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Food-related lactic acid bacteria (LAB) as well as human gut

commensals such as bifidobacteria can de novo synthesize

and supply vitamins. This is important since humans lack the

biosynthetic capacity for most vitamins and these must thus be

provided exogenously. Although vitamins are present in a

variety of foods, deficiencies still occur, mainly due to

malnutrition as a result of insufficient food intake and because

of poor eating habits. Fermented milks with high levels of B-

group vitamins (such as folate and riboflavin) can be produced

by LAB-promoted and possibly bifidobacteria-promoted

biosynthesis. Moreover, certain strains of LAB produce the

complex vitamin cobalamin (or vitamin B12). In this review,

fermented foods with elevated levels of B-group vitamins

produced by LAB used as starter cultures will be covered. In

addition, genetic abilities for vitamin biosynthesis by selected

human gut commensals will be discussed.
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3 Cátedra de Microbiologı́a Superior, Universidad Nacional de Tucumán

(UNT), (T4000INI) Tucumán, Argentina
4 Department of Microbiology & Alimentary Pharmabiotic Centre,

Bioscience Institute, National University of Ireland Cork, Western Road,

Cork, Ireland

Corresponding author: van Sinderen, Douwe (d.vansinderen@ucc.ie)

Current Opinion in Biotechnology 2013, 24:160–168

This review comes from a themed issue on Food biotechnology

Edited by Elaine E Vaughan and Jeroen Hugenholtz

For a complete overview see the Issue and the Editorial

Available online 30th August 2012

0958-1669/$ – see front matter, # 2012 Elsevier Ltd. All rights

reserved.

http://dx.doi.org/10.1016/j.copbio.2012.08.005

Introduction
Vitamins are essential micronutrients that are normally

found as precursors of various enzymes that are necessary

for vital biochemical reactions in all living cells. Humans

are incapable of synthesizing most vitamins and they

consequently have to be obtained exogenously. The

use of vitamin-producing microorganisms may represent

a more natural and consumer-friendly alternative to for-

tification using chemically synthesized pseudo-vitamins,
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and would allow the production of foods with elevated

concentrations of vitamins that are less likely to cause

undesirable side-effects. The biochemical pathways

involved in B-vitamin biosynthesis by food microorgan-

isms have previously been described in detail [1��].

The human gastrointestinal tract (GIT) is colonized by a

vast array of microorganisms known as the gut microbiota,

with up to 1011 bacteria per gram of intestinal content [2].

Apart from its impact on different human functions [2],

the intestinal microbiota plays a pivotal role in food

digestion and energy recovery, while it can also act as

an important supplier of vitamins. In humans it has been

shown that members of the gut microbiota are able to

synthesize vitamin K as well as most of the water-soluble

B vitamins, such as biotin, cobalamin, folates, nicotinic

acid, panthotenic acid, pyridoxine, riboflavin and

thiamine [3]. In contrast to dietary vitamins, which are

adsorbed in the proximal tract of the small intestine, the

predominant uptake of microbially produced vitamins

occurs in the colon [4,5].

The genus Bifidobacterium currently encompasses 39

species (reviewed in [6]) and its members represent

key components of the human gut microbiota [7,8,9�].
Several reports have highlighted the importance of

bifidobacteria in regulating intestinal homeostasis, mod-

ulating local and systemic immune responses, and pro-

tecting against inflammatory diseases and infections

[10,11]. In addition, some bifidobacterial species are

claimed to convert a number of dietary compounds into

health-promoting bioactive molecules, such as conju-

gated linoleic acid and certain vitamins [12,13]. Particu-

lar bifidobacterial strains have been shown to exhibit

vitamin production [14–16], although their biosynthetic

abilities have not been examined in detail and will be

discussed here.

Biosynthesis of folate by human gut commensals

The B-group vitamin folate is involved in various essential

metabolic functions such as DNA replication, repair and

methylation, and synthesis of nucleotides, vitamins and

certain amino acids. De novo synthesis of folate requires

both 6-hydroxymethyl-7,8-dihydropterin pyrophosphate

(DHPPP) and para-aminobenzoic acid (pABA).

