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Abstract: Gaugino condensation on D-branes wrapping internal cycles gives a mechanism
to stabilize the associated moduli. According to the effective field theory, this gives rise,
when combined with fluxes, to supersymmetric AdS4 solutions. In this paper we provide
a ten-dimensional description of these vacua. We first find the supersymmetry equations
for type II AdS4 vacua with gaugino condensates on D-branes, in the framework of gener-
alized complex geometry. We then solve them for type IIB compactifications with gaugino
condensates on smeared D7-branes. We show that supersymmetry requires a (conformal)
Calabi-Yau manifold and imaginary self-dual three-form fluxes with an additional (0,3)
component. The latter is proportional to the cosmological constant, whose magnitude is
determined by the expectation value of the gaugino condensate and the stabilized volume
of the cycle wrapped by the branes. This confirms, qualitatively and quantitatively, the
results obtained using effective field theory. We find that exponential separation between
the AdS and the KK scales seems possible as long as the three-form fluxes are such that
their (0,3) component is exponentially suppressed. As for the localized solution, it requires
going beyond SU(3)-structure internal manifolds. Nevertheless, we show that the action
can be evaluated on-shell without relying on the details of such complicated configura-
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1 Introduction

Gaugino condensation on D-branes wrapping internal cycles of string compactifications
provides a mechanism for stabilizing their associated moduli. Indeed, the gauge coupling,
appearing in the superpotential, depends on the corresponding volumes. This is particu-
larly handy in type IIB compactifications on Calabi-Yau manifolds. The three-form fluxes
threading the internal three-cycles are routinely included, and provide a potential for their
sizes, parameterised by the complex structure moduli. On the other hand, Kähler moduli,
which define the sizes of the even cycles, are unfixed at the perturbative level, hence the
non-perturbative contributions coming from gaugino condensates on D-branes are crucial.
For type IIB compactifications with three-form fluxes and O3/O7 planes, such as the ones
considered in this paper, the supersymmetric branes are D7-branes wrapped on calibrated
four-cycles Σ4.

This proposal for supersymmetric compactifications with fully stabilized moduli was
put forward by Kachru, Kallosh, Linde and Trivedi (KKLT) in [1]. More explicitly, complex
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structure moduli are assumed to be fixed by fluxes,1 and at a lower energy scale one uses
effective field theory to study Kähler moduli. The corresponding F-term conditions then
lead to a supersymmetric AdS4 solution. As long as the (0,3) fluxes can be fine tuned to
give a very small contribution to the superpotential, comparable to the non-perturbative
one, the resulting cosmological constant is exponentially small, while the Kähler moduli
are fixed at a large value. This is a prominent example of scale separation, which violates
the Swampland conjecture formulated in [3]. Importantly, a family of explicit examples
were constructed recently in [4–7].

In this paper we provide the ten-dimensional description of these supersymmetric AdS4
vacua with fluxes and gaugino condensates captured by the EFT of [1]. For that, we
first derive the supersymmetry equations for AdS4 compactifications in the presence of
gaugino condensates, combining different elements that appeared in the literature [8–12]
and bringing them together into a consistent picture. We work within the framework of
Generalized Complex Geometry (GCG) [8]. This is necessary since, as shown in [10, 11,
13], the backreaction of the gaugino condensate breaks the SU(3) structure of Calabi-Yau
manifolds down to a more general so-called “dynamic SU(2) structure”, best understood
in terms of generalized complex structures. Requiring N=1 supersymmetry gives three
equations, involving the generalizations of the complex structure and the complexified
Kähler structure. The first two of these conditions were shown to be equivalent to the
F-flatness conditions for the Kähler and complex structure moduli, while the third one
corresponds to a D-flatness condition [14] of the effective theory of compactifications on
generalized geometries [8, 15]. In the presence of gaugino condensates, these equations get
modified. While the modification of the first supersymmetry condition was understood
in [9, 10] in terms of the backreaction on the geometry itself, that of the third equation,
which involves the RR fluxes, is more subtle. This was considered first in [10, 12] under
some approximations. Here we take an alternative route and find the generalized geometry
extension for gaugino condensation in any type II branes wrapping a calibrated cycle. We
do so by building on the analysis of gaugino mass terms presented in [16]. Furthermore,
we argue for self-consistency of the whole set of equations, and consistency with the four-
dimensional effective theory.2

We then solve these modified supersymmetry equations for type IIB AdS4 compact-
ifications with gaugino condensates on smeared D7-branes. We find that the solution
is surprisingly simple, and shares many features with its Minkowski counterpart without
gauginos. More precisely, we find that the internal manifold is still (conformal) Calabi-Yau,
and three-form fluxes are still imaginary self-dual. Nevertheless, they contain an additional
(0,3) piece, which turns out to be proportional to the non-vanishing cosmological constant,
whose value is in turn dictated by the vacuum expectation value (VEV) of the gaugino bi-
linear. These features of the ten-dimensional solution reproduce the expectations from the
four-dimensional effective field theory analysis in [1] not only qualitatively but also quan-

1This mechanism was conjectured not to work for a large number of moduli because of the tadpole
cancellation condition [2].

2At this level, our results are consistent with the discussion of [12], see their appendix A in the latest
version.
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titatively. We take this as strong evidence confirming both our modified supersymmetry
equations and also the applicability of the EFT for finding supersymmetric vacua.

We further analyze scale separation (see e.g. [17] and references therein) in the smeared
solution, finding two relevant scales, the dilaton and the volume. We show that exponential
scale separation can be achieved as long as the gaugino vev is very small, which happens
at weak coupling in the gauge theory, and as long as one can cook up fluxes giving rise to
an equally small (0,3) component.

The equations for gaugino condensates on localised D7-branes are, not surprisingly,
much harder to solve. We leave the study of the complete solution for future work, and
only comment on some of the key features of the partial solutions obtained in [10, 12].
Nevertheless, we consider in detail the on-shell value of the bulk plus brane action. Since
some components of the flux, as well some derivatives of the pure spinors that encode
the generalized complex geometry contain delta functions that localize them on the Σ4
cycle, one might worry whether such on-shell action is divergent (i.e. whether it has terms
involving squares of delta functions). This question was raised recently and discussed
in several papers [12, 18–22], without reaching a common conclusion. We show that it
is possible to compute the on-shell action without knowing the details of the solution,
assuming it solves the modified supersymmetry conditions. More precisely, we compute
the on-shell action up to two-fermion terms using the results obtained in [16] for the
relevant terms of the D-brane action, as well as the expression for the bulk ten-dimensional
supergravity Lagrangian for generalized geometry compactifications in terms of fluxes and
derivatives of the pure spinors, obtained in [23]. We find that the action is indeed divergent,
and compute the coefficients of the terms involving one and two delta functions. The former
should be cancelled by four-fermion terms in the D-brane action, while the latter indicate
that a counterterm must be included as well.

The paper is organized as follows. In section 2 we review the supersymmetry equa-
tions without gaugino condensates, their equivalence with supersymmetry conditions of the
four-dimensional description, their self-consistency and the four-dimensional Minkowski so-
lutions. In section 3 we present the supersymmetry equations with gaugino condensates and
the arguments that lead to them, including self-consistency of the equations. In section 4
we construct the solution for smeared branes, compare with the effective four-dimensional
theory and discuss scale separation. In section 5 we discuss the main features of the lo-
calised solution, and the divergence of the on-shell action. Finally, we discuss our results
in section 6.

2 Supersymmetry conditions for type II AdS4 vacua from 10D

In this section we review how type II superstring theory Mink4 and AdS4 vacua with
classical sources (such as D-branes or O-planes) are described from the ten-dimensional
point of view using the language of generalized complex geometry. We also establish the
conventions that we will use throughout this paper, following [14, 24].
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2.1 Supersymmetric AdS4 vacua without gaugino condensates

The GCG conditions for type II string flux compactifications to four-dimensional flat and
AdS vacua preserving N = 1 supersymmetry were found originally in [8]. They are written
in terms of two polyforms, denoted Ψ±, which characterize the internal geometry. For type
IIB these conditions read

dH
(
e3A−φΨ−

)
= 2iµe2A−φIm Ψ+ (2.1a)

dH
(
e2A−φIm Ψ+

)
= 0 (2.1b)

dH
(
e4A−φRe Ψ+

)
= 3e3A−φRe [µ̄Ψ−] + e4A ∗6 α(F ) , (2.1c)

while for type IIA one just has to interchange Ψ+ with Ψ−. In eqs. (2.1) φ is the dilaton,
while A is the warp factor, such that, in the string frame, the 10D metric splits as follows:

ds2
10 = e2A(y)gµν(x)dxµdxν + hmn(y)dymdyn , (2.2)

where gµν describes the extended AdS4/Mink4 directions. Moreover, µ is related to the
cosmological constant by

Λ = −3|µ|2 , (2.3)

and
dH ≡ d+H∧ (2.4)

is the H-twisted exterior derivative. The polyforms or pure spinors Ψ± are defined as

Ψ± ≡ −
8i
||η||2

∑
p

1
p!η

2†
± γm1...mpη

1
+ dy

m1 ∧ · · · ∧ dymp , (2.5)

where η1 and η2 are two globally defined spinors on the internal manifold, that can become
parallel at certain loci, and whose norm is related to the warp factor as ||η1||2 = ||η2||2 = eA.
By using properties of spinor bilinears in six dimensions it is easy to see that Ψ− and Ψ+
are sums of odd and even p-forms, respectively, and satisfy the self-duality condition

∗6 α(Ψ±) = iΨ± , α(ωq) = (−1)
q(q−1)

2 ωq . (2.6)

Finally, the polyform F accounts for the RR fluxes on the internal manifold, which are
related to those with external legs by self-duality. More explicitly, the total3 RR flux F̂ is

F̂ = F + e4Avol4 ∧ F̃ , (2.7)

such that
F̃ = ∗6 α(F ) . (2.8)

As discussed in [16], the third supersymmetry condition, namely eq. (2.1c), can be
understood in terms of the generalized flux

G ≡ F + ie−4AdH
(
e4A−φRe Ψ+

)
(2.9)

3Here we use the democratic formulation [25], with the polyform notation, where F =
∑

Fq with
q = 1, 3, 5, 7, 9 (q = 0, 2, 4, 6, 8, 10) for type IIB (IIA).
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as follows:
(1− i ∗6 α)G = 3ie−A−φµ̄Ψ− . (2.10)

Upon restricting to internal manifolds with a well-defined SU(3) structure and compactifi-
cations with µ = 0, this reduces to the usual imaginary-self-duality (ISD) condition on the
three-form flux

G3 = F3 + ie−φH . (2.11)

In this sense, any AdS4 solution to the (classical) supersymmetry conditions (2.1) must
include some IASD contributions to the generalized flux G.

A supersymmetric configuration is a solution to the equations of motion iff eqs. (2.1)
are satisfied and all fluxes satisfy the corresponding Bianchi identities

dH = 0 , dHF = dF +H ∧ F = δDp , (2.12)

where the possible sources encoded in δDp are either D-branes or O-planes. Indeed, the
EOM for the fluxes follow directly from the supersymmetry conditions. In the polyform
language, they read

dH
[
e4A ∗6 α(F )

]
= 0 , (2.13)

as can be seen by applying dH to eq. (2.1c) and using that d2
H = 0, together with (2.1a).

Although the EOM for H is more cumbersome in the GCG language, it was shown in [26]
that it follows from the hodge-dual of the three-form component of eq. (2.1c). We will
come back to this later on.

2.2 Supersymmetry conditions from the 4D EFT and superpotential

The conditions in eq. (2.1) are equivalent to requiring that the supersymmetry variations
of the gravitino and the dilatino vanish. Importantly, it was shown in [9, 14, 15, 27–29]
that they can also be understood as D- and F-flatness conditions in the four-dimensional
effective action for the scalars in vector and chiral multiplets. In type IIB, the former come
from deformations of the complex structure, while the latter are combinations of the RR
axions and the Kähler deformations. In the language of GCG, the complex structure is
encoded in Ψ−, while the Kähler moduli are contained in Re Ψ+. One therefore defines the
holomorphic fields

Z = eBe3A−φΨ− , T = eB(C + ie−φ Re Ψ+) , (2.14)

where C are the RR gauge potentials, i.e. dHC = F . These are precisely the combinations
whose exterior derivatives appear in eqs. (2.1a) and (2.1c), respectively. The argument of
the derivative in (2.1b) can be formally thought of as a function of Z and T [15]. In order
to build the low-energy effective action one would need to specify the (a priori massless)
deformations of these geometric objects, which contain all relevant information about the
internal metric, the warp factor A, the dilaton φ and the B-field. Here however what one
does is to build a superpotential in terms of the full pure spinors, which involves an infinite
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number of fields, including all the Kaluza-Klein modes. In this sense, we can define a
ten-dimensional superpotential, which is given by [13, 15, 27, 28]

WGCG = π

∫
M6
〈Z, d T 〉 = π

∫
M6
〈e−BZ,G〉 , (2.15)

where G was defined in (2.9). The brackets in eq. (2.15) correspond to the so-called Mukai
pairing,

〈A,B〉 ≡ [A ∧ α(B)]6 , (2.16)

where one only includes the 6-form component. As discussed below, the variations ofWGCG
as function of Z and T then vanish iff eqs. (2.1) are satisfied.

2.3 Kähler potential, cosmological constant, and self-consistency

Having defined the generalized superpotential in eq. (2.15), we now turn to the Kähler
potential. This can be understood in terms of

N = 4π
∫
M6

e2A−2φvol6 , (2.17)

which is the constant appearing in front of the Einstein-Hilbert term of the effective four-
dimensional action, thus setting the corresponding Planck scale. This defines the Kähler
potential in the (Einstein frame) 4D supergravity language [14]

K = −3 logN . (2.18)

By using the pure spinor normalizations

〈Ψ+, Ψ̄+〉 = 〈Ψ−, Ψ̄−〉 = −8ivol6 , (2.19)

the Kähler potential can be expressed as

K = −2 log i
∫
M6

e2A〈t, t̄〉 − log i
∫
M6

e−4A〈z, z̄〉 − 3 log π2 , (2.20)

with t = e−φΨ+ and z = e3A−φΨ−. This allows one to interpret eqs. (2.1a) and (2.1c) as
the F-flatness conditions associated to the variations of WGCG with respect to T and Z,
respectively. The remaining condition (2.1b) (which is automatically satisfied for compact-
ifications with non-zero µ) can similarly be interpreted as a D-term condition.

For this interpretation to hold, and for eqs. (2.1c) to give a self-consistent system of
equations in terms of WGCG, the cosmological constant as denoted by µ must correspond
to the on-shell value of the superpotential. More precisely, we should have

〈WGCG〉 = µN . (2.21)

We now review how this is derived. Let us split the contributions to the on-shell superpo-
tential (2.15) as follows:

〈WGCG〉 = π

∫
M6
〈e3A−φΨ−, F 〉+ π

∫
M6
〈e3A−φΨ−, idH [e−φReΨ+]〉 . (2.22)
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In order to relate the term proportional to F with eq. (2.1a) we use that the Mukai pairing
satisfies 〈Ψ,Φ〉 = 〈∗6α(Ψ), ∗6α(Φ)〉 for generic polyforms Ψ,Φ. Since, the pure spinors are
ISD (see eq. (2.6)), by using eq. (2.1c) we have

〈e3A−φΨ−, F 〉 = i〈e3A−φΨ−, F̃ 〉 = i〈e3A−φΨ−, e−4AdH
(
e4A−φRe Ψ+

)
−3e−A−φRe [µ̄Ψ−]〉.

(2.23)
Moreover, the following compatibility conditions hold:

〈Ψ±, dym ∧Ψ∓〉 = 〈Ψ±, ιmΨ∓〉 = 0 . (2.24)

This allows us to take the warp factor out of the derivative in the first term on the r.h.s.
of (2.23), which then combines with the second term in (2.22). We are then left with

〈WGCG〉 = 2πi
∫
M6
〈e3A−φΨ−, dH

(
e−φRe Ψ+

)
〉 − 3πi

2 µ

∫
M6

e2A−2φ〈Ψ−, Ψ̄−〉

= (16− 12)πµ
∫
M6

e2A−2φvol6 = µN , (2.25)

where in the first line we have integrated the first term by parts and used (2.1a) together
with (2.19).

For later reference, we note that, using properties of the Mukai pairing, we can actually
compute the first term in (2.25) exactly as above but without the need to integrate by parts,
i.e. directly at the level of the integrand. This is because4

〈e3A−φΨ−, idH [e−φReΨ+]〉 = 〈dH [e3A−φΨ−], ie−φReΨ+〉 . (2.27)

We conclude that the integrand in (2.15) can be evaluated on-shell, giving〈
e3A−φΨ−, F + i dH

(
e−φRe Ψ+

) 〉
= 4µe2A−2φvol6 . (2.28)

This will be useful in section 5 below.

2.4 SU(3) structure and Minkowski solutions

Configurations where η1 and η2 are parallel everywhere on the internal manifold up to a
constant phase correspond to SU(3) ⊂ O(6) structure compactifications. In these solutions
the pure spinors reduce to5

Ψ− = Ω , Ψ+ = exp(iJ) , (2.29)
4Due to the compatibility condition (2.24) and the fact that 〈eBΨ−, e

BΨ+〉 = 〈Ψ−,Ψ+〉 it is enough to
consider the exterior derivative without the twisting by H, and without dilaton and warp factors. Then,
we see that

〈Ψ−, dΨ+〉 − 〈dΨ−,Ψ+〉 = −d[Ψ−|1 ∧Ψ+|4 −Ψ−|3 ∧Ψ+|2 + Ψ−|5 ∧Ψ+|0] = 0 . (2.26)

Here we have used that from the compatibility condition (2.24) the five-form being differentiated on the
l.h.s. vanishes when it is wedged with any one-form and also when it is contracted with any vector, so it
must be zero. This implies (2.27).

5There is actually an overall phase in both pure spinors, given by the relative phase between the internal
spinors: η1

+ = ieiθη2
∓. The relevant sypersymmetry we use throughout this paper is the one compatible

with O3- and O7-planes, namely θ = 0 [30].
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where J and Ω are a real (1,1)-form and a holomorphic (3,0)-form, respectively. The
conditions in eqs. (2.24) and (2.19) then read

J ∧ Ω = 0 , 1
6J ∧ J ∧ J = − i8Ω ∧ Ω̄ = vol6 . (2.30)

Consequently, the superpotential (2.15) reduces to the usual Gukov-Vafa-Witten (GVW)
expression [31]

WGVW = π

∫
M6

e3A−φΩ ∧G3 . (2.31)

It is not hard to see that, in this context, the supersymmetry equations reduce to
the well-known type IIB supersymmetric Mink4 solutions compactified on warped Calabi-
Yau manifolds [32]. Indeed, due to the absence of a 1-form component in Ψ−, the 2-form
component of eq. (2.1a) implies µ = 0, while the corresponding 4-form equation and the
3-form component of (2.1b) read

d
(
e3A−φΩ

)
= d

(
e2A−φJ

)
= 0. (2.32)

Moreover, from the three-form components of (2.1a) and (2.1c) one also finds

H ∧ Ω = 0 , e−φH − F̃3 = 0 , (2.33)

so that G3 must be ISD and its (0,3) component must vanish. The remaining equations
give

d (4A− φ) = eφ ?6 F5 , dφ ∧ J ∧ J = −2eφ ?6 F1 . (2.34)

By defining the relevant 5-form flux and the axio-dilaton as

F5 = (1 + ∗10) vol4 ∧ dα , τ = C0 + ie−φ , (2.35)

with α = α(y), the conditions in (2.34) can be written as

d (4A− φ− α) = 0 , dτ ∧ Ω = 0 . (2.36)

Hence, one can have a non-trivial warp factor, related to the 5-form flux, while τ must be
holomorphic.

3 Revisiting the effect of the gaugino condensate

In this section we focus on the situation where one includes a stack of D-branes undergoing
gaugino condensation, and discuss how such non-perturbative effects can be encoded in a
set of modified supersymmetry conditions. In doing so, we combine the different elements
considered originally in [10, 13] and more recently in [11, 12], bringing them together into
a consistent picture.
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3.1 Supersymmetry conditions with localized terms

We focus on the D7-brane case for concreteness, and because it is what we will be interested
in the following sections. The set of modified supersymmetry conditions we propose reads
as follows:

dH
(
e3A−φΨ−

)
= 2iµe2A−φIm Ψ+ − 2i〈S〉δ(2) [Σ4] , (3.1a)

dH
(
e2A−φIm Ψ+

)
= 0 , (3.1b)

dH
(
e4A−φRe Ψ+

)
= 3e3A−φRe [µ̄Ψ−] + e4A ∗6 α(F )− eAδ(0) [Σ4] Re

[
¯〈S〉Ψ−

]
. (3.1c)

Here δ(2) [Σ4] is the localized 2-form Poincaré dual to the four-cycle wrapped by the branes,
namely for any closed 4-form ω4 one has∫

M6
ω4 ∧ δ(2) [Σ4] =

∫
Σ4
ω4 , (3.2)

while 〈S〉 is the VEV of the usual condensate superfield, related to the gaugino bilinear by

〈S〉 = 1
16π2 〈λλ〉 . (3.3)

Moreover, δ(0)[Σ4] is the scalar version of the delta function, defined as [16]

δ(0)[Σ4] = (Im Ψ+)(2) · δ(2)[Σ4] ⇒ δ(0)[Σ4] vol6 = 〈Re Ψ+, δ
(2)[Σ4]〉 . (3.4)

The analysis for other types of branes and for the type IIA case is analogous. For gaugino
condensates on other type IIB Dp-branes wrapping p − 3 cycles, one replaces δ(2)(Σ4) by
δ(9−p)(Σp−3). For the type IIA cases one further exchanges Ψ+ with Ψ−.

3.2 Motivation

We now explain how this proposal comes about. Let us start with the modification to the
first supersymmetry equation, namely eq. (3.1a). In the ten-dimensional language, this
should come from the F-term condition associated with the variation of the superpotential
with respect to the superfield T , defined in (2.14). As advocated in [10, 14] and further
discussed in [11], assuming a non-trivial gaugino condensate on a stack of calibrated D7-
branes leads to an extra contribution to the F-term. Indeed, in the 4D N = 1 superspace
description of the Yang-Mills (YM) theory living on the branes one must include a chiral
contribution to the effective Lagrangian of the form

i

8π

∫
d2θ τ Tr [WαWα] , (3.5)

where τ is the complexified gauge coupling6 and Wα is the usual chiral superfield, i.e.

τ = i
4π
g2

YM
+ θYM

2π , Wα = −iλα + · · · . (3.6)

6We use the same notation as for the axio-dilaton defined in eq. (2.35). The distinction should be clear
from the context.
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The non-perturbative effects that generate a non-trivial expectation value for the conden-
sate superfield

S = 1
16π2 Trλαλα (3.7)

are then captured by the Veneziano-Yankielowicz (VY) superpotential7 [33]

WVY = W0 + 2πiτS +NS
[
1− log

(
S/µ3

0

)]
, (3.8)

where µ0 is the scale at which τ is defined, and W0 is taken to be independent of S.
As the effective four-dimensional YM coupling comes from integrating over Σ4, it

depends on its volume, and also on the RR potentials involved. More precisely, we have

τ =
∫

Σ4

(
C + ie−φRe Ψ+

)
|Σ4 =

∫
M6
〈T,−δ(2)(Σ4)〉 , (3.9)

where we have used that T is the calibration form on the holomorphic cycle Σ4, which
defines the associated volume form and Chern-Simons coupling. Therefore, τ must be seen
as a function of the chiral field T . The corresponding F-term condition then picks up an
extra contribution given by the last term on the r.h.s. of (3.1a). The exterior derivative of
the resulting condition still gives (3.1b), so it is not modified. Note that upon integrating
out S in eq. (3.8) one finds the VEV and effective superpotential

〈S〉 = µ3
0 exp

(2πiτ
N

)
, Weff = W0 +N〈S〉 , (3.10)

used in the 4D EFT analysis of [1].
On the other hand, the argument for the third supersymmetry condition in eq. (3.1c) is

more delicate. Indeed, even in the absence of a gaugino condensate it is not straightforward
to see that this equation is equivalent to the F-term condition for the chiral field Z, as it
was discussed in [14].

Consider the DBI action describing the D7-brane theory. As it was shown recently
in [16] (see also [23]), for a generic internal manifold in a GCG compactification, the
quadratic terms in the gaugino action can be written as

Sλλ =
∫
d4x

(
i

2f λ̄+γ
µ∇µλ+ + 1

2mλ λ̄−λ+ + c.c.

)
, (3.11)

with λ̄−λ+ = i16π2S̄, and where8

mλ = − i

8π

∫
M6

δ(0)[Σ4] eA
〈
Ψ−, F + i dH

(
e−φRe Ψ+

) 〉
. (3.12)

Note that the integrand is precisely that of the superpotential, eq. (2.15).9 Focusing on
the RR flux contribution to the gaugino mass, we have

Sλλ,F = 2π
∫
M6

eAδ(0) [Σ4] 〈Re
[

¯〈S〉Ψ−
]
, F 〉 . (3.13)

7Here we take the gauge group to be SU(N) for simplicity. When considering, say, D7-branes coincident
with O7-planes such that the charges are cancelled locally, it should be taken to be SO(8) instead. This
introduces only minor modifications.

8Here we have included a warp factor missing in the original version of [16].
9Although this holds for the D7 case, for other D-branes one must be more careful when considering the

contribution of the NSNS 3-form flux [16]. This is in agreement with the results of [10].
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This additional term in the bulk action provides a new source in the equations of motion
for the RR fluxes. More explicitely, eq. (2.13) is modified as follows:

dH
[
e4A ∗6 α(F )

]
= dH

[
eAδ(0) [Σ4] Re

(
¯〈S〉Ψ−

)]
. (3.14)

As discussed in section 2 above, we expect this to follow from the derivative of the third
supersymmetry condition. We find that the localized term introduced in eq. (3.1c) ensures
that this is indeed the case.

Importantly, eq. (3.1c) should also account for an electric source for H as implied
by the corresponding contribution to the mass term in (3.12). Since ∗αΨ− = iΨ−, by
acting with ∗α on (3.1c) we see that the new term becomes proportional to Im

[
¯〈S〉Ψ−

]
.

Further multiplying by e−φ and taking the exterior derivative we find that the proposed
non-perturbative correction is consistent with the coupling between H and the gaugino
condensate in eq. (3.12).

A localized term similar to the one introduced in (3.1c) was also discussed originally
in [10] and more recently in [12]. The authors of [10] consider the rigid, decompactified
limit where µ = 0, and argue that the supersymmetry conditions are “more fundamental”
when written in terms of the dual field F̃3 = dC̃2, where C̃2 is the Lagrange multiplier
enforcing the Bianchi identity for F3, whose expression is modified when the gaugino con-
densate acquires a non-zero expectation value. Relatedly, in (the revised version of) [12]
the presence of the additional localized term in (3.1c) was motivated from compatibility
with the 3-form flux Bianchi identities. However, in both cases a small deviation from
SU(3) structure was assumed, and, as a result, the final term in (3.1c) contained Ω instead
of Ψ−. Here we have shown that no such approximation is needed to motivate eq. (3.1c) in
generalized geometry compactifications involving non-perturbative sources. Moreover, the
presence of the full Ψ− in the localized contribution to (3.1c) will be crucial in our analysis
of the effective potential carried out in section (5) below.

3.3 Self-consistency and interpretation

We now show that the system of equations given in (3.1) is self-consistent, and argue that
the GCG superpotential encodes all ingredients relevant to the effective action, including
non-perturbative terms.

Given a solution to the modified supersymmetry conditions (3.1), we can compute the
on-shell value of the GCG superpotential defined in (2.15). The procedure is analogous
to what we described in section 2.3, except that we now get two additional contributions
coming from the localized terms present in the first and third supersymmetry conditions.
One comes from inserting the on-shell value of F̃ as given by (3.1c), similarly to (2.23),
while the other comes from the integration by parts and the use of (3.1a), as was done
in (2.25). These additional contributions are given by

〈W loc
GCG〉 = −4

∫
M6
〈〈S〉δ(2) [Σ4] , e−φRe Ψ+〉+ i

∫
M6
〈e3A−φΨ−, e−3Aδ(0) [Σ4] Re

[
¯〈S〉Ψ−

]
〉 ,

(3.15)
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where we have used (3.4). Taking into account the definition of the scalar delta function
in (3.4), we find that the two terms in eq. (3.15) precisely cancel each other, namely

〈W loc
GCG〉 = 0 . (3.16)

Although this cancellation was recently obtained in an extended version of appendix A
in [12], we believe that its origin has not been fully clarified. We stress that from the
point of view adopted in the previous sections it is surprising to learn that the constant µ
appearing in the supersymmetry equations corresponds to the on-shell value of the GCG
superpotential (2.15) even in the presence of the gaugino condensate. In other words, the
explicit contributions associated with the non-zero VEV of the gaugino bilinear vanish.
There are, however, implicit contributions since the on-shell values of the different fields —
and in particular that of the cosmological constant — are indeed affected by the presence
of the condensate. This is in contrast to the naive expectation according to which one
should have W ∼W0 +Wnp, where W0, i.e. the “flux superpotential”, would correspond to
WGCG evaluated on-shell, while Wnp would in turn be associated to the VEV of a putative
additional non-perturbative term in the “full superpotential”.

This further agrees with what one finds both in the heterotic context [34–36] and (very
similarly) in type I theories, although of course in these cases the gaugino condensate is not
localised. Nevertheless, it would be reassuring to understand exactly how WGCG as defined
in (2.15) is able to fully capture the backreaction associated to gaugino condensation on the
localized D7-branes. In other words, we would like to understand how the non-perturbative
terms in WVY are generated, see eq. (3.8). Although we have not been able to show this
fully explicitly, we suggest a possible mechanism for how this might happen.

Let us first recall how open string degrees of freedom are captured by WGCG in GCG
compactifications, as it was discussed in section 3.3 of [14]. Including D-branes (or O-
planes) in a given setting induces a localized source term δDp in the Bianchi identities for
the RR fluxes, see eq. (2.12). Locally, we can write δDp = dHθDp for some θDp. Then, we
can formally split the physical RR fluxes according to F = F0 + θDp. This distinguishes
two contributions to the superpotential, namely

WGCG =
∫
M6
〈e−BZ,G〉 =

∫
M6
〈e−BZ,G0〉+

∫
M6
〈e−BZ, θDp〉 = W0 +Wop , (3.17)

where G was defined in (2.9), while G0 is defined analogously with the replacement F → F0.
One finds that Wop computes the open-string superpotential of [37]. Conversely, W0 is
interpreted as the closed-string superpotential. We see that both of them come from
WGCG.

We propose that a similar phenomenon occurs when the gaugino bilinear on a stack
of D-branes acquires a non-zero expectation value. Similarly to the D-branes themselves
sourcing bulk RR fluxes, it was argued in [10] that gaugino condensates constitute sources
for the geometry itself. More precisely, they source the degrees of freedom contained in the
holomorphic variable Z. This is because, as reviewed above, the periods of T define the ef-
fective coupling of the gauge theory on stacks of space-filling D-branes wrapping calibrated
internal cycles [24]. For instance, a generic Mink4 vacuum involving such non-perturbative
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contributions should satisfy a supersymmetry condition of the form dH
(
e−BZ

)
= δnp,

where δnp is the localized non-perturbative current proportional to the gaugino conden-
sate. Hence, at least locally, we can define some θnp for which dHθnp = δnp. We interpret
this as capturing the backreaction of the geometry, and split e−BZ = e−BZ0 + θnp. Com-
bining this with the discussion above, the superpotential reads

WGCG =
∫
M6
〈e−BZ,G〉 = W0 +Wnp , (3.18)

where now Wnp contains all terms proportional to the condensate, while the remaining
ones are packed into W0. The former contains two contributions, Wnp = Wnp,1 + Wnp,2,
the first of which is given by

Wnp,1 =
∫
M6
〈θnp, G0〉 =

∫
M6
〈dHθnp, C0 + ie−φRe Ψ+〉 = 2πiτS . (3.19)

where in the second equality we have integrated by parts. Hence, Wnp,1 gives precisely the
second term in the VY superpotential (3.8). We conclude that at least part of the non-
perturbative terms in the superpotential are indeed generated upon evaluating WGCG on-
shell, and propose that the rest of WVY is generated as well, arising from the combination
of the two effects we have just described. Indeed, the second contribution comes from
implementing the replacement e−BZ → e−BZ0 + θnp inside the open string superpotential
Wop, i.e. the final term in (3.17). This leads to

Wnp,2 =
∫
M6
〈θnp, θDp〉 . (3.20)

Although we have not been able to evaluate this explicitly, we note that it must be propor-
tional to both the number of branes N and the condensate S. This matches our expectation
for the final term in WVY as defined in eq. (3.8). However, it would be nice to understand
exactly how the logS factor appears.

