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*Instituto de Investigaciones Marinas y Costeras (IIMyC), Facultad de Ciencias Exactas y
Naturales, Universidad Nacional de Mar del Plata (UNMdP), Consejo Nacional de

Investigaciones Científicas y Técnicas (CONICET), Mar del Plata, Argentina and †Instituto
Nacional de Investigación y Desarrollo Pesquero (INIDEP), Paseo Victoria Ocampo No. 1,

B7602HSA, Mar del Plata, Argentina

(Received 10 May 2013, Accepted 19 August 2013)

Age-0+ year juvenile Argentine hake Merluccius hubbsi (60–150 mm total length, LT) from San
Jorge Gulf, north Patagonian shelf region of the Argentine Sea, had an almost exclusively pelagic
diet dominated by the hyperiid amphipod Themisto gaudichaudii and the euphausiid Euphausia
lucens . This suggested that final settlement and permanent demersal habitat utilization might not,
as previously reported, occur at earlier sizes (c. 20 mm LT). Their feeding strategy involves spe-
cialization at a population level towards both the main pelagic prey, indicating a narrow trophic
niche. Novel data are provided which contribute to the growing body of information in relation to
the age-0+ year transitional stage in demersal fishes and particularly to M. hubbsi recruitment in
the Argentine Sea.
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INTRODUCTION

Knowledge of the dynamics of mechanisms operating during the early life history
of fishes is considered essential to the understanding of interannual recruitment vari-
ability (Cushing, 1975; Houde, 1987). Particularly, information regarding the feeding
strategy, i.e. the complex behaviours of an organism best suited and developed for
gathering food in a particular environment, is crucial to understanding species ecol-
ogy, trophic interrelationships and, ultimately, the flow of energy through ecosystems
(Bozzano et al., 1997; Modica et al., 2011). Such information is, however, difficult
to obtain from the sea because of limitations in studying this environment (Modica
et al., 2011). In spite of this, the analysis of stomach contents in field studies is one of
the available means of accessing information on feeding ecology (Amundsen et al.,
1996), which can yield species-specific data for potential use in trophic ecosystem
modelling (Ainsworth et al., 2010).

Survival of larvae has traditionally been proposed as the primary determinant
of recruitment success in fishes (Hjort, 1914; Cushing, 1972; Lasker, 1975; Bailey
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& Houde, 1989), with a major focus on starvation as the main source of mortal-
ity (Hunter, 1976). During the last decades, however, overexploitation of the older
age classes has lead to a reduction in the age of marine fish populations, making
recruitment more dependent on the abundance of the youngest age classes (Hidalgo
et al., 2009). Therefore, researchers have suggested that the recruitment of some fish
stocks may not be exclusively determined during the early larval stages, but that
processes occurring during the juvenile stages might also contribute significantly to
year-class strength (Sissenwine, 1984; Hüssy et al., 1997). Although predation and
adverse oceanographic conditions are considered the two primary agents of juvenile
natural mortality (Hüssy et al., 1997), it has been suggested that biological factors
such as food limitation cannot be ruled out (Townsend & Cammen, 1988; Koeller
et al., 1989), particularly for juveniles of demersal species. Such juveniles, during
their first year of life (age-0+ year individuals), undergo a transitional period that
involves a shift from a pelagic to a demersal habitat utilization (i.e. final settling),
with concurrent morphological, physiological, ecological and behavioural changes.
Individuals have to face not only major changes in type, size and availability of
prey, but also the presence of possible predators in the demersal settlement habitat,
thereby establishing this period as potentially critical for survival.

The Argentine hake Merluccius hubbsi Marini 1933 is one of the most abundant
and economically important fish resources of the Argentine Sea. The species inhabits
waters from 34◦ to 55◦ S, at depths ranging between 50 and 500 m (Cousseau &
Perrota, 1998). Adults of this demersal species make daily vertical migrations to
feed in the upper layers of the sea during the night (Angelescu & Prenski, 1987).
For assessment purposes, two different stocks were identified: the northern stock
(between 34◦ and 41◦ S) and the southern one (between 41◦ and 55◦ S), also
known as the Patagonian stock (Bezzi et al., 1995). The latter is the most abun-
dant, with a spawning biomass of around 200 000 t estimated during 2012 (MAGyP,
2012).

Spawning of the Patagonian stock of M. hubbsi takes place during late spring
(December) and summer (January to March) in the Isla Escondida sector (43–45◦ 30′
S) (Pájaro et al., 2005) of the north Patagonian region. Individuals undergo a series of
pelagic stages from eggs to larvae and juveniles. It has been reported that during late
summer and early autumn of their first year of life, at a size of c. 20 mm total length
(LT), larvae metamorphose to juveniles, settle to the bottom (Bezzi et al., 2004) and
begin a diel vertical migratory behaviour similar to that of the adults (occupying
pelagic waters during the night and descending close to the bottom during daylight)
(Ehrlich, 1998; Buratti & Santos, 2010). These age-0+ year juveniles (c. 20–150 mm
LT) also undergo an onshore and south-westward drift to reach as far as the inner San
Jorge Gulf (SJG; 45–47◦ S). The settlement ground is then defined as encompassing
the spawning ground and extending to the SJG (Fig. 1), which represents their
main nursery area (Sabatini, 2004; Álvarez-Colombo et al., 2011). As individuals
would be occupying the bottom of the gulf most of the day, an increase in the
importance of epibenthic prey in the diet of juveniles could be expected. Preliminary
observations in the southern sector of the nursery area (P. Moriondo, pers. comm.)
showed, however, that age-0+ year individuals (30–100 mm) prey mainly on pelagic
items such as euphausiids. Therefore, further information is needed for a better
comprehension of how these juveniles exploit food resources while undergoing the
transition from pelagic to demersal habitat utilization in their nursery area. This
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Fig. 1. Location of the Merluccius hubbsi survey hauls ( ) for age-0+ year juvenile Merluccius hubbsi in the
San Jorge Gulf. Spawning ( ) and nursery ( ) areas are shown (modified from Sabatini, 2004).

study provides (1) a quantitative taxonomic description of age-0+ year M. hubbsi
diet within the SJG, (b) an evaluation of the potential effect of LT, spatial distribution
and time of day on diet composition and (c) an analysis of juvenile M. hubbsi feeding
strategy in terms of prey incidence, degree of generalization or specialization and
trophic niche width. Assessing the feeding habits of these individuals will aid in
understanding the dynamics of predator–prey interactions and the key prey selected
at this ontogenetic stage. Furthermore, information presented is relevant in the context
of recruitment studies as age-0+ year M. hubbsi individuals represent a stage prior
to the final settling of the juveniles and their further incorporation into the adult
population.
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Table I. Details of the Merluccius hubbsi survey hauls and the stomachs sampled per
haul in the San Jorge Gulf during January 2010; morning: 0700–1059 hours, afternoon:

1100–1559 hours and sunset: 1600–1900 hours

Haul
number Date

Time
of day

Depth
(m)

Total
stomachs Full Empty Discarded

Mean ± s.d.
LT (mm)

1 16 January 2010 Afternoon 65 28 27 1 0 134·2 ± 9·0
2 16 January 2010 Sunset 85 46 38 7 1 124·1 ± 12·8
3 17 January 2010 Morning 86 33 33 0 0 130·9 ± 10·3
4 17 January 2010 Morning 84 36 33 3 0 129·3 ± 13·1
5 17 January 2010 Morning 87 39 35 3 1 124·4 ± 14·7
6 17 January 2010 Afternoon 88 42 34 7 1 114·0 ± 13·5
7 17 January 2010 Sunset 94 23 16 6 1 112·6 ± 17·0
8 18 January 2010 Morning 100 69 54 10 5 107·4 ± 20·4
9 18 January 2010 Morning 96 62 54 7 1 114·6 ± 17·8
10 18 January 2010 Morning 87 44 35 6 3 127·1 ± 13·3
12 18 January 2010 Sunset 97 42 33 9 0 129·7 ± 12·8
13 18 January 2010 Sunset 98 42 38 3 1 120·8 ± 16·4
17 20 January 2010 Morning 91 23 22 1 0 128·4 ± 9·8
LT, total length.