Folate biosynthetic properties of bifidobacteria have been

verified, though folate biosynthesis appears to be
www.sciencedirect.com
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restricted to certain species/strains, leading to the identi-

fication of high level (e.g. Bifidobacterium bifidum and

Bifidobacterium longum subsp. infantis) and low level

folate-producing species (e.g. Bifidobacterium breve, Bifi-
dobacterium longum subsp. longum and Bifidobacterium ado-
lescentis) [16]. Such findings have been confirmed by in
vivo studies: administration of high-producing folate

strains was shown to cause an increased faecal level of

folate in both rats and humans [17,18].

With the advent of microbial genomics it is now possible

to interrogate the genetic make-up of microorganisms for

specific features (reviewed in [19]). The first decade of

molecular exploration of gut commensals, in particular

bifidobacteria and lactobacilli, has afforded unprece-

dented insights into the genetic adaptation of these

bacteria to the human gut through the decoding of their

genome sequences (probiogenomics) [20].

Genomic adaptation is obvious in many bifidobacterial

genomes where over 9% of annotated genes encode

enzymes involved in carbohydrate metabolism [21,22].

However, the dissection of bifidobacterial genomes has

also revealed interesting features with respect to vitamin

biosynthetic capabilities (Figure 1). No complete path-

ways for the biosynthesis of biotin, panthothenate, pyr-

idoxine, cobalamin and menaquinone are present in any

of the so far sequenced bifidobacterial genomes, yet they

are predicted to encode complete pathways for the syn-

thesis of shikimate and thus are expected to produce

chorismate [23–27,28�,29,30], a precursor for folate bio-

synthesis. However, although all available complete bifi-

dobacterial genomes are expected to specify

aminodeoxychorismate synthase (EC 2.6.1.85), a gene

specifying a putative 4-amino-4-deoxychorismate lyase

(EC 4.1.3.38) can only be found on the genome of B.
adolescentis ATCC15703 and B. dentium Bd1 [27], which

are thus expected to accomplish de novo biosynthesis of

pABA (Figure 2). By contrast, B. animalis subsp. lactis
does not appear to possess the entire pathway for DHPPP

biosynthesis or the gene encoding dihydropteroate

synthase (EC 2.5.1.15) (Figure 2). Thus, B. animalis
subsp. lactis is expected to be auxotrophic for folates or

DHP, and would therefore be incapable of folate biosyn-

thesis, even in the presence of pABA (Figure 2).

Lactobacilli are another common group of human gut

commensals and have recently been investigated as

possible folate producers [31]. The genus Lactobacillus
contains more than 100 recognized species displaying a

remarkable phylogenetic, phenotypic and ecological
( Figure 1 Legend Continued ) Folate biosynthesis pathway of Bifidobacteriu

software. In the inset on the right genes involved in folate biosynthesis are ma

how pABA is synthesized from chorismate as a branchpoint of the aromatic

condensation reaction between DHPPP and pABA. This complex pathway i

2.5.1.15), dihydrofolate synthase (EC 6.3.2.12) and dihydrofolate reductase 
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diversity [32,33]. The genetic characterization of lacto-

bacilli is better developed than that of bifidobacteria, but

the molecular mechanisms driving their interaction with

the human gut still remain largely unknown (reviewed in

[20]). Owing to their commercial potential, the ability to

produce folate has been investigated in several lactoba-

cilli from a variety of ecological origins. In this context,

lactobacilli from various fermented foods have been

investigated as starter cultures for the manufacture of

folate-fortified dairy products, while lactobacilli isolated

from the human gut have been explored as folate-produ-

cing probiotics [34–38,39�]. The availability of genome

sequences of various lactobacilli provided an important

contribution to the genetics underlying folate biosyn-

thesis in this group of microorganisms [40]. For example,

lactobacilli do not appear to harbour the genetic deter-

minants for de novo pABA synthesis, with the exception of

Lactobacillus plantarum WCFS1 [41], suggesting that the

vast majority of lactobacilli are unable to synthesize folate

in the absence of pABA.