Our proposal is further motivated by the well-studied case of geometric transitions in
conifolds, which can be described in the GCG language applied to the SU(3) structure case.
Consider, for concreteness, N D5-branes wrapping the compact two-cycle Σ2 = S2 located
down the throat of the resolved conifold. At large N , one has a geometric transition where
the 2-cycle shrinks to zero size, and a 3-cycle opens up, thus leading to the deformed conifold
geometry [38–40]. The original D5-branes disappear, and we are left with fluxes together
with a modified geometry. After the transition, we can evaluate the superpotential as

W =
∫
M6

Ω ∧ (F3 + ie−φdJ) =
∫
S3

Ω
∫
B3

(F3 + ie−φdJ)−
∫
B3

Ω
∫
S3

(F3 + ie−φdJ) , (3.21)

where B3 is the non-compact 3-cycle dual to the A-cycle S3. Now, the integral of Ω on the
resulting S3 is set by 〈S〉, while B3 can be thought to have a boundary given by an S2

c at
a radial cutoff scale Λc. Hence, the first term on the r.h.s. of (3.21) gives the second term
in WVY, namely ∫

S3
Ω
∫
B3

(F3 + ie−φdJ) ∼ S
∫
S2
c

(C2 + ie−φJ) = 2πiτS , (3.22)

– 13 –



J
H
E
P
0
3
(
2
0
2
3
)
0
1
5

up to an overall constant, where τ corresponds to the running YM coupling. On the other
hand, evaluating the second term with the help of the explicit solution presented in [41],
and analogously to what was done in [38] (see also [40]) one gets

−
∫
B3

Ω
∫
S3

(F3 + ie−φdJ) ∼ NS
[
1− log

(
S/Λ3

c

)]
, (3.23)

which, together with (3.22) reproduces the full VY superpotential, as expected. Conversely,
it was proposed in [10] that one can consider the same computation before the geometric
transition (or more generally at smaller values of N such that the transition is not induced),
so that the S3 cycle is trivial in homology but the S2 is not. Including the effect of gaugino
condensation in an SU(3) structure background one has10

dΩ = 2i〈S〉δ(4)[Σ2] , dF3 = −Nδ(4)[Σ2] , (3.24)

where we have set H = 0. The evaluation of the GCG superpotential in this context then
ammounts to a computation very similar to what we have described above in eqs. (3.19)
and (3.20). Since we expect to find the same result, namely WVY, we consider this as an
example of the general mechanism proposed there.

4 Smearing the condensate: KKLT as a proof of concept

The modified supersymmetry conditions (3.1) imply that for localised sources a 10D de-
scription of the KKLT solution can not have SU(3) structure. For instance, this can be
deduced from the 2-form component of (3.1a) [9–11]. One thus needs to consider internal
manifolds with what is known as a dynamical SU(2) structure group. However, explicit
models of this type are hard to construct in practice (see for instance [42]).

There are (at least) two ways of evading these difficulties. On the one hand, one
could study these solutions as small perturbations (in 〈S〉, or equivalently, in the deviation
from SU(3) structure) on top of the flat solution. This was attempted in [10, 12]. On
the other hand, as is often done in the context of string compactifications, one can try
to simplify the problem by smearing the source. This possibility was suggested in [9],
although at the time the modified version of the third supersymmetry equation (3.1c) was
not available. In this section we reconsider this proposal. By carefully carrying out the
smearing procedure for the gaugino condensate, we find that the modified supersymmetry
equations given in (3.1) lead to a remarkably simple solution. The latter is such that SU(3)
structure is maintained, and turns out to be in perfect agreement with the original effective
four-dimensional analysis by KKLT [1].

Let us see how this works. So far we have implicitly assumed that the gauge fluxes
F on the worldvolume of the D7-branes vanish, which allowed us to think of the source
in (3.1a) as a two-form. (Otherwise we would have needed to include higher degree forms
coming from δ(2) ∧ eF ). This was done also because F was explicitly set to zero when
computing the different contributions to the gaugino mass terms in [16], which motivated

10The first equation is simply the flat limit of (3.1a) with constant warp factor and dilaton.
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our modification of the other supersymmetry condition. The appropriate smearing is given
by the replacement

δ(2)[Σ4]→ γe2A−φJ , γ = −4πσ4
3N , (4.1)

where N was defined in (2.17), while σ4 keeps track of the volume of Σ4. The numerical
constant γ is fixed by requiring that the integral of the localized source and that of its
smeared counterpart give the same result, namely

σ4 =
∫
M6
〈e−φRe Ψ+,−δ(2)[Σ4]〉 = −

∫
M6
〈e−φRe Ψ+, γe

2A−φJ〉 = −3γN
4π , (4.2)

where we have used (2.19). The same can be done for the scalar delta function. We set

δ(0)[Σ4]→ 3γe2A−φ (4.3)

so that, using (3.4), we get

σ4 = −
∫
M6

δ(0)[Σ4] e−φvol6 = −3γN
4π , (4.4)

as expected. The fact that the coefficient appearing in the smearing of the scalar delta
function is three times that of the localized 2-form delta is consistent with the identity [43]

1
2J ∧ J ∧ δ

(2) = 1
6J ∧ J ∧ Jδ

(0) . (4.5)

Inserting (4.1) into eq. (3.1a), we find that, as anticipated above, we do not need to
consider an internal manifold with a more general structure group than SU(3). Indeed, the
problematic two-form component now reads

d(e3A−φΨ−|1) = 2i(µ− γ〈S〉)e2A−φJ , (4.6)

which is satisfied when Ψ− has no 1-form component provided

µ = γ〈S〉 . (4.7)

Moreover, we get
d
(
e3A−φΩ

)
= d

(
e2A−φJ

)
= 0 . (4.8)

Although this is starting to sound very similar to the configuration described in section 2.4,
there are some crucial differences. First, the extended part of the solution is now AdS4.
The presence of µ generates a non-trivial contribution in the r.h.s. of the 6-form component
of eq. (3.1a). This reads

H ∧ Ω = µ

3 e
−AJ ∧ J ∧ J = −µ4 e

−AΩ̄ ∧ Ω . (4.9)

Hence, we find that an additional (0,3) component in the 3-form flux is needed.
Notably the condition (4.9) is the only place where the terms proportional to the

cosmological constant in the system of equations (3.1a) do not cancel with those coming
from the smeared gaugino condensate sources. Indeed, the replacement of (4.3), including
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the crucial factor of 3, implies that the first and third terms on the r.h.s. of the polyform
equation (3.1c) cancel exactly upon imposing (4.7). Consequently, the ISD condition on
the G3 fluxes is preserved! From (4.9) we get

H(0,3) = −1
2 e
−A Re(µ̄Ω) , F(0,3) = −1

2e
−φ−AIm(µ̄Ω) . (4.10)

Note that the phase of the gaugino condensate sets the phase of the cosmological constant,
which then fixes the phase of these flux terms relative to Ω. This suggests that the cycles
dual to the NSNS and RR three-form fluxes are Special Lagrangian.

By using (4.8), we find that the Bianchi identities for these fluxes are satisfied iff

d(4A− φ) = 0 , dτ ∧ Ω = 0 . (4.11)

As the supersymmetry equations involving the relevant RR fluxes are the same as in sec-
tion (2.31), holomorphicity of the axio-dilaton is consistent with the 5-form component of
eq. (3.1c) in the smeared approximation. On the other hand, the corresponding 1-form
implies that in order to satisfy (4.11) we must have F5 = 0. The Bianchi identity for F5
then reads

H3 ∧ F3 = δD3 , (4.12)

where δD3 stands for any source with D3-charge, implying that these must be smeared as
well. This Bianchi identity then turns into the tadpole cancellation condition.

4.1 Summary and effective theory

In summary, we see that not much has changed as compared to the supersymmetric Mink4
solutions described in section 2.4. Upon including the gaugino condensate sources as in (3.1)
and smearing them according to eqs. (4.1) and (4.3), we have constructed supersymmetric
AdS4 solutions which have the following characteristics:

• the internal manifold is still Kähler with an SU(3) structure group, and for constant
dilaton and warp factor it is still CY,

• the axio-dilaton is still holomorphic,

• the 3-form flux G3 is still ISD, and its primitive (2,1) component sets the mass scale
for complex structure and axio-dilaton deformations,

• the 5-form flux F5 must now vanish, which also sets 4A = φ+ const, i.e. the Einstein
frame warp factor AE is constant,

• the value of the cosmological constant, encoded in µ, is fixed by that of the gaugino
condensate 〈S〉 as in eq. (4.7), where the coefficient γ is fixed by the consistency of
the smearing approximation, and

• the 3-form flux G3 now acquires a (0,3) piece proportional to the cosmological con-
stant, see (4.10).
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We now compare with the effective theory discussed in [1]. In terms of the correspond-
ing on-shell superpotential, the relation between the curvature scale µ appearing in the
supersymmetry conditions and the gaugino condensate derived in (4.7) becomes

〈W4D〉 = µN = −4πσ4
3 〈S〉 = −4πσ4

3N 〈Wnp〉 , (4.13)

where we have used eq. (4.1) together with 〈Wnp〉 = N〈S〉. This precisely reproduces the
KKLT results [1].

The exact matching between our ten-dimensional smeared solution and the effective
theory we have obtained is, in some sense, not entirely surprising. Indeed, it is consistent
with the expectation that the latter captures the physics of the zero-modes on the internal
manifold. This is exactly the sector of the theory we have restricted to when carrying
out the smearing procedure. This is similar to what happens in the DGKT case in type
IIA [44–46]. As in that case, we also find that a specific combination of the warp factor
and the dilaton must be constant in the smeared limit.

Moreover, we also confirm the interpretation of [1]: the non-vanishing cosmological
constant originates from the presence of ISD supersymmetry-breaking fluxes and non-
perturbative physics captured by gaugino condensation. In our construction, their precise
balance is showcased in eq. (4.9).

On the other hand, note that by looking at the on-shell value of the (0,3) fluxes given
in (4.10) we can not isolate a term independent of the Kähler modulus σ4 contributing to
the superpotential (this was denotedW0 in [1]). Indeed, the condensate itself is expected to
source (0,3) 3-form flux. This was shown in [10, 43], where this component was found to be
completely localized on Σ4. Upon smearing, this becomes an extra contribution to the total
G(0,3). In this sense, one should not think about the supersymmetric AdS KKLT vacua as
a two-step procedure, the first involving susy-breaking fluxes and the second introducing
the gaugino condensate. These two ingredients come hand in hand in order to produce a
stable supersymmetric solution.

4.2 Scale separation

Here we discuss whether the smeared solution allows for scale separation. For that, we
consider the scalings of the various fields that leave the (smeared) supersymmetry equations
invariant. There are two variables in the game: gs = eφ and R, the characteristic scale of
the compactification, assuming there is only one such scale. Under these assumptions, the
p-form components of the pure spinors scale as ∼ Rp, namely

Ω ∼ R3 , J ∼ R2 , ⇒ σ4 ∼
R4

gs
. (4.14)

The coefficient γ defined in (4.1), which relates the condensate to the cosmological constant
by (4.7), scales as

γ ∼ σ4
N
∼ gs
R2 , (4.15)

hence the cosmological constant scales as

µ ∼ 〈S〉 gs
R2 . (4.16)
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From the ISD condition we have e−φH = F̃3 ∼ F3. On the other hand, (4.10) implies that
the (0,3) component of H scales as

H(0,3) ∼ µR3 ∼ 〈S〉gsR ⇒ F(0,3) ∼ 〈S〉R , (4.17)

where we have assumed that eA ∼ 1. The (2,1) components are on the contrary not related
to the gaugino condensate expectation value, so that the full G3 flux scales as

G3 = G(2,1) +G(0,3) ∼ G(2,1) + 〈S〉R. (4.18)

The tadpole cancellation condition then works as follows

1
24χ (X4) = ND3 +

∫
M6

H ∧ F3

= ND3 − 2igs
∫
M6

G(2,1) ∧ Ḡ(2,1) − 2igs
∫
M6

G(0,3) ∧ Ḡ(0,3) (4.19)

∼ ND3 + gsG
2
(2,1) + gs〈S〉2R2 .

Here χ(X4) is the Euler characteristic of the elliptic CY 4-fold of the associated F-theory
compactification, which can take values from O(100) to O(106) [47, 48]. One might think
that by flux quantization, both contributions to the tadpole coming from the fluxes have
to be of a similar order, but recall that flux quantization applies to real cycles, while these
cycles are complex. In other words the split of the integer value of the flux induced charge
into the two terms in (4.19) depends on the complex structure moduli.

The question is what sets the value of the gaugino condensate, which is related to the
cosmological constant via (4.7). Once this relation is plugged in, the terms involving the
condensate cancel with the cosmological constant ones. Consequently, geometric quantities
do not rescale with 〈S〉. Such a relation comes only from the non-perturbative superpoten-
tial, namely the relevant terms in eq. (3.8). On-shell, this leads to an exponential behaviour
of the type

|S| ∼ e−
1
gs
R4

. (4.20)

Plugging this back into the tadpole cancellation condition, we find that there is no ap-
parent contradiction. If one can attain the regime of large R and small gs, the contribution
from the (0,3) piece is much smaller than the one from the (2,1), the latter giving the main
contribution to the tadpole. Everything then is consistent with the following scalings

µ ∼ gs
R2 e

− 1
gs
R4
, H(0,3) ∼ Re

− 1
gs
R4
, H(2,1) ∼ R0 , Ω ∼ R3 , J ∼ R2 , (4.21)

which imply
`KK
`AdS

= µR ∼ gs
R
e
− 1
gs
R4
. (4.22)

Hence, at least in the smeared solution, the AdS and KK scales are exponentially separated.
This can be achieved if one can find quantized fluxes such that W0 is very small. This was
achieved recently in a family of explicit examples described in [4], where the authors provide
flux configurations where the (0,3) pieces vanish in the limit where the prepotential has
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only polynomial terms, but they are non-trivial when the corresponding exponentially small
corrections are included.11

To be precise, eq. (4.20) is not derived from ten dimensions since the VY type super-
potential (3.8) is motivated from IR physics of the 4d EFT on the D7-branes. We can only
conclude that, under this assumption, there seems to be no obstruction to scale separation
in our smeared solution to the ten-dimensional supersymmetry conditions, as long as an
exponentially small W0 can be realized.

5 Features of the localized solution

We finish by providing some insights on the main features of any putative solution to the
supersymmetry conditions (3.1) with localized sources, leaving the construction of the full
configuration for future work. We also settle the issue of divergences and four-fermion
terms analyzed in [12, 18, 19, 21, 22].

5.1 Dynamic SU(2) structure and IASD fluxes

As stated in [11, 14], the modified conditions (3.1) imply that in order to find supersymmet-
ric AdS4 solutions sourced by a gaugino condensate on a stack of D7-branes one needs to
leave the realm of SU(3) structure compactifications.12 Nevertheless, constructing explicit
solutions with so-called “dynamic SU(2) structure” (where the alignment of the spinors
η1 and η2 in the pure spinors (2.5) depends on the position) constitutes a considerable
challenge.