MATERIALS AND METHODS

S T U DY A R E A A N D S A M P L I N G

The SJG is a half-open basin located between 45◦ and 47◦ S and 65◦ 30′ W and the coast,
with maximum depths of >110 m in the central region. The gulf is occupied by shelf waters,
that are modified by the contribution of low salinity coastal waters (33·0–33·6) flowing from
the Magellan Strait. In both extremities of the gulf, which exhibit the lowest depths, the
vertical mix affected by winds and tides generates seasonal frontal systems mainly during
spring and autumn (Guerrero & Piola, 1997; Fernández et al., 2005). This gulf constitutes an
important spawning and fishing area for several species of commercial interest, such as M.
hubbsi (Bezzi et al., 2004) and shrimp Pleoticus muelleri (Fernández et al., 2008).

Samples of M. hubbsi juveniles were collected during a research survey carried out by the
Instituto Nacional de Investigación y Desarrollo Pesquero (INIDEP) in the SJG in January
2010 (Fig. 1). Specimens were captured at depths between 65 and 100 m during daylight, by
using a bottom trawl (100 mm mesh at codend with an intranet cover of 20 mm mesh size,
headrope of 35·5 m and footrope of 50·0 m; Table I). Speed and time of the survey hauls
(n = 13) were 4 knots (c. 7 km h−1) and 30 min. All the M. hubbsi caught were immediately
frozen at −20◦ C to ensure that the digestion of the stomach contents was halted.

Once in the laboratory, the specimens were measured (LT, mm, and maxilla length LM, mm)
and weighed (wet mass) to the nearest 0·01 g. Juveniles were placed in three size classes:
60–89, 90–119 and 120–150 mm. The opening of the mouth (M O, mm) was calculated
according to Shirota (1970), who considered a 90◦ angle limited by the jaws during the
feeding, where M O = 20·5 LM.

OV E R A L L D I E T C O M P O S I T I O N

Stomachs were removed, weighed to the nearest 0·001 g with and without their contents,
and the contents were preserved in a 5% formalin solution. Those everted during capture or
damaged during dissection were discarded from the analysis. A subjective digestion state,
based on appearance and texture, was assigned to each stomach content as follows: 1 = fresh,
2 = partially digested and 3 = totally or almost totally digested.

© 2013 The Fisheries Society of the British Isles, Journal of Fish Biology 2013, 83, 1354–1370
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Prey species were measured and identified to the lowest possible taxon and developmental
stage. The eye diameter (DE, along the anteroposterior axis, mm), carapace (LC, from the tip
of the rostrum to the mid-dorsal posterior edge, mm) and sub-total length [LST, from the tip
of the rostrum to the posterior end of the sixth abdominal somite (Pérez Seijas, 1987), mm]
of euphausiids were measured, whereas the eye height (H E, mm), eye width (W E, mm) and
total length [LT, from the anterior part of the head, excluding the antennae, to the posterior
end of the last pair of uropods (Sheader & Evans, 1975), mm] were measured for amphipods.
For copepods, total length (LT, from the anterior end of the cephalothorax to the posterior
margin of the caudal rami, excluding furcal setae, mm), prosome length (LP, mm) and width
(W P, mm) were measured. Wet or dry mass values for prey items were estimated using length
and mass relationships available from the literature (Table II). Biovolumes for copepods were
corrected by a 1·025 specific gravity factor to derive wet mass (Chojnacki & Hussein, 1983).
For damaged organisms of the hyperiid amphipod Themisto gaudichaudii and the euphausiid
Euphausia lucens , total and sub-total length, respectively, were estimated from their remnants,
which resist digestion (eyes and carapace), using the equations proposed by Temperoni et al.
(2013), as a step prior to calculating their mass.

