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The acoustic field in the liquid within a spherical solid shell is calculated. The proposed model takes
into account Stoke’s wave equation in the viscous fluid, the membrane theory to describe the solid
shell motion and the energy loss through the external couplings of the system. A point source at the
resonator center is included to reproduce the acoustic emission of a sonoluminescence bubble.
Particular calculations of the resulting acoustic field are performed for viscous liquids of interest in
single bubble sonoluminescence. The model reveals that in case of radially symmetric modes of low
frequency, the quality factor is mainly determined by the acoustic energy flowing through the
mechanical coupling of the resonator. Alternatively, for high frequency modes the quality factor is
mainly determined by the viscous dissipation in the liquid. Furthermore, the interaction between the
bubble acoustic emission and the resonator modes is analyzed. It was found that the bubble acoustic
emission produces local maxima in the resonator response. The calculated amplitudes and relative
phases of the harmonics constituting the bubble acoustic environment can be used to improve
multi-frequency driving in sonoluminescence.
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I. INTRODUCTION

Liquid-filled resonant systems with simple symmetrical
shapes are extensively used in basic and applied investiga-
tion areas. The eigenfrequencies of the spherical shells and
fluid-filled spherical resonators have been studied in
detail.1–3 In particular, the radially symmetric modes of
spherical acoustic resonators have been traditionally applied
in the study of thermophysical properties of fluids3 and more
recently in single bubble sonoluminescence �SBSL�.4 This is
due to the significant practical advantages of the radially
symmetric modes: Resonances have high quality factor �Q�,
their resonance frequencies are first-order insensitive to geo-
metrical imperfections of the solid shell,3 and resonance
widths of these non-degenerate modes are determined by the
energy balance �i.e., the Q of the mode�. In contrast, the
degeneracy of the non-radially symmetric modes is lifted by
boundary shape perturbations.3 Thus, the resulting resonance
widths depend of the geometrical imperfections and trans-
ducer properties as well as the Q. With regard to SBSL, the
radially symmetric modes allow to drive a SL bubble at high
acoustic pressures at the resonator center.

Recently researches in SBSL have been carried out us-
ing high viscosity liquids,5–8 with values in the range 25–200
times the water viscosity. These studies have shown that liq-
uid viscosity produces relevant effects on SBSL stability:
shift of the Rayleigh–Taylor boundary stability9 and genera-
tion of quasiperiodic bubble trajectories.10,11 In addition, the
bubble acoustic emission is constituted by harmonics of the
driving frequency. The resulting harmonics from the interac-
tion with the resonant system produces strong effects on the
bubble stability and SL intensity.12–14 In the scientific litera-

ture the non-linear bubble dynamic have been numerically
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modeled.9,15,16 The excitation of high frequency modes of the
resonator due to the outgoing shock wave produced by the
bubble collapses have been experimentally observed.13,14

The effect of the observed higher harmonics over the bubble
stability has been numerically calculated.13 However, there
are missing calculations about the amplitudes and relative
phases of the harmonics constituting the bubble acoustic en-
vironment nor how are they related to the liquid and solid
shell properties. We believe that this kind of analysis is es-
sential to understand and improve the multi-frequency driv-
ing in SBSL.8,12,17 Moreover, understanding of the acoustic
field far from the bubble within the resonator is important in
SL researches because it allows performing non-invasive
measurements of the resonant system. Such measurements
are relevant for SBSL experiments that use chemically ag-
gressive liquids such as sulfuric acid �SA� or phosphoric acid
�PA� aqueous solutions. In this work we propose a model to
describe the acoustic field, far from the bubble. The approach
developed here is focused on four major points of interest:
�1� The effect of the liquid viscosity, �2� the acoustic energy
balance in the resonant system, �3� the effect of elastic prop-
erties of the spherical shell, and �4� the interaction between
the bubble acoustic emission and the radially symmetric
modes of the spherical resonator.

II. SYSTEM DESCRIPTION

Figure 1 shows the cross section of the resonant system.
The viscous liquid fills the spherical solid thin shell which is
surrounded by the gaseous medium of infinite extension. The
two cylindrical ducts are joined to the spherical shell in dia-

metrically opposed positions. These ducts are the filling ports
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and the mechanical support of the actual resonator. Thus, the
resonator is coupled to the external world through the gas-
eous medium as well as the cylindrical ducts.

III. ANALYTICAL MODEL FORMULATION

In this section we describe the equations for the resonant
system. We considered displacements in the liquid and de-
formations in the solid shell that are small enough to be well
described by linear equations. Thus, the acoustic waves in
the viscous fluid are characterized by Stoke’s wave
equation:18–20

�2p

�t2 − �2�d ·
�p

�t
+ c0

2 · p� = 0. �1�

In Eq. �1�, t is the time, �2 is the Laplacian operator, p is the
excess pressure, c0 is the speed of sound in the fluid in ab-
sence of viscous loss, and d is the dissipative coefficient. The
latter is related to the dynamic viscosity �, coefficient of
bulk viscosity �, and fluid density �0 as follows:20,21 d=�
+ �4 /3� · �� /�0�. The bulk viscosity becomes relevant in case
of big deformations like non-linear propagation of shock
waves.21 Therefore, for the linear acoustic model we have
taken Stoke’s assumption:22 �=0.

A. Linear boundary value problem for the
axisymmetric vibration of the spherical resonator

Taking into account the spherical coordinates of Fig. 1,
the solution for the axisymmetric case �all derivatives with
respect to � vanish� can be written in the factorized form

p�r,�,t� = F�r� · E��� · D�t� . �2�

By imposing the boundary condition that E��� and
�E��� /�� are finite at the extremes ��=0; �=��, the solu-
tions for the permanent time-harmonic evolution are well
known:

D�t� = ei·�·t,

Em��� =
1

m ·
dm

m �x2 − 1�m, x = cos��� ,

FIG. 1. Cross section of the acoustic resonator.
2 · m! dx
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Fm�r� = C1 · jm�k · r� + C2 · ym�k · r� , �3�

where D�t� is the temporal evolution, i is imaginary unity, �
is the angular frequency, Em��� are the Legendre polynomi-
als �Rodrigues formula� with m=0,1 ,2 , . . ., and Fm�r� is a
linear combination of the mth-order spherical Bessel func-
tions �jm and ym�. The separation constant k is the dispersion
relation:

k =
� · �c0

2 − i · � · d

�c0
4 + d2 · �2

=
�

c
+ i · � . �4�

From Eq. �4� we obtain the attenuation coefficient �, the
phase speed c, and the propagation coefficient 	=� /c. It is
possible to identify a characteristic frequency of the viscous
fluid:19 �v=c0

2 /d. In defining the normalized frequency �N

=� /�v, the normalized coefficients are as follows:19,20 �N

=� ·d /c0, 	N=	 ·d /c0, and cN=�N /	N=c /c0. In case of �N


1 �wave propagation behavior�, we have ��N���N
2 , 	N

��N, and cN	1, whereas �N�1 �diffusive behavior� pro-
duces ��N����N, 	N���N, and cN���N �see Fig. 1 in Ref.
20�.

The boundary condition in the fluid-solid interface is
given by the dynamic of the solid shell. For small enough
thickness to radius ratios, the thin shell approximation can be
assumed and the membrane theory is applicable.23,24 In con-
sidering the axisymmetric motion of the spherical shell with-
out the ducts, the equations for the shell motion are1

�N�

��
+ N� cot��� − N� cot��� + r0 · YT

= r0 · �shell · h ·
�2

�t2 ,

N� + N� + r0 · YR = r0 · �shell · h ·
�2�

�t2 , �5�

where h is the shell thickness, r0 is the mean radius of the
spherical shell, �shell is the density of the solid, �� , t� and
��� , t� are the tangential and radial displacements, respec-
tively. The external loads �forces per unit area� are YR and YT

for radial and tangential directions, respectively. The magni-
tudes of normal forces per unit length are

N� =
E · h

r0 · �1 − �2�
· 
 �

��
− � + � · � cot��� − ��� ,

N� =
E · h

r0 · �1 − �2�
· 
 cot��� − � + � · 
 �

��
− ��� , �6�

where E is the Young modulus and � is the Poisson ratio.
Substituting Eq. �5� into Eq. �6� we obtain a system of two
differential equations in term of the tangential and radial dis-
placements. Equations �1�–�6� describe the axisymmetric
modes of the fluid-filled spherical shell. The proper boundary
conditions are displacement equalization in the liquid-shell
interface and finite pressure amplitude at the resonator cen-

ter, i.e., C2=0 �Eq. �3��.
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B. Linear boundary value problem for the radially
symmetric modes of the spherical resonator

In Sec. III E, we model a spatially stable SL bubble by
considering a point source at the resonator center. Thus, the
system has radial symmetry. So, henceforth we focus our
study on the radially symmetric modes.

In an irrotational field, the excess pressure p and the

radial velocity �̇=�� /�t are related to the velocity potential �
by the following equations:19

�̇ = − �̄� ,

�0 ·
��

�t
= p +

d

c0
2 ·

�p

�t
. �7�

In case of radial symmetry �all derivatives with respect to �
and � vanish� and assuming permanent time-harmonic de-
pendence, the solution of Eq. �1� can be obtained applying
variable separation:

pliq = F�r� · ei·�·t, �8�

where the agreement is that the excess pressure corresponds
to the real part of the right-hand side of Eq. �8�. Replacing
Eq. �8� into Eq. �1� produces the Helmholtz equation in case
of radial symmetry:

F +
�c0

2 + i · � · d�
�2 · 
2

r
· F� + F�� = 0. �9�

In previous equation, F��r� and F��r� are the first and second
spatial derivatives of the function F�r�. The two independent
solutions of Eq. �9� are ei·k·r /r, e−i·k·r /r. The dispersion rela-
tion k is given by Eq. �4�. The solution of Eq. �9� is obtained
by the superposition of its independent solutions:

pliq = 
A+ ·
e−i·kliq·r

r
+ A− ·

ei·kliq·r

r
� · ei·�·t = pliq

+ + pliq
− , �10�

where pliq
+ is the pressure wave flowing from the resonator

center and pliq
− is the reflected pressure wave flowing from

the outer liquid-shell interface. To obtain the standing wave
solution in the liquid within the resonator, we introduce the
finite condition in the origin, accordingly the solution of Eq.
�9� is

pliq = Aliq · j0�kliq · r� · ei·�·t, �11�

where j0�kliq ·r� is the zero-order spherical Bessel function.
The solution of Eq. �1� in case of a traveling longitudinal

wave in the gaseous medium surrounding the resonator is

pg = Ag ·
e−i·kg·r

r
· ei·�·t = Ag · Fg�r� · ei·�·t. �12�

In previous equations Aliq and Ag are the complex magni-
tudes independent of the radial and time coordinates.

The displacement, velocity, and acceleration of the liq-
uid and the gaseous medium can be obtained by replacing
Eqs. �11� and �12� into Eq. �7�. We define the external exci-
tation as pe�t�= Pe ·ei·�·t which is radially symmetric and
time-harmonic with frequency f =� / �2·�� and amplitude Pe.

Thus, considering no tangential deformations and purely ra-
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dial external load for the boundary condition at the fluid-
solid interface, we have �� , t�=0, YT=0, YR= pliq�Ri , t�
− pg�Re , t�− pe�t�. Thus, Eqs. �5� and �6� produce

�̈shell · �shell · h +
2 · E · h

�1 − �� · r0
2 · �shell − pliq�Ri,t� + pg�Re,t�

= − pe�t� . �13�

Equation �13� is the balance of radial forces acting on a
surface element of the spherical shell, where �shell�t�=

�shell ·e
i·�·t and �̈shell�t� are the radial displacement and accel-

eration of the shell, respectively, pliq�Ri , t� is the excess liq-
uid pressure on the spherical wall, and pg�Re , t� is the excess
pressure of the external gaseous medium evaluated at the
external radius Re. Finally, according to the thin shell ap-
proximation, we introduce the equalization of displacements
at the fluid-solid interfaces:

�shell�t� = �liq�Ri,t� = �g�Re,t� . �14�

In case of inviscid fluids �dliq=dg=0� and pe�t�=0, Eq. �13�
reduces to a standard eigenvalue problem. As a result, the
solution is an infinite set of non-harmonic eigenfrequencies.
Alternatively, if pliq�Ri , t�= pg�Re , t�= pe�t�=0 Eq. �13� re-
duces to the dynamic equation of the empty spherical thin
shell in vacuum. Under these conditions, the fundamental
frequency of the shell �i.e., the eigenfrequency of the breath-
ing mode� is of the form

fshell =
1

2 · �
·

1

r0
·� 2 · E

�shell · �1 − ��
. �15�

Substituting Eqs. �11� and �12� into Eq. �13� with Ag satisfy-
ing Eq. �14� produces an expression for the coefficient Aliq as
a function of the excitation amplitude Pe and frequency, �,
as well as the resonator parameters. Thus, the resulting com-
plex coefficient Aliq properly fits displacements and pressures
to satisfy the required boundary condition in the fluid-solid
interface. We have performed a particular calculation for the
typical resonator parameters described in Sec. IV. In consid-
ering Eq. �13� for the boundary condition of the resonant
system, i.e., the liquid filled spherical shell without ducts, the
model predicts Q	104 for the first radially symmetric mode
�j0,1�. On the other hand, the measured Q in the correspond-
ing actual resonator was about 300 in case of the first mode
�sixth column of Table II�. This discrepancy motivated us to
consider the effect of the ducts joined to the spherical shell.
What follows is the analysis of the acoustic energy balance
of the resonant system. We eliminate the time-harmonic de-

pendence ei·�·t and multiply Eq. �13� by �̇
shell
* /2, where �̇

shell
*

is the complex conjugate of the shell velocity. As a result, we
obtain an expression of second order quantities all of which
are time averaged powers. Integrating the resulting equation
over the surface of the shell and taking into account Eq. �14�,
we obtain the following balance equation for the complex

acoustic power:
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i · 2 · � · 
1

4
· �shell · ��̇shell�2� · h · Sshell

− i · 2 · � · 
1

4
·

2 · E

�1 − �� · r0
2 · ��shell�2� · h · Sshell

−
pliq�Ri� · �̇liq

* �Ri�

2
· Sshell +

pg�Re� · �̇
g
*�Re�

2
· Sshell

= −
Pe · �̇shell

*

2
· Sshell. �16�

In Eq. �16�, Sshell is the surface of the spherical shell. The real
�imaginary� parts of terms in Eq. �16� are time averaged
active �reactive� acoustic powers. On the left hand side, the
first and second terms are the kinetic and potential energy
rates of the shell respectively, where 2 ·� is the frequency of
the second order quantities and i implies reactive power. The
real part of the third term is the active acoustic power flow-
ing inward the liquid, namely, the viscous dissipation rate in
the liquid. The real part of the fourth term is the active
acoustic power transmitted to the external gaseous medium.
The real part of the term on the right-hand side is the active
acoustic power supplied by the external excitation and it is
flowing inward the liquid. Now, we shall consider the effect
of the energy loss through the liquid within the two cylindri-
cal ducts. The solution of Eq. �1� in case of cylindrical co-
ordinates, and neglecting variations in pressure along the ra-
dial coordinate of the duct is

pcyl
+ = Acyl · e−i·kliq·ẑ · ei·�·t = pcyl

+ �ẑ� · ei·�·t. �17�

Previous equation is the proper solution for a traveling wave
along ẑ direction in the liquid within the cylindrical ducts
�see Fig. 1�. Particle displacements and velocities of the liq-
uid within the ducts are obtained by substituting Eq. �17� in
Eq. �7�. In the shell-duct interface a multi-dimensional analy-
sis is required. Results of this analysis are often implicitly
incorporated into the classic lumped parameter Helmholtz
resonator model �i.e., low frequency model in case of �
�2·Rcyl�, resulting in an “effective duct length.” In the
present work we are interested in modes of high frequency.
Therefore, the resulting wavelengths are not large as com-
pared to the diameter of the ducts. The resonant system must
be considered as one having distributed constants.25 Hence,
the particle velocity and acoustic pressure into the ducts can
be written as the transmitted waves through the shell-duct
interface:

pcyl
+ �0,t� = pliq

+ �Ri,t� − �r · pliq
− �Ri,t� ,

�̇cyl
+ �0,t� = �̇liq

+ �Ri,t� − �r · �̇liq
− �Ri,t� . �18�

In previous equation �r=A− /A+ is the reflection coefficient at
the shell-duct interface. The distributed acoustic impedances
of the spherical and plane waves are defined as follows25

Zspherical�r� =
pliq

+ + pliq
−

4 · � · r2 · ��̇+ + �̇− �
,

liq liq
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Zplane�ẑ� =
pcyl

+ + pcyl
−

Scyl · ��̇cyl
+ + �̇cyl

− �
, �19�

where Scyl is the internal cross sectional area of the cylindri-
cal ducts. The reflection coefficient �r is obtained by equal-
izing the distributed acoustic impedances at the shell-duct
interface: Zspherical�Ri�=Zplane�0� and considering no reflected

wave at the outer end of ducts �pcyl= pcyl
+ , �̇cyl= �̇cyl

+ �. As a
result, from Eq. �18� we obtain the pressure and radial ve-
locity to calculate the acoustic power flowing into the two
liquid cylinders:

pcyl�0,t� · �̇cyl
* �0,t�

2
· 2 · Scyl. �20�

The effective stiffness of the mechanical coupling for hori-
zontal and vertical motions will produce different effect on
the different resonance modes.2 In case of the resonator de-
picted in Fig. 1, the ducts are the mechanical support of the
resonant system. These ducts are joined to the spherical shell
to form a single piece of quartz. Therefore, we have assumed
that vibrations of the spherical shell transmit and propagate
through the ducts. We also assume perfect acoustic imped-
ance matching at the outer end of the ducts. Note that the no
reflection condition at the outer end of the ducts could cause
underestimated Q values from the model. The time averaged
acoustic power flowing through the ducts wall can be written
as

Dduct = �shell · cshell ·
��̇duct�2

2
· 2 · Sduct, �21�

where Sduct is the cross sectional area of the duct wall, and

�̇duct=Aduct ·e
i·�·�t−ẑ/cshell� is the velocity of the duct wall in the

direction ŷ. Referring to Fig. 1, ŷ and ẑ are the coordinates
defining the directions of motion and propagation of the
waves in the duct wall, respectively. Since the vibration is
produced by the shell motion, we assume the equalization of

the velocities at the shell-duct junction: �̇duct�0, t�= �̇shell�t�. In
case of transverse waves in the duct wall, we have cshell

2

=�shell /�shell, where the Lamé elastic constant for the isotro-
pic case is �shell=E / �2· �1+���.

We include the effect of the energy loss through the
cylindrical ducts by adding Eqs. �20� and �21� into Eq. �16�.
Thus, eliminating the factor �̇

shell
* /2 from the resulting equa-

tion, we obtain the boundary condition in the fluid-solid in-
terface that satisfies the power balance:

�̈liq�Ri,t� · �shell · h +
2 · E · h

�1 − �� · r0
2 · �liq�Ri,t� − pliq�Ri,t�

+ pg�Re,t� + pcyl�0,t� ·
�̇cyl

* �0,t�

�̇shell
* �t�

·
2 · Scyl

Sshell

+ �shell · cshell · �̇shell�t� ·
2 · Sduct

Sshell
= − pe�t� . �22�
From Eqs. �14�, �18�, and �22�, we obtain the expression of
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the complex coefficient Aliq that satisfies the boundary con-
ditions of the spherical shell including the ducts.

C. Quality factor

In order to determine the Q of the radially symmetric
modes as a function of the system parameters, we shall iden-
tify the energy components of the system.

1. Energy in the liquid

The time averaged potential and kinetic energy densities
in the liquid are19

U + T =
1

4 · �0 · c0
2 · �pliq�2 +

�0

4
· ��̇liq�2. �23�

The total time averaged energy stored in the liquid within the
resonator can be calculated as

Eliq = �
0

Ri

�U + T� · 4 · � · r2 · dr . �24�

In order to obtain Eliq we have numerically integrated Eq.
�24� using the standard Simpson method �O��r�4�.

2. Energy in the spherical shell

We assume that the energy losses in the solid shell are
negligible. Therefore, the time averaged total energy in the
solid shell can be written as

Eshell = �1

4
·

2 · E

�1 − �� · r0
2 · ��shell�2

+
1

4
· �shell · ��̇shell�2� · Sshell · h . �25�

3. Viscous dissipation in the liquid

The equalization between the viscous dissipation rate
into the liquid and the flux of acoustic energy inward the
liquid is written as Dv= �Iliq�Ri�� ·Sshell, where Iliq�Ri� is the
time averaged acoustic intensity inward the liquid, and Dv is
the time averaged energy loss rate due to viscous effects.

4. Energy flowing to the external medium

The acoustic energy rate transmitted to the gaseous me-
dium can be written as Dg= �Ig�Re�� ·Sshell, where Ig�Re� is the
time averaged acoustic intensity in the gaseous medium and
Dg is the time averaged energy rate transmitted to the gas-
eous medium.

5. Energy flowing through the two cylindrical ducts

The acoustic energy rate transmitted into the liquid
within the two cylindrical ducts joined to the spherical shell
is Dcyl=2 · �Icyl�0�� ·Scyl, where Icyl�0� is the time averaged
acoustic intensity in the liquid within the cylindrical ducts
and Dcyl is the time averaged energy rate transmitted into the
cylindrical ducts.

The time averaged acoustic energy rate transmitted by

the transversal waves of the ducts wall Dduct is given by Eq.
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�21�. In case of time-harmonic dependences and frequency
�=2·� /T, we can compute the time averaged acoustic in-
tensities Iliq�Ri�, Ig�Re�, and Icyl�0� as follows: I�x��
=Rep�x�� · �̇*�x�� /2�, where I�x�� is the time averaged acoustic

intensity at a point x�, and p�x�� and �̇�x�� are the acoustic
pressure and velocity, respectively. Finally, the quality factor
results to26

Q =
2 · �

T
·

�Eliq + Eshell�
�Dg + Dv + Dcyl + Dduct�

. �26�

D. Linear value problem for a periodic point source in
an unboundary domain

In this section, we define the equations to describe the
acoustic emission of the point source. In order to reproduce
the outgoing shock wave produced by the bubble collapses,
we consider the point source as one emitting periodic in time
pressure pulses. If the acoustic emission in the time period T
is defined by the function pb�t�, Stoke’s wave equation in
case of radial symmetry including the proper non-
homogeneous term results to

�2p

�t2 −
1

r2 ·
�

�r

r2 ·

�

�r

d ·

�p

�t
+ c0

2 · p��
=

��r�
4 · � · r2 · �pb�t� � �T�t − ���, ∀ r � 0. �27�

The spatial location of the point source is defined by the
Dirac delta function ��r�. In Eq. �27�, the symbol � denotes
convolution in time. The periodic nature of the pressure
pulses is defined by the periodic impulses �T�t−��, where �
is the temporal lag. The time dependent factor of the right-
hand side of Eq. �27� can be written in series form by repre-
senting the periodic impulses �T�t−�� in Fourier series and
then applying the Fourier transform:

pb�t� � �T�t − �� =
1

T
· �

n=0

�

Sn · Pb��n� · ei·�n·�t−��,

Sn = �1 ∀n = 0

2 ∀n � 0
� , �28�

where Pb���=�−�
� pb�t� ·e−i·�·t ·dt is the Fourier transform of

the acoustic emission pb�t�, and �n=n ·2 ·� /T is the angular
frequency of the nth harmonic component. It is essential to
note that the acoustic emission of the point source is consti-
tuted by harmonics of the fundamental frequency �1

=2 ·� /T, which is defined by the temporal interval �T� be-
tween pulse occurrences. Taking into account the free space
boundary conditions, the particular solution for a single har-
monic component of Eq. �27� can be written in the factorized

i·�n·�t−��
form pn=Gn�r� ·e . Substituting into Eq. �27� produces
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− �n
2 · Gn�r� − �c0

2 + i · �n · d� · �2

r
· Gn��r� + Gn��r��

=
��r�

4 · � · r2 · Sn ·
Pb��n�

T
, ∀ r � 0. �29�

We obtain the solution of Eq. �29� by applying the bilateral
Fourier transform20,27 over the radius r:

Gn�r� = Sn ·
Pb��n�

T
· 
 kn

�n
�2

·
e−i·kn·r

4 · � · r
, ∀ r � 0, �30�

where kn is the complex wave number for the nth harmonic
component �Eq. �4��. The resulting acoustic pressure emitted
from the point source in the free space is obtained by super-
position of the harmonic solutions:

p = �
n=0

�

Gn�r� · ei·�n·�t−��, ∀ r � 0. �31�

E. Linear boundary value problem for the spherical
resonator including the point source in its
center

The linear model approximation for the resonator in-
cluding the bubble is valid since the non-linear propagation
of the outgoing shock wave, produced by the bubble col-
lapse, vanishes within few microns from the bubble.

The linear model for the spherical resonator with a point
source in its center is described by Eqs. �27� and �28� in
conjunction with the proper boundary conditions. The most
general solution of Eq. �27� is constituted by the sum of the
homogeneous �Eq. �11�� and particular �Eq. �30�� solutions.19

Disregarding the spectral component in n=0 the general so-
lution can be written as

pliq = �
n=1

�

�Aliq,n · j0,n�kliq,n · r�

+ Gliq,n�r� · e−i·�n·�� · ei·�n·t, ∀ r � 0. �32�

In Eq. �32�, the exponent �n ·� is the phase shift between the
acoustic emission of the point source and the external exci-
tation pe�t�.

The boundary conditions for the harmonic components
of Eq. �32� are given by Eqs. �13� and �14� in considering the
spherical shell without the ducts. Eqs. �14�, �18�, and �22� are
the boundary conditions that include the effect of the ducts
joined to the spherical shell. Thus, the complex coefficient
Aliq,n ensures that Eq. �32� satisfies the required boundary
conditions for the harmonic components. We consider a
time-harmonic driving pressure of frequency f0,1, where f0,1

is the eigenfrequency of the first radially symmetric mode
�j0,1�. Since the frequency of the driving defines the acoustic
emission period of the point source �T=1 / f0,1�, the harmonic
frequencies of Eq. �28� results to �n=n ·2 ·� · f0,1. Then, the
excitation term of Eqs. �13� and �22� is defined as Pe,n�t�

i·�n·t
=�1n · Pe ·e , where �1n is the Kronecker delta.
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IV. PARTICULAR CALCULATIONS

We shall focus the calculations in a set of common val-
ues for system parameters in sonoluminescence. We consider
a quartz made spherical shell whose physical properties are
density �shell=2200 kg /m3. Young’s modulus E=7.306
�1010 Pa, and Poisson’s ratio �=0.171. The geometrical pa-
rameters are the external radius Re=Ri+h=29.2 mm, shell
and wall ducts thickness h=0.9 mm and the internal radius
of the cylindrical ducts Rcyl=3 mm. Table I summarizes the
physical properties of viscous fluids considered in the reso-
nant system.

In Table I, the fourth and fifth rows correspond to the
sulfuric acid aqueous solution in cases of 85% and 98% in
weight concentrations, respectively. The last row corre-
sponds to phosphoric acid 100%. We consider the spherical
shell surrounded by air as the infinite external medium.

For thickness-to-radius ratios up to approximately 0.01
the results from the membrane approximation are superim-
posed with those of the full theory.23 This approximation still
provide a quantitatively accurate representation for the geo-
metrical values listed above, which produce h /r0	0.03.

V. RESULTS AND DISCUSSION

In the following calculations, we have obtained the ex-
cess pressure in the liquid using Eq. �11�. The displacements,
velocity and acceleration of the fluid are given by Eq. �7�.
The boundary condition of the system is stated by Eqs. �14�,
�18�, and �22�, i.e., the spherical shell including the cylindri-
cal ducts. We have considered the four liquids listed in
Table I as filling fluids of the spherical shell. In case of
water and SA 85% wt. aq. solution, the eigenfrequencies of
the first mode �j0,1� are listed in the fourth and fifth rows of
Table II, respectively, whereas the calculated eigenfrequen-
cies for the 50th radially symmetric mode �j0,50� ranging up
to 1.5 MHz. In regard to external excitation, the time aver-
aged active acoustic power supplied to the system We

=RePe · �̇
shell
* /2� ·Sshell was remained constant in the whole

range of frequency.

A. Spectra of the resonator

In case of water and SA 85% wt. aq. solution, Fig. 2
shows the amplitude �relative to the first mode j0,1� and
phase �relative to the driving� of the shell acceleration as a
function of the driving frequency. As expected, we obtain
maximum amplitudes and 180° phase shifts at the reso-
nances. Besides, the eigenfrequencies of the system are

TABLE I. Liquid properties.

Fluid
Density �0

�kg /m3�
Viscosity �

�Pa�s�
Sound speed c0

�m/s�

Air 1.2 1.877�10−5 340
Water 1000 1.002�10−3 1482

SA 85% wt. 1778.6 0.015 1473
SA 98% wt. 1831 0.0254 1470

PA 100% 1836 0.14 1500
mainly determined by the mean radius of the shell �r0� and
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the sound speed in the liquid �c0�. Thus, for the first 50
radially symmetric modes, a frequency difference less than
5% have been found among the eigenfrequencies corre-
sponding to the four liquids listed in Table I.

If we take into account no solid shell �h→0�, no gas-
eous external medium �pg=0�, and no external excitation
�pe=0�, the boundary condition stated in Eq. �13� assumes
the form pliq�Ri , t�=0. In considering an inviscid liquid, the
latter equation leads obtaining the natural modes for the sys-
tem which we refer to as the liquid sphere in vacuum. In such
a system we obtain a set of harmonic eigenfrequencies
for the radially symmetric modes �n ·c0 / �2·Ri��. On the other
hand, taking into account a solid spherical shell of finite
thickness h, the balance of forces at the liquid-shell inter-

face is given by �̈shell ·�shell ·h+�shell ·2 ·E ·h / ��1−�� ·r0
2�−

pliq�Ri , t�=0. As a consequence, a set of non-harmonic eigen-
frequencies for the radially symmetric modes is obtained.
Therefore, the boundary condition given by Eq. �22� pro-
duces a set of non-harmonic eigenfrequencies �Fig. 2� due to
the elastic properties of the solid shell.

In Fig. 3 the pressure amplitudes relative to the first
mode �j0,1� are displayed in decibel units. Figure 3�a� corre-
sponds to the pressure amplitudes at the resonator center.
Figure 3�b� shows the pressure amplitudes on the shell. In
case of the four liquids, Fig. 3�b� shows a local minimum in
the relative amplitude of the acoustic pressure at the second

TABLE II. Measured and calculated data for spheric

Spherical shell properties Liquid

Fr
�ca

Pyrexa

�OD=60 mm; h=0.9 mm� Water 28

Pyrexb

�OD=89 mm; h=0.25 mm� SA 85% wt. 33

Quartz
�OD=58.4 mm; h=0.9 mm� Water 29

Quartz
�OD=58.4 mm; h=0.9 mm� SA 85% wt. 28

aReference 28.
bReference 8.
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FIG. 2. Relative amplitude and phase of the shell acceleration as a function
of the driving frequency. �a� Amplitude relative to the first mode j0,1. �b�
Phase relative to the driving. Gray filled and black dashed lines correspond

to water and SA 85% wt. aq. solution, respectively.
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mode �j0,2�. We found that the eigenfrequency of the second
mode �f0,2� is the closest to the eigenfrequency of the shell
fshell=49.551 kHz �Eq. �15��. As a consequence, in the sec-
ond mode the minimum liquid-shell interaction occurs. This
behavior is interesting when the resonator is driven at high
acoustic pressures and cavitations on the spherical wall must
be avoided. In general, the difference between fshell and the
eigenfrequencies of the resonator mainly depends of the elas-
tic shell properties as well as the sound speed in the liquid.
As we will explain in Sec. V B, the liquid within the cylin-
drical ducts have poor effect on the resonances of the system.
Therefore, the relative amplitudes of the pressure shown in
Figs. 2 and 3 are mainly determined by the dissipative coef-
ficient of the liquid �d� and the solid shell elastic properties.

B. Quality factor

Figure 4 shows the quality factor and the energy loss
rates as functions of the mode number. The quality factor
was calculated by two methods: �1� determining the width of
the resonances at 1 /�2 of the maximum pressure amplitude
evaluated at the resonator center and �2� performing the en-
ergy balance stated in Eq. �26�. The model was consistent
with these two calculation methods. We found that, in case of
low frequencies, the energy balance of the system is mainly
determined by the acoustic energy loss through the duct wall.
Alternatively, in case of high frequencies, the dominant en-
ergy loss is due to the viscous dissipation in the liquid. The
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energy loss through the air and the liquid within the ducts are
negligible in almost the whole range of frequency of Fