-iw) 3G 0 =0
A 0 —2Gk?  2G(—iw) K
0 —2FK? 0 —2Kk>  M(—iw)

5.2.3. Scalar Sector

Keeping only scalar terms in Equation (75) gives

(88)

(89)
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t+lV2 =0
\ {®g(t+&)+ — @}V + Av2c3] =0
1
z(vivj—Aijvz) [@}119—1-@ cl+395®3V262+Fc4] -0
6|V:V;V — VZA,]Vk VzAlkV —5VZA]kv][®gc1+®7cz+Gc3} -0
( )[Aﬂ—l— GV262+GC3+KC4] =0
v{ FV2c; + KVZC3+MC4] = 0 (90)
leading to the dispersion relations
(—iw)  —1K? 0 0 0 0
o) ®g(—1iw) —214(5®}1k§ 0 . — A AR 0
0 0} O%(—iw) —=OF 0 F _
det] 0 @  oi(-iw) G 0 =0 0O
0 A 0 —2Gk*  G(—iw) K
0 0 — £ FK? 0 — &K M(—iw)
5.3. Results

To give some content to the results above, we considered the family of RTA’s where
Flx] = x" (92)

for which
Q) =T[2+m—an] (93)

To avoid infrared divergences in the equations of motion, we required a < 2. This family
includes the Marle and AW RTAs as particular cases, namely, 2 = 0 and a = 1, respectively.

As in the tensor case, the dispersion relations are well defined at a = 1, although the
matrices in Equations (89) and (91) are singular there. The propagation speeds for a = 1
coincide with the values given in [51].

For the vector and scalar sectors, we used the tool “Mathematica” to solve the disper-
sion relations (89) and (91) and plotted the solutions in the figures below.

The solutions vy = w/k for the vector sector are plotted in Figure 1. The fastest mode
(top dot-dashed blue curve) attains the same maximum speed for a = 1 and fora — —oo
(top dotted light-blue horizontal line), indicating that the AW value is not exceeded at any
value of a. Observe that the slowest mode speed (bottom, dashed light-blue curve) is zero
for a = 1, so we recover the AW case where only one non-null mode exists [51].

The solutions vg = w/k for the scalar case are plotted in Figure 2. We see that the
maximum speed of the fastest mode (top red short-dashed curve) corresponds to the AW
solution a = 1 (top horizontal orange dotted line). The intermediate speed mode (long-
dashed orange curve in the middle of the figure) attains its minimum value also at the
AW value a = 1 (bottom horizontal yellow dotted line), and the speed of this mode never
exceeds that of the fastest mode. These two modes are the generalization of the AW modes
found elsewhere. The bottom, single-line purple curve corresponds to the speeds of a new,
slowest mode, whose velocity for a = 1 is zero. Thus, we see that the AW case [51], for
which there are only two non-null modes, is consistently included in our formalism.

Finally, in Figure 3, we plotted the curves that correspond to the speed of the fastest
mode of each sector. The top dotted horizontal line corresponds to the AW (a = 1) speed,
and the short-dashed line immediately below corresponds to the velocities of the scalar
fastest mode of our model. The middle dotted horizontal line and dot-dashed middle
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curve correspond to the vector mode speed for AW (a = 1) and to the speeds of our model,
respectively. The bottom long-dashed horizontal line is the speed of the tensor mode,
which agrees with the AW speed over the entire interval of a values considered. They verify
vr < vy < vg, which curiously is the same order relationship already obtained by Israel
and Stewart in ref. [82].

All the propagation speeds are less than the speed of the light. This is a consequence
of the causal evolution of the Boltzmann equation, which is something that is broken when
performing the Chapman-Enskog procedure (relativistic Navier-Stokes is acausal and
unstable) and is recovered by (1-pdf) moment methods such as the one in this paper. For
further discussion of causality requirements in relativistic hydrodynamics, see ref. [66].