DATA A NA LY S I S

Feeding incidence (I F) was calculated as the percentage of individuals with at least one
prey item in their stomach (Arthur, 1976). A stomach fullness index (%I SF) was calculated
following Angelescu (1979) as %I SF = 100 W c W f

−1, where W c is the stomach content mass
and W f is the total mass of the fish. The %I SF allowed the establishment of different levels
of the fullness scale: <5% = 0–I (stomachs with an advanced state of digestion), 5–10% = II
(fullness below 50% of the maximum), 11–13% = III (fullness above 50% of the maximum)
and >14% = IV (maximum fullness).

The contribution of each prey category (i ) to the diet of juvenile M. hubbsi was examined
through its frequency of occurrence (%Oi), percentage by number (%Ni) and by mass (%Wi).
Each of these three measurements provides a different insight into the feeding habits of
fishes (Hyslop, 1980). To integrate the three parameters, an index of relative importance (I RI)
(Pinkas et al., 1971) was calculated as I RIi = %Oi (%Ni + %Wi). For each prey item, this
index was expressed as I RI = 100 I RI

∑
I RI

−1 (Cortés, 1997).
Changes in diet composition were assessed by building generalized linear models (GLM)

with the R statistical software, version 2.15.1 (www.r-project.org). Fish LT, spatial distribution
(H 1–13) (represented by the position of the hauls) and time of day (T morning, 0700–1059 hours;
T afternoon, 1100–1559 hours; T sunset, 1600–1900 hours) were used as the explanatory variables
and the percentage of stomachs with food and the number of prey for the main consumed
items as the response variables. As GLMs assume a linear relationship between the response
and the explanatory variables, possible curvilinear relationships were first assessed by fitting
generalized additive models (GAM) (Wood, 2006). If GAMs detected a significant non-linear
relationship, then appropriate terms were included in the GLMs (e.g . quadratic functions) to
account for this relationship. Models with the percentage of stomachs with food as the response
variable had a binomial error distribution and a link logit, whereas those with count data
(number of prey as the response variable), where there are too many zeros and the variance
is often much greater than the mean, had a negative binomial error distribution and a log
link (Crawley, 2005). The model with the lower value (most plausible model) of the Akaike
information criterion (AIC) was selected as the best one and was weighed against the others
using Akaike’s weight (Aw). Aw values vary between 0 (poor fit) and 1 (good fit) and provide
an estimation of the likelihood of the model given the data (Johnson & Omland, 2004). A
model without explanatory variables (null model) was also fitted in order to test the hypothesis
that none of the variables tested had an effect on the consumption of a major prey group.

G R A P H I C A L A NA LY S I S O F F E E D I N G S T R AT E G Y

The feeding strategy of juvenile M. hubbsi was analysed graphically with the method
proposed by Amundsen et al. (1996), which incorporated the prey-specific abundance
(volume, number or mass) into the Costello (1990) analysis. The Amundsen method is

© 2013 The Fisheries Society of the British Isles, Journal of Fish Biology 2013, 83, 1354–1370
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rá

oz
(1

99
1)

0·7
3

C
al

an
us

au
st

ra
li

s
(♀)

ln
e

W
W

(m
g)

=
−0

·37
+

2·3
6

×
ln

W
P

(m
m

)
Fe

rn
án

de
z

A
rá
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iñ
as

et
al

.
(2

01
0)

0·9
8

C
al

an
oi

d
co

pe
po

di
te

s
<

1
m

m
lo

g
V

(μ
m

3
)=

0·1
6

+
2·9

7
×

lo
g

W
P

(μ
m

)
V

iñ
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based on a two-dimensional representation where each point relates the %Oi of a prey to its
prey-specific number %N Pi. In mathematical terms, %N Pi = 100

∑
Ni

∑
N ti

−1, where Ni is
the stomach content (number) comprising prey i and N ti is the total stomach content in only
those predators with prey i in their stomach. Then, information about three elements can be
extracted, considering the distribution of points along the diagonals and axes of the graph: the
prey importance, the feeding strategy in terms of specialization and generalization either at
the individual or the population level and the population niche width, which characterizes the
food resource spectrum used by individuals and considers both between and within-phenotype
variations.