Some steps in this direction were given in [10, 12, 42], see also [43]. In [42] the authors
attempted to construct a solution of this type, and although the localized sources were
not included explicitly, they managed to describe the region of the geometry close to
the D7-branes wrapping the four-cycle at the bottom of a resolved P2 cone. On the other
hand, [10] and [12] considered an expansion in powers of the (absolute value of the) gaugino
condensate, and studied the solution at first order. In this regime, also the cosmological
constant and the angle parameterising the deviation from SU(3) structure can be considered
small. This approximation is expected to work best far away from the localized sources. It
was argued in [11] that Kähler moduli stabilization can be understood from a consistent
matching of both regimes of the solution.

As expected, the gaugino condensate not only backreacts on the geometry, but it also
affects the three-form fluxes. More precisely, and consistent with our discussion around
eq. (2.10), both the non-perturbative dynamics on the D7-branes and the non-zero cosmo-
logical constant can be seen as sourcing imaginary anti-self-dual components of G3, namely
contributions that are (1,2) and (3,0) in terms of the original almost complex structure.

11Note, however, that such construction has been criticised in [49].
12This is easy to see from the two-form piece of (3.1a). For SU(3) structure, Ψ− is a three-form, therefore

the left-hand side has no two-form piece, while both terms on the right hand side do. For the smeared
solution these two terms cancel each other, but in the localised one this is no longer possible. Thus, a
solution to this equation would require Ψ− to contain a one-form piece as well.
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Away from the smeared limit considered in the previous sections, these additional compo-
nents do not vanish. Furthermore, some of them diverge when approaching Σ4. Moreover,
one also obtains new localized contributions to the ISD component of type (0,3).

Although we do not construct the localized solution in this paper, in the following
section we evaluate the action on-shell in such configuration, in order to compute the
effective four-dimensional potential. In particular, we focus on the possible divergences
arising from the corresponding terms involving the new flux and pure spinor components
discussed above.

5.2 Cancellation of divergences

Given the presence of various terms that diverge at the location of the four-cycle Σ4,
one might worry that evaluating the full ten-dimensional supergravity action (including
the D7-brane action) on the actual solution may lead to a divergent result. This issue was
raised recently in [12, 18–22], without reaching a common conclusion about whether certain
counterterms must be included or not. We now show that this question can be settled even
without knowing the details of the localized solution. We will only assume that such
solution exists, and that it satisfies the supersymmetry conditions given in eqs. (3.1).

Let us first present the issue at hand more explicitly. Consider, for instance, the
localized contribution to the (0,3) component of the G3 flux obtained in [10]. In terms
of the first order approximation considered there, we can write G

(0,3)
3 ∼ 〈S〉δ(0)[Σ4]Ω̄.

Upon evaluating the flux kinetic term in the supergravity action on-shell, one picks up a
contribution to the effective four dimensional potential of the form

∫
M6

G3 ∧ ?6Ḡ3 ∼
∫
M6
|S|2

(
δ(0)[Σ4]

)2
vol6 + · · · , (5.1)

which is clearly divergent, and is furthermore difficult to interpret. Of course, this is not
the only divergent term, and moreover, this is not the only type of divergence we can have:
although the (1,2) component of G3 given in [10] is not localized, it still diverges at Σ4. It
was argued recently in [22] that the different divergent terms coming from the fluxes do not
cancel out. This problem must be resolved if we expect to have a consistent picture. The
authors of [18, 19] have argued that this should be understood in terms of an admixture
between the conjectured “perfect square” structure of the higher-order D7-brane action [21]
and a local renormalization procedure put forward in [22]. This is in contradiction with
the analysis provided in the appendix C of [12], where it was argued that no counterterms
were necessary.

We resolve this conundrum by computing the on-shell action. For that, we use the
expression for the four-dimensional action in generic GCG compactifications derived in [23].
For the ten-dimensional metric ansatz (2.2) the effective four-dimensional action is

Seff =
∫
X4

d4x
√
−g

(1
2NR4 − 2πVeff

)
, (5.2)
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where R4 is the four-dimensional scalar curvature, and the effective potential is given by
the following expression

Veff =− 1
2

∫
M6

vol6e4A[F̃ − e−4AdH(e4A−ΦRe Ψ+)]2

+ 1
2

∫
M6

vol6[dH(e2A−ΦIm Ψ+)]2 + 1
2

∫
M6

vol6e−2A|dH(e3A−ΦΨ−)|2

− 1
4

∫
M6

e−2A
(
|〈Ψ+, dH(e3A−ΦΨ−)〉|2

vol6
+ |〈Ψ̄+, dH(e3A−ΦΨ−)〉|2

vol6

)

+
∑

i∈loc.sources
τi

∫
M6

e4A−Φ
(
vol6ρloci − 〈Re Ψ+, ji〉

)
− 4

∫
M6
〈e4A−ΦRe Ψ+ − Cel, dHF + jtot〉 . (5.3)

Here, for a given polyform A we have [A]2 vol6 = A∧∗6A and |A|2 vol6 = A∧∗6Ā. On the
other hand, for the expressions in the third line one should first compute the 6-form given
by the Mukai pairing, and then square only the coefficient in front of the volume form. We
consider supersymmetric solutions for which the Bianchi Identities are satisfied and the
relevant cycles are calibrated. Hence, the last two lines in eq. (5.3) vanish identically.

Let us briefly compute this action on-shell in the absence of gaugino condensates,
and verify that by using the supersymmetry conditions (2.1), one obtains the expected
cosmological constant term. Upon using (2.1c) in the first term of (5.3), the integrand
becomes

e4A[F̃ − e−4AdH(e4A−ΦRe Ψ+)]2vol6 = −1
2e

4A
[
−3e−A−φRe [µ̄Ψ−]

]2
vol6 (5.4)

= 18 e2A−2φ|µ|2vol6 ,

where we used the self-duality and normalization of the pure spinors, given respectively in
eqs. (2.6) and (2.19). For the second line of (5.3), the first term vanishes due to (2.1a),
whereas using (2.1b) the second one gives

e−2A|dH(e3A−ΦΨ−)|2 vol6 = 1
2e
−2A|2iµe2A−φIm Ψ+|2 = 8e2A−2φ|µ|2vol6 . (5.5)

Finally, it is not hard to see that, employing (2.1a), the third line contributes

− 1
4e
−2A

(
|〈Ψ+, 2ie2A−φIm Ψ+〉|2

vol6
+ |〈Ψ̄+, 2ie2A−φIm Ψ+〉|2

vol6

)
= −32|µ|2e2A−2φvol6 .

(5.6)
Putting everything together, we get

Veff = −6|µ|2
∫
M6

e2A−2φvol6 ⇒ 2πVeff = ΛN (5.7)

as expected.
We now include the effect of the localized gaugino condensate. Besides the same three

terms proportional to |µ|2, using the modified supersymmetry conditions (3.1) in the same
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|µ|2e2A−2φvol6 δ(0) [Σ4] Re [µ̄S] e−φvol6
(
δ(0) [Σ4]

)2
|S|2e−2Avol6

1st 18 -12 2
2nd 8 -4 2/3
3rd -32 16 -2

Total -6 0 2/3

Table 1. The different contributions to the bulk on-shell action of the terms in the first three lines
of (5.8).

way as above, new terms proportional to either δ(0) or (δ(0))2 will be generated. More
explicitly, the on-shell value of the contributions to the effective potential contained in
eq. (5.3) now gives

V bulk
eff =− 1

2

∫
M6

vol6
[
−3e−A−φRe (µ̄Ψ−) + e−3Aδ(0) [Σ4] Re

[
¯〈S〉Ψ−

]]2
+ 1

2

∫
M6

vol6e−2A
∣∣∣2iµe2A−φIm Ψ+ − 2i〈S〉δ(2) [Σ4]

∣∣∣2
− 1

4

∫
M6

e−2A
(
|〈Ψ+, 2iµe2A−φIm Ψ+ − 2i〈S〉δ(2) [Σ4]〉|2

vol6

+ |〈Ψ̄+, 2iµe2A−φIm Ψ+ − 2i〈S〉δ(2) [Σ4]〉|2
vol6

)
. (5.8)

This expression can be evaluated using the properties given in eqs. (2.19), (2.6), (2.24),
together with the definitions (3.2) and (3.4). The contributions to the different type of
terms we obtain for the integrand of (5.8) are summarised in table 1. There, “1st”, “2nd”,
and “3rd” indicate the contributions from the first, second, and third lines on the r.h.s. of
eq. (5.8), respectively, while the coefficients in each column give the contributions to each
of the different types of terms. For instance, the numbers 18, 8, and -32 in the first column
are precisely the original contributions obtained in eqs. (5.4)–(5.6).