Vector Sector

Sy APy Sy Ry yuyRp ey UpUpRyRp PRIy SRy A N

""" - W2

g 03, AR Waw=3/7

Figure 1. (Color online) Speeds of the two vector modes from Equation (89). The fastest mode (top
dot-dashed blue curve) attains the same maximum speed for 2 = 1 and for a — —oo (top dotted
light-blue horizontal line), indicating that the AW value is not exceeded at any value of a. Observe
that the slowest mode speed (bottom, dashed light-blue curve) is zero for 2 = 1, so we recover the
AW case [51] where only one non-null mode exists.

Scalar Sector

Vs
_ ~08F ~
___________ [ Vs1aw= \’ —15+235\/%
0.6»‘
[ — Vso
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L Vso
0.21 Vsoaw= %
: l | \//l a
-4 -3 -2 -1 1 2

Figure 2. (Color online) Speeds of the three scalar modes from Equation (91). We see that the
maximum speed of the fastest mode (top red short-dashed curve) corresponds to the AW solution
a =1 (top horizontal orange dotted line). The intermediate speed mode (long-dashed orange curve
in the middle of the figure) also attains its minimum value at the AW value a = 1 (bottom horizontal
yellow dotted line), and the speeds of this mode never exceed the ones of the fastest mode. These
two modes are the generalization of the AW modes found elsewhere. The bottom, single-line purple
curve corresponds to the speeds of a new, slowest mode, whose velocity for a = 1 is zero. Thus, we
see that the AW case, for which there are only two propagating modes, is consistently included in

our formalism.
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Maximum Speeds
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Figure 3. (Color online) Comparison of the maximum propagation speeds of each sector. The
top dotted horizontal line corresponds to the AW (a = 1) scalar mode speed, short-dashed line
immediately below corresponds to the velocities of the scalar fastest mode of our model. The middle
dotted horizontal line and dot-dashed middle curve correspond to the vector mode speed for AW
(a2 = 1) and to the speeds of our model, respectively. The bottom long-dashed horizontal line is
the speed of the tensor mode, which agrees with the AW speed over the entire interval of a values
considered. They verify vr < vy < vg.

6. Conclusions

Using the Chapman-Enskog expansion, we developed a linearized 1-pdf up to the
second order around a local thermal equilibrium. At each order, we enforced the Second
Law, so positive entropy production was guaranteed. We then generalized this distribution
function by identifying each term in the Ch-En expansion with a product of a momentum-
dependent tensor with a parameter that encoded the dissipative properties of the flow.
Therefore, the parameterization contained the second-order Ch-En solution as a special
case. Using the moments method, we then obtained the linearized equations for scalar,
vector and tensor perturbations. We worked with the RTA for the collision integral and
considered the relaxation time as a function of the momentum, F[—pB,p"].

The coefficients of the conservation equations depend on the function F. They form a
family of parameterized theories that describe different phenomenologies depending on
the choice of the function F. Thus, in Equation (75) there remains information about the
microphysics on which the RTA was built. Stated in other words: the choice of F is a crucial
part of the construction of the RTA.

To analyze a concrete case, we specialized the general equations to the case where
F = (Bup")", which included the choice of AW of 2 = 1 [16,17] and that of Marle of
a = 0[14,15], widely used in the literature, as particular cases. The choice of a power law,
besides being mathematically tractable, has actually been proposed before in the context
of relativistic heavy ion collisions from phenomenological considerations [18,23-38]. For
example, the interpolating values 0 < a < 1 were already discussed in refs. [23,24],
motivated by its possible application to improve the description of relativistic heavy ion
collisions. Here, we included the full range —oo < a < 2, which is maximal because larger
values of a leads to infrared divergences in the coefficients of the hydrodynamic equations.
Allowing for a negative a allowed us to explore distributions heavily biased towards hard
modes. The power of the generalized RTA presented here is the ability to reproduce
spectral properties of the kinetic equation, most importantly whether zero is an isolated
eigenvalue or whether it is embedded in the continuous spectrum. Figures 1 and 2 showed
the dependence of the propagation speeds on the choice of F, restricted to a power law.
Choosing a more general functional form for F may be justified by concrete experimental
results and/or deduced from the Boltzmann equation [18,19,21,23,37].