In addition, niche width was estimated quantitatively by means of the Levins’s stan-
dardized index {B = (n − 1)−1 [(

∑
j pj

2)−1 − 1], where pj = proportion of predator diet
that is made up of prey j and n = number of prey categories} (Levins, 1968). B takes
values between 0 and 1; values <0·6 represent strongly specialized feeders that prey on
few taxa, whereas values >0·6 indicate generalist feeders with no preference for any taxa
(Krebs, 1989).

RESULTS

OV E R A L L D I E T C O M P O S I T I O N A N D D I E TA RY S H I F T S

A total of 529 stomachs were examined. Age-0+ year juveniles ranged in size
from 68 to 151 mm LT (mean ± s.d. = 122·4 ±16·7 mm) (Fig. 2). Feeding incidence
was 85% (n = 452), while empty stomachs represented 12% (n = 63) and discarded
(either everted or damaged during dissection) 3% (n = 14) of the total. According
to %I SF (mean ± s.d. = 1·15 ± 1·00%), 98·9% of the stomachs were in state 0–I,
i.e. stomachs with an advanced state of digestion. Twelve different taxa belonging
to eight categories within the crustaceans and the chaetognaths were recorded
(Table III). Crustaceans, mainly represented by T. gaudichaudii and E. lucens ,
were the principal prey consumed, with frequencies of occurrence of 85 and 61%.
Both species accounted for 99% by mass of the total prey items consumed. When
considering their relative importance, however, E. lucens was the most important
prey in the diet of juvenile M. hubbsi (%I RI = 60%), followed by T. gaudichaudii
(%I RI = 40%).

The percentage of stomachs with food was best explained by a model that included
fish LT and time of day (afternoon) as explanatory variables (AICbest model = 373·07,
AICnull model = 384·17), while it was independent of the spatial distribution.
Parameters of the GLM model were (s.e. in parentheses): intercept = −1·11 (0·89),
LT = 0·028 (0·007) and T afternoon =−0·68 (0·3), which indicate that the percentage
of stomachs with food increased with fish LT, and was lower during the afternoon.
The GLM analyses also showed that the number of the main consumed items (T.
gaudichaudii and E. lucens) increased with fish LT (Table IV), even though fish LT
was not highly correlated with the total number of prey consumed (Spearman rank
correlation coefficient r = 0·33, P < 0·01). In addition, maximum mouth opening
of juveniles was significantly and positively correlated with fish LT (r = 0·89,
P < 0·01). Most individuals, however, despite their mouth gape and length, ingested
prey items within a size range of 5–15 mm (Fig. 3), corresponding to E. lucens
and T. gaudichaudii , and only a few (>110 mm) consumed larger epibenthic
prey such as juveniles of Munida spp., adults of Peisos petrunkevitchii and
Stomatopoda larvae.
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Fig. 2. Total length (LT)–frequency distribution of age-0+ year juvenile Merluccius hubbsi .

G R A P H I C A L A NA LY S I S O F F E E D I N G S T R AT E G Y

In the Amundsen et al. (1996) diagram [Fig. 4(a)], the diagonal from the lower left
to the upper right corner provides a measure of prey importance, with dominant prey
at the upper, and rare or unimportant prey at the lower end. The present results show
that T. gaudichaudii and E. lucens are the most important prey in the diet of juvenile