Hence, we find that, in the on-shell bulk action, the terms proportional to δ(0) [Σ4]
cancel out. However, this does not happen with the divergent contributions, i.e. those that
come with a factor

(
δ(0) [Σ4]

)2
. These are both unexpected results in some sense. The

cancellation of terms with a single delta function in the bulk action is unexpected as one
should also consider the brane action when the gaugino condensate acquires a non-trivial
expectation value, which evaluated on-shell gives a localised contribution with a single
delta. This should somehow be cancelled in order to get the desired result. On the other
hand, we will see that, at least at quadratic level in the gauginos, the D-brane action
does not contain terms with a square of delta functions, which can only be cancelled by
counterterms, as put forward in [22]. We now discuss these two issues separately.

The brane action contains the gaugino mass-term, whose off-shell form was computed
in [16], and is given in eqs. (3.11) and (3.12). We now evaluate this on-shell. As we already
noted, the integrand in (3.12) is proportional to that of the superpotential (2.15). Hence,
we can use directly eq. (2.28). This holds even when using the modified supersymmetry
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conditions (3.1) instead of the original ones in eq. (2.1) because the localized contributions
cancel each other, see the discussion around (3.15). The gaugino mass contribution to the
effective potential is therefore

V λλ
eff = − 1

4π
(
mλλ̄−λ+ + c.c.

)
= −4

∫
M6

δ(0) [Σ4] e−φRe
[
µ ¯〈S〉

]
vol6 , (5.9)

where we used that λ̄−λ+ = i16π2S̄. Note that having a non-zero mass for the gaugino
does not contradict the fact that the solution is supersymmetric since, in this context, the
gaugino bilinear itself has acquired a non-trivial expectation value.13

The D-brane action also contains higher-order terms such as terms quartic in the
gauginos. These are, however, much more difficult to obtain in general, see for instance
the recent computation in [50] of four-fermion terms in the M2 action. Moreover, there are
possible counterterms. Here we will be agnostic about how all these terms look like off-shell.
Nevertheless, we note that consistency of the overall procedure demands that adding up
all contributions to the on-shell action gives only the correct cosmological constant term,
as in eq. (5.7).

Combining our results given in eq. (5.9) and in table 1, we conclude that all terms not
included in our analysis above must provide two types of contributions. We find that a
divergent contribution coming from the aforementioned counterterms must be included in
order to cancel the terms proportional to

(
δ(0) [Σ4]

)2
in the third column of table 1. Finally,

four-fermion terms in the D7-brane action (and possibly finite contributions coming from
the counterterms) should add up to

V λ4+c.t.
eff = γ

64π4

∫
M6

δ(0) [Σ4] e−φ|λλ|2vol6, (5.10)

which, using (4.7), cancels exactly (5.9). We note here that this term is somewhat similar
to the four-fermion term considered in [12].

Putting everything together, the effective potential in (5.2) should be

V bulk
eff + V λλ

eff + γ

64π4

∫
M6

δ(0) [Σ4] e−φ|λλ|2vol6 −
2
3

∫
M6

e−2A|〈S〉|2(δ(0) [Σ4])2vol6, (5.11)

where V bulk
eff is given by the “Total” row in table 1, and V λλ

eff is given in (5.9). In particular,
the numerical coefficients in (5.11) are such that no “perfect square” structure arises.

6 Conclusions

In this paper we considered the ten-dimensional description of KKLT-AdS vacua. For
this, we argued that the set of supersymmetry conditions in eqs. (3.1) describes N = 1
generalized complex geometry compactifications of type II superstring theories, including

13In the limit where 〈S〉 = 0 we recover solutions with µ = 0, for which the mass term indeed vanishes,
as expected. Higher order terms in the action would be necessary to compute the effective mass of the
fermion fluctuations around the KKLT-AdS vacuum. As discussed in the main text, for the D7-brane these
are difficult to compute.
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the effects of gaugino condensates on stacks of D-branes wrapping calibrated cycles of the
internal manifold. In the type IIB setting, such non-perturbative contributions provide a
mechanism for the stabilization of Kähler moduli, while the complex structure and axio-
dilaton moduli acquire masses generated by 3-form fluxes.14

The gaugino condensate terms in eqs. (3.1) combine several ingredients discussed in
the literature in one form or another. Eq. (3.1a) was put forward in [10, 14] and later
discussed in [11]. It can be understood as an F-flatness condition for the (complexified)
volume of the cycle wrapped by the D-branes undergoing gaugino condensation, if one
takes into account the dependence of the Veneziano-Yankielowicz superpotential (3.8) on
this modulus, which sets the value of the corresponding effective gauge coupling. On
the other hand, the localized contribution in eq. (3.1c) constitutes a generalization of the
proposals of [10, 12]. We have shown that it generates the correct additional term in the
flux equations of motion arising when the gaugino bilinear on the branes has a non-trivial
expectation value. The coupling comes from the gaugino mass term, whose precise form
was obtained in [16].

As established in [10, 11, 14], a localized source with a gaugino condensate requires
going beyond internal manifolds with SU(3) structure. Appropriate configurations with
a more general structure group are, however, difficult to construct in practice. We have
by-passed this issue by smearing the D7-branes along the internal directions. In this way,
we focused on zero modes on the internal manifold, which provide the relevant ingredients
for the low-energy effective four-dimensional theory.

We have provided an explicit ten-dimensional solution in the smeared approximation,
where the extended directions span an AdS4 space, while the internal manifold remains
(conformally) CY. Moreover, the three-form flux is still imaginary self-dual, but it contains
a crucial contribution of type (0,3), proportional to the cosmological constant. We have
also shown that the latter is set by the expectation value of the gaugino condensate and the
stabilized four-cycle volume. This precisely reproduces the results of [1]. Importantly, we
emphasize that given that the gaugino condensate generates (0,3) fluxes (together with the
cosmological constant) while keeping supersymmetry, one should not think of the AdS vac-
uum as the result of a two-step procedure, the first involving supersymmetry-breaking fluxes
in a Minkowski solution, and the second one adding the gaugino condensate. Clearing this
misconception furthermore avoids the criticism of [51] regarding adding non-perturbative
effects on top of a supersymmetry-breaking, rolling solution. This perspective was also
advocated in [49].

We have also considered the issue of scale separation in this context. At least at the
level of our smeared solution, we have found no obstruction for an exponentially small
cosmological constant generated by the non-perturbative effects, while retaining a large
internal volume. This holds as long as the fluxes can be combined in such a way that they
result in an exponentially small (0,3) component. Explicit examples were provided recently
in [4–7]. These examples were however questioned in [49], where the authors argue that the

14The expectation that fluxes can give masses to a large number of complex structure moduli has been
challenged though by the so-called Tadpole conjecture [2].
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cycles dual to the corresponding fluxes can not have a Special Lagrangian representative,
and thus no dual brane domain-wall interpretation. We found, in the smeared limit, that
the (0,3) fluxes are given by (4.9), suggesting that their dual cycles are indeed Special
Lagrangian.

Finally, we have discussed the localized solution, focusing in particular on the issue
of divergences arising in the on-shell evaluation of the ten-dimensional action that gives
the effective potential of the four-dimensional theory. We have shown that this can be
evaluated without knowing the details of the localized solution. Indeed, assuming that such
localized solution exists, we have evaluated the expression for the effective potential in terms
of derivatives of the pure spinors given in [23], using only the supersymmetry conditions
with gaugino condensates. We find that no “perfect square” structure is present, contrary
to the expectation in [18, 19, 21], based on four-dimensional supergravity, as well as on
heterotic and type I actions. Furthermore, divergences coming from squared delta functions
do arise, indicating the need for a local counterterm. In this sense, our results suggest a
structure similar to what was discussed recently in [22], as opposed to the conclusions
of [12]. Although we can precisely establish what the counterterm gives on-shell, its off-
shell form remains an open question. It would be very interesting to figure out what kind
of off-shell terms in the brane action would contribute to the on-shell expression we found.
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