Biosynthesis of riboflavin

Riboflavin (vitamin B2) plays an essential role in cellular

metabolism, being the precursor of the coenzymes flavin

mononucleotide (FMN) and flavin adenine dinucleotide

(FAD), which both act as hydrogen carriers in many

biological redox reactions. Microbial riboflavin biosyn-

thesis from the precursors guanosine triphosphate (GTP)

and D-ribulose 5-phosphate occurs through seven enzy-

matic steps, with detailed studies performed for Bacillus
subtilis [42] and Escherichia coli [43], and reviewed recently

[44].

Riboflavin concentrations can vary in certain dairy pro-

ducts due to processing technologies and to the action of

microorganisms during food processing [1��]. It has been

shown that most yoghurt starter cultures decrease ribo-

flavin concentrations whereas others can increase levels of

this essential vitamin up to 160% of the initial concen-

tration present in unfermented milk [45]. Selection of

spontaneous roseoflavin-resistant mutants was found to

be a reliable method to obtain natural riboflavin-over-

producing strains of various species commonly used in the

food industry [46].

So far fragmentary information is available on the de novo
synthesis of riboflavin by enteric bacteria, in the case of

bifidobacteria the enzymes needed for the biosynthesis

of this vitamin seem to be partially or completely

absent from the majority of currently available bifido-

bacterial genomes [19]. However, one cannot exclude
m dentium Bd1 as obtained from the Metabolic Pathway reconstruction

pped on the B. dentium Bd1 genomes. The metabolic pathway describes

 amino acid biosynthesis pathway. Folate synthesis continues through a

s catalysed by various enzymes such as dihydropteroate synthase (EC

(EC 1.5.1.3).
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Figure 2
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Heat map representing the distribution of genes involved in the biosynthesis of folate in bifidobacterial genomes (panel a) and lactobacilli (panel b).

Yellow indicates presence and black represents absence.
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the possibility that multiple, co-existing microbial

species are capable of de novo synthesis.

Biosynthesis of vitamin B12

The term vitamin B12 is generally used to describe a type

of cobalt corrinoid, particularly of the cobalamin (cbl)

group. Animals, plants and fungi are incapable of coba-

lamin production and it is the only vitamin that is exclu-

sively produced by microorganisms, particularly by

anaerobes [47–49]. One of the first model organisms used

for the study of biosynthesis was P. freudenreichii that is

used in the commercial production of vitamin B12.

Lactobacillus reuteri CRL1098 was shown to be the first

LAB strain able to produce a cobalamin-like compound

with an absorption spectrum closely resembling that of

standard cobalamin but with a different elution time,

while cobalamin production was confirmed using differ-

ent bioassays [50]. However, the biological activity of this

pseudovitamin B12 is still not clear.

Genetic evidence of cobalamin biosynthesis by L. reuteri
CRL 1098 was then obtained and it was shown that at

least 30 genes are involved in the de novo synthesis of the

vitamin (Figure 3). The genetic organization (cob and cbi
genes) are very similar to those of Salmonella enterica and

Listeria innocua [51]. Recently, the genetic pathway

responsible of the de novo synthesis of vitamin B12 by

L. reuteri was described for two L. reuteri strains [52].

One distinctive characteristic of the cob cluster of L. reuteri
is the presence of hem genes in the middle of the cluster.

In the respiratory organisms Listeria and Salmonella with

similar cob clusters, the hem genes are located at a different

position on their genome. The presence of the hem genes

in the cob cluster is a characteristic that has only been

observed in certain genomes of Clostridium [53]. Recently,

the transcription of a vast set of genes involved in coba-

lamin synthesis in sourdough prepared with strain L.

reuteri ATCC 55730 was described [54].

In addition to strain CRL1098, other L. reuteri strains were

shown to be capable of producing some corrinoids such as

L. reuteri DCM 20016 [55], JCM1112 [36] and CRL 1324

and 1327, strains isolated from human vagina [56].

Recently, a reuterin-producing strain of L. coryniformis
was shown to produce a cobalamin-type compound [57].

Notably, propionibacteria and L. reuteri normally occur in

the human intestine and may thus (partially) fulfil the

vitamin B12 requirement of the host.