Table III. Taxonomic list of prey items in age-0+ year Merluccius hubbsi diet

Prey item (i ) %Oi %Ni %Wi I RI %I RI %N Pi

Subphylum Crustacea
Order Amphipoda
Themisto gaudichaudii 84·65 54·22 6·90 5173·81 39·90 57·77
Gammarids 17·16 4·96 – – – 29·23
Order Euphausiacea
Euphausia lucens 61·40 33·38 92·45 7725·96 59·58 43·75
Nematoscelis megalops 1·58 0·28 – – – 5·37
Subclass Copepoda
Order Cyclopoida 2·93 0·56 <0·01 1·64 0·01 14·05
Order Calanoida 2·48 1·36 0·01 3·40 0·03 13·49
Order Mysida
Mysidopsis rionegrensis 2·93 2·44 – – – 30·00
Order Decapoda
Peisos petrunkevitchii 2·93 1·16 0·05 3·55 0·03 35·76
Non-identified larvae 0·68 0·09 – – – 7·84
Munida spp. 0·45 0·13 0·59 0·32 <0·01 12·77
Order Stomatopoda
Non-identified larvae 5·64 1·25 – – – 12·65
Phylum Chaetognatha
Sagitta friderici 0·23 0·02 – – – 16·67
Other
Non-identified remains (NI) 0·45 0·15 – – – 10·94

%Oi, frequency of occurrence; %Ni, percentage number; %Wi, percentage mass; I RI, index of relative
importance; %I RI, per cent I RI; %N Pi , prey-specific number.
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Table IV. Best models explaining consumption in numbers of major prey groups in age-
0+ year Merluccius hubbsi . For each model, parameters, standard errors (in parentheses),

Akaike’s weights (Aw) and Akaike information criterion (AIC) are given

Prey item Model AIC Aw

Themisto gaudichaudii GLM = −3·73 (0·6) + 0·026 (0·003) LT + 1·8 (0·36)
H 2 + 3·04 (0·35) H 3 + 2·03 (0·36) H 4 + 2·13 (0·36)
H 5 + 2·25 (0·37) H 6 + 1·69 (0·43) H 7 + 2·65 (0·35)
H 8 + 1·8 (0·35) H 9 + 1·84 (0·36) H 10 + 1·84 (0·36)
H 12 + 2·38 (0·36) H 13 + 2·82 (0·37) H 17

2304·1 0·99

Euphausia lucens GLM = −3·66 (0·78) + 0·03 (0·005) LT + 0·99 (0·4)
H 3 + 1·77 (0·4) H 4 + 1·8 (0·4) H 5 +1·16 (0·4)
H 10 + 1·23 (0·4) H 13

1839·1 0·99

LT, total length; Hn, survey haul (Table I); GLM, generalized linear model.

M. hubbsi [Fig. 4(b)]. The vertical axis represents the feeding strategy in terms of
specialization or generalization. The predator has specialized on prey types positioned
in the upper part of the graph, whereas prey positioned in the lower part have been
eaten less frequently. Juvenile M. hubbsi specialized, at a population level, on T.
gaudichaudii and E. lucens , and from a size of c. 110 mm ingested epibenthic prey
such as gammarids, P. petrunkevitchii , Munida spp. and Mysidopsis rionegrensis
[Fig. 4(b)]. There were neither high within nor between-phenotype contributions to
the niche width, as no points were located along the diagonal from the upper left to
the lower right, which according to Amundsen et al. (1996) indicates a narrow niche
width for juvenile M. hubbsi in the SJG. In agreement, the Levins’s index value
<0·6 (B = 0·12) also suggests that juveniles would be specialized feeders preying
on few taxa.