The propagation speeds of a theory are fundamental to determine causality and to
discuss shock waves, among other effects. The linear conservation equations decouple into
three sets, corresponding to the tensor, vector and scalar modes, and we computed the
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corresponding propagation speeds. The propagation speeds were the phase velocity for
plane waves obtained from Equation (75), and as it was emphasized above, they depended
on the choice of F.

For the given 1-pdf, the number of tensor, vector and scalar modes were two, five and
six, respectively.

For the tensor modes, we found the propagation speed was actually independent of a
and agreed with the AW value [51].

In the vector sector, besides the trivial solution v, = 0, there were two propagation
speeds shown in Figure 1. There, we saw that the fastest propagation speed was bounded
above by the AW value [51], which was reached at a = 1. The slower mode had v, = 0 for
a = 1. Therefore, the number of dynamical vector modes in the AW limit reduced to two,
as it must.

For the scalar sector, we obtained three different propagation speeds, as shown in
Figure 2. As in the tensor and vector sectors, the fastest mode had maximum velocity at
a = 1, where we recovered the AW result [51]. For the intermediate mode, we also recovered
the lower AW speed when a = 1. The speeds of the slowest mode were significantly lower
than those of the other two scalar modes and vanished for a = 1. Therefore, we recovered
the right number of dynamical scalar modes (four) in the AW case.

In Figure 3, we compared the speeds of the three fastest modes. We saw that they
satisfied v < v, < v, throughout the whole range of a values [58]. In ref. [82], Israel and
Stewart also calculated the propagation speeds for scalar, vector and tensor modes and
found the same order relationship obtained in this work.

We expect that including higher orders in the Chapman-Enskog development, besides
adding more functions to the 1-pdf parameterization, will produce increasingly higher
speeds, which will asymptotically approach the speed of light, as was demonstrated by G.
Boillat, T. Ruggieri and I. Miiller [55-59].

As stated in Section 3.1, in this work, we worked in the Landau frame throughout.
The frame dependence of hydrodynamics, and the ensuing possibility of improving the hy-
drodynamic description by a judicious choice of frame, are active areas of research [78-80].
We intend to provide a deeper analysis of the frame dependence of the results in this paper
in forthcoming work.

We believe that the main contributions of this work are as follows: First, the use of
the Chapman-Enskog expansion as a template on which to build a parameterized theory
with dynamics based on the method of moments. The resulting theory is causal for the full
range of values of a. Causality is expected because, as we have already said, the theory
is built to enforce thermodynamic stability, and it is known that stability, causality and
covariance are closely linked [60-66]. Second, the fastest propagation speeds are found in
the AW limit a = 1, for all scalar, vector and tensor modes. To the best of our knowledge,
the fact that the Anderson-Witting RTA [16,17] produces the fastest propagation speeds is
a new result. This has deep implications for the description of strong shocks in relativistic
fluids [68], which we expect to elaborate on in a separate contribution.

Author Contributions: Conceptualization, E.C. and A.K.; methodology, E.C. and A.K,; resources, E.C.
and A K,; validation, E.C. and A K.; supervision, E.C. and A K.; project administration, E.C. and A K.;
formal analysis, E.C. and A.K.; writing—original draft preparation, E.C. and A K.; writing—review
and editing, E.C. and A.K.; visualization, E.C. and A K. All authors have read and agreed to the
published version of the manuscript.

Funding: This research received no external funding.
Institutional Review Board Statement: Not applicable.

Data Availability Statement: No new data were created or analyzed in this study. Data sharing is
not applicable to this article.

Acknowledgments: E. C. acknowledges financial support from Universidad de Buenos Aires through
Grant No. UBACYT 20020170100129BA, CONICET Grant No. PIP2017/19:11220170100817CO and



Entropy 2024, 26, 927

21 of 25

ANPCyT Grant No. PICT 2018: 03684. A.K. acknowledges financial support through project UESC
073.11157.2022.0001594-04.

Conflicts of Interest: The authors declare no conflicts of interest.