Biosynthesis of other B-group vitamins

Besides riboflavin, folate and vitamin B12, increased levels

of other B-group vitamins, for example, niacin and pyr-

idoxine, have been reported for certain LAB used in

yoghurt, cheese, and fermentations [58,59]. For example,

increases in thiamine and pyridoxine concentration were
Current Opinion in Biotechnology 2013, 24:160–168 
demonstrated as a result of soy fermentation with Strepto-
coccus thermophilus ST5 and Lactobacillus helveticus R0052, or

B. longum R0175 [60].

De novo synthesis of vitamin K by gut bacteria

Vitamin K acts as a co-factor for the enzyme that converts

specific glutamyl residues in a limited number of proteins

to g-carboxyglutamyl (Gla) residues. The daily require-

ment for vitamin K is fulfilled by dietary phylloquinone

that is present in plants, and, to an undetermined extent,

by bacterially produced polyisoprenyl-containing com-

pounds known as menaquinones synthesized in the

human gut [61]. However, menaquinone synthesis may

not be fully dependent on the gut microbiota as animals

lacking a gut microbiota can still produce menaquinone

[62].

Human gut microbiome and vitamin biosynthesis

Although whole genome sequencing and assembly have

historically been used for the study of single organisms,

recent reports have shown the validity of this approach to

investigate mixed microbial communities [2,63,64]. In

this context, sampling genetic information of the human

gut microbiota, also known as human gut microbiome,

allowed us to obtain insights into the genetic features of

enteric bacteria [64]. In order to delineate if and to what

extent the enteric microbiome provides physiological

features that were not evolved by its human host, the

metabolic potential of microbial sequences was analysed

through the classification of all identified microbial genes

based on the Kyoto Encyclopedia of Genes and Genomes

as well as the Clustered Orthologous Groups (COG).

These analyses showed that the distal gut microbiome

of two subjects is enriched for a variety of COGs involved

in synthesis of essential amino acids and vitamins, such as

those required for the synthesis of deoxyxylulose 5-phos-

phate (DXP), a precursor of the vitamins thiamine and

pyrodoxal [64]. Recently, the combination of 22 newly

sequenced faecal metagenomes of individuals from four

countries allowed the identification of three robust clus-

ters, named enterotypes, which are not nation or con-

tinent-specific [65��]. Notably, vitamin metabolism

pathways were shown to be highly represented in all

enterotypes, while two enterotypes were particularly

enriched in genes that specify the biosynthetic enzymes

for biotin, riboflavin, pantothenate, ascorbate, thiamine

and folate production. These phylogenetic and functional

differences among enterotypes thus reflect different com-

binations of microbial trophic chains with a probable

impact on synergistic interrelations with the human host

[65��].

Recently, transcriptomic studies directed to explore upre-

gulated genes of bifidobacteria residing in faecal samples

of adult subjects identified the presence of bifidobacterial

genes predicted to be involved in the biosynthesis of

several B-vitamins and folate that are highly expressed
www.sciencedirect.com
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Figure 3
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among various lactobacilli. Panel c depicts the presumed metabolic pathway followed for the cobalamin biosynthesis in certain lactobacilli.
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when bifidobacteria are in their natural ecological niche

[66–68]. Since it is nearly impossible to quantify or

demonstrate vitamin production by individual organisms

of the human microbiome using traditional methods (e.g.

HPLC, microbiological assays), these and other ‘omics’

approaches can provide evidence for such in situ vitamin

production, while also allowing the development of meth-

odologies to increase their production.

Conclusions
The increase of B-group vitamin concentrations in fer-

mented/functional foods is possible through judicious

selection of microbial species and cultivation conditions.

It is expected that the food industry will exploit novel and

efficient vitamin-producing strains to produce fermented

products. Such products are expected to provide

economic benefits to food manufacturers since increased

‘natural’ vitamin concentrations would be an important

value-added trait without increasing production costs.

With the expanding availability of genome sequences it is

not only possible to identify potential vitamin-producing

strains, but also to understand the intertwined mechanisms

for their biosynthesis, all of which will be exploited to

increase the vitamin producing capacities in the GIT of

humans.
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