DISCUSSION

This study constitutes a detailed investigation of the feeding habits of juvenile M.
hubbsi in the SJG, which constitutes the main nursery ground for the species in the
Patagonian region. Even though stomach content studies have the potential disad-
vantage of either over or underestimating some prey species owing to differential
digestion of body structures, these techniques are very useful in species in which
direct observation of trophic behaviour in nature is not possible (Ocampo Reinaldo
et al., 2011). Such studies are usually associated with difficulties regarding the high
incidence of empty stomachs (Ciechomski & Weiss, 1974). Constraints of this kind
were not found in this work, however, due to the gut morphology of M. hubbsi . At a
size of c. 3 mm, gut widening takes place and, as development advances, several gut
folds appear (Ciechomski & Weiss, 1974), which provide additional space for food
accumulation and retention, as reported for Pacific hake Merluccius productus (Ayres
1855) (Sumida & Moser, 1980). Thus, a high feeding incidence was observed (85%),
suggesting that the resources available in the SJG might be sufficient to sustain the
age-0+ year M. hubbsi population. High phytoplankton production (Carreto et al.,
2007) and elevated abundances of meso and macrozooplankton (Pérez Seijas et al.,
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1987; Viñas et al., 1992; Santos, 1994), shrimps (Bezzi et al., 2004) and decapods
(Vinuesa & Varisco, 2007) have been reported in this gulf.

The diet of juvenile M. hubbsi in the SJG was almost exclusively pelagic, rep-
resented mainly by the hyperiid amphipod T. gaudichaudii and the euphausiid E.
lucens . Pelagic feeding occurs at night, as a high proportion (almost 99%) of stom-
achs in the lowest state of satiation was observed during daylight, as previously
described by Angelescu & Prenski (1987). The low incidence of epibenthic prey
found only in larger individuals (>110 mm LT) suggests a gradual transition to fully
developed demersal habitat utilization, as reported for other gadids (Bowman, 1981).
In agreement, the incorporation of higher proportions of epibenthic and fish prey was
observed in the diet of age-1+ and age-2+ year juveniles (>150 mm LT) within the
gulf in summer, indicating a reduction in the amplitude of vertical migrations by
larger individuals that remain close to the bottom for longer periods. Pelagic crus-
taceans, however, such as E. lucens and T. gaudichaudii , were among the main food
items (Sánchez & García de la Rosa, 1999; Sánchez, 2009).

The importance of amphipods and euphausiids in the diet of age-0+ year juve-
niles has previously been pointed out for European hake Merluccius merluccius (L.
1758) (Mahe et al., 2007), cape hake Merluccius capensis Castelnau 1861 (Pillar &
Barange, 1993) and silver hake Merluccius bilinearis (Mitchill 1814) (Koeller et al.,
1989). The energetic gain from feeding on lower trophic levels as a result of reduced
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cost of capture due to lack of pursuit and lesser handling time justifies the high inci-
dence of zooplankton over fish prey in the diet during the entire life cycle of the
species (Sánchez & García de la Rosa, 1999). Also, a swarming behaviour has been
reported for T. gaudichaudii and E. lucens (Gray & McHardy, 1967; Nicol et al.,
1987), allowing the juveniles to feed without investing much energy. Furthermore,
both a rapid adaptation to self-propulsion and the mechanical support due to the com-
plete development of the fins (Ciechomski & Weiss, 1974; Palomera et al., 2005;
Betti et al., 2009) might be decisive factors in juvenile trophic ecology, affecting not
only the frequency of encounter with prey but also the capture efficiency.

The present results following Amundsen’s criterion and the Levins’s index show
that, within their nursery ground, all individuals in the age-0+ year juvenile pop-
ulation are specialist predators with a narrow trophic niche of two dominant prey

© 2013 The Fisheries Society of the British Isles, Journal of Fish Biology 2013, 83, 1354–1370



M E R L U C C I U S H U B B S I J U V E N I L E F E E D I N G S T R AT E G Y 1365

Calenoid
copepods45°

46°

47°

67° 66° 65° 67° 66° 65° 67° 66° 65°

Euphausia
lucens

Themisto
gaudichaudii

0
0·01–17

18–64

65–365

366–1440

1441–4200

N

Fig. 5. Abundance (individuals m−3) of the zooplankton components within the San Jorge Gulf in January
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(T. gaudichaudii and E. lucens), although they include small proportions of other
items in the diet. Similar results were reported for age-0+ year M. hubbsi in the San
Matías Gulf (Ocampo Reinaldo et al., 2011). When considering prey choice, age-0+
year M. hubbsi juveniles may not be simple opportunistic feeders, adapting to the
available zooplankton prey, as found in other species of the genus (Koeller et al.,
1989). For instance, T. gaudichaudii and E. lucens were preferred to others, even
though previous data showed that their abundances are low in the area in January,
while copepods represent a more available prey [Pérez Seijas et al. (1987); Fig. 5].
Moreover, Munida spp. was not selected as a main prey, although it is highly abun-
dant in the SJG (Vinuesa & Varisco, 2007). A similar behaviour was found for M.
capensis (Pillar & Barange, 1993) and M. merluccius (Bozzano et al., 1997; Mahe
et al., 2007). While balancing the cost and the benefits, predators foraging optimally
can adjust their preferences to take into account prey quality rather than prey abun-
dance (Anthony et al., 2000). Interestingly, T. gaudichaudii and E. lucens tend to
be more lipid-rich than other available prey in the environment (Nelson et al., 2001;
Gigliotti et al., 2010). A diet high in lipids provides sufficient metabolic energy for
maintenance, so dietary protein can be allocated to tissue synthesis and growth (Pin-
negar et al., 2003). Thus, these crustaceans may constitute the nutritionally beneficial
items to sustain age-0+ year juveniles while growing in their nursery area, before
they recruit to the pre-adult and adult fractions of the population in shelf waters
(Macchi et al., 2007).

The almost exclusively pelagic prey found in age-0+ year juveniles (60–150 mm
LT) suggest that final settling and permanent demersal habitat utilization might not
occur at the early size of 20 mm, as previously reported, but would be at larger
sizes. In this sense, recent observations within the SJG based on acoustic surveys
and confirmed by pelagic trawls showed that age-0+ year juveniles school during
daylight in a thick layer (c. 10–12 m in height) as far as c. 10–15 m from the bot-
tom, but are dispersed in the water column at night (G. Álvarez Colombo, pers.
comm.), probably following the migration pattern of their main prey (Williams &
Robins, 1981; Gibbons et al., 1991). Analogous findings have been reported for other
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gadoids worldwide (Olsen & Soldal, 1989; Grant & Brown, 1998). The distribution
of juveniles c. 10–15 m from the bottom during daylight could be an avoidance
strategy against intercohort cannibalism, mainly by age-1+ and age-2+ year con-
specifics already settled at the bottom and able to migrate only a few metres from
it (Sánchez & García de la Rosa, 1999). A similar behaviour was described for M.
capensis (Huse et al., 1998). Moreover, SJG seabed is characterized by the pres-
ence of the stomatopod Pterygosquilla armata , Munida gregaria , and the bivalves
Corbula patagonica and Nucula sp. (Bremec et al., 2012) and lack the physical
structure that could provide shelter for age-0+ year individuals, as found in other
gadids (Gotceitas & Brown, 1993; Lindholm et al., 1999). Hence, the age-0+ year
M. hubbsi’s pelagic behaviour pattern may successfully maintain an adequate food
intake while reducing predation risk.

Age-0+ year M. hubbsi feeding behaviour highlights the importance of this stage
as a major intermediate in the energy flow between shallower (pelagic) and deeper
(epibenthic) water communities, as has been stated for M. merluccius (Modica et al.,
2011). Although further studies are needed to clearly comprehend the events taking
place during such an important phase, novel data presented here contribute to the
knowledge of the biology and ecology of the age-0+ year stage in demersal fishes.
Furthermore, this information could be useful in approaching the complex problem
of determining the main factors controlling year-class strength of M. hubbsi in the
Argentine Sea.

The authors are indebted to G. Macchi, head of the M. hubbsi Assessment Programme of
INIDEP for the collection of samples, and to the crew and technicians of the R.V. Eduardo
Holmberg for their assistance during the cruise. Valuable review of a previous version of this
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ported by funds from Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET,
PIP no 00815) and Universidad Nacional de Mar del Plata (UNMDP), Project 15/E483. This
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