Appendix A. Chapman-Enskog Solution
Appendix A.1. First-Order Ch-En Solution

We obtain the first-order Ch-E solution by setting n = 0 in Equations (55) and (56),
whereby

Q[PFI-Bup'1Qlxi]| = Pruup B — P A" B (A1)
and

= (P ) {upbl — 2By} (A2)

which we recognize as simply the conservation equation for an ideal energy-momentum
tensor. Introducing the functions in Equation (64), then

1
<p’\ppp"> = 1’03 {u)‘uf’u" t3 (uAA"P + u’ AP - uPAA"ﬂ (A3)
Decomposing as usual , = u,/t, we obtain

1 1 1
50uv + Ea)yu + 3Ayvul);\} (A4)

f 1 A
Buv = ) — Alu nly t2 A t{—AyuvuA + >

where 0y, is the shear tensor Equation (58) and

W = [ MG — AYAG g (AS)
. o1
ﬁ}‘ = —Myﬁ + ;u],[ (A6)

This yields Equation (A2) in the familiar form

{0 1,
T = T3t (A7)
a0 — _Nﬂft'l (A8)

We use these equations to eliminate the time derivatives from Equation (A1), leading to

Hpp
Q|PFQln]| = ~H=a (A9)
The solution to Equation (A9) is
P‘pp
FQPu] = =55 0uo — cup” (A10)

We find a new integrability condition

Ay pp Ay
_ [ PIPTPRN T pp
o_< = >2t3 cﬂ< = > (A11)

The first term is zero, and therefore the homogeneous solution vanishes. Now, again,

HpP
x= L (A12)

and imposing the constraint Equation (27), we see that again, c;, = 0, whence Equation (57).
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Appendix A.2. Second-Order Ch-En Solution

We obtain the second-order Ch-E solution setting # = 1 in Equations (55) and (56). Let
us start from the integrability condition

5(1 . (0
0= —u {(ppp )8 + (P pr ™) b+ AL (o) (A13)
Under the linearized approximation,

_ P
X = = 53F pon

- ’;th ATty (A14)

in particular,

0 ppY (0)
X1 - 2t3F A,U(Tu)\ T

_ PP aetar
N 2t3FAp‘7 t (A15)

To evaluate the integrability condition Equation (A13), we compute the mean values
(p*pp") and (p*ptp"pf / F), obtaining

v\ 5 noo1
w(phpp VB = t4®g{mt n 3u<1>A}

— u () =0

8y (PP xin) = —t3®1 o (Al6)
and we obtain
it =0
mr = 51t g% oy (A17)

We now turn to Equation (55)
Q|PFQlal| = pru{p B — 1} - p 8k

1 0; PP’ actac Ap'p
B pyuy{pvfﬁz(%)ag’p 2BE N T (TP e

0'1/;4 A (A18)

A first integration yields

0! P t
t2FQ[xZ]=p”u,4{p”14ap LN “}+pwp P o —dup”  (A19)

52@J "F 28F P 213F

where the d,’s are integration constants. We thereby find the integrability condition

A 1
_ /P 104 o PP’ actar
0= <t2[—_~{p'uu}l [pVStz @8 0'1/,,0 2t3F Aplf

which reduces to

+pPA;’;thaWT dypy}> (A20)
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1o O 4| 1A Ly
0= _E @4 - @@3 0;{3 + td‘u®2 uur 4 gA (A21)
3
or else 1
dy =~ 2. Davl, (A22)

where D, was defined in Equation (62) We thus arrive at the preliminary result

oac PP " '
+PPAy S 3 Ovp —dup” p — dyp (A23)

1 1 0! Ppv t
N BT v_- 4P _PPAAT,/\T
X2 = oF {p u lp 5200 P 28F Pt P 213F

with a new set of integration constants d;,. To fix d},, we must enforce the constraint
Equation (27). Introducing the tensor ¥ from Equation (61), we obtain

1 prptp? 1 AP ppe
X2 = 27VH0 532 _fsuut,MAva 2132
1 D, O} ptu plug, \ 2
Iy 2 4 M M /
+ @Uy/ppv ? + 62 iF + <i’F> — dypﬂ (A24)

Enforcing the constraint Equation (27) yields Equation (60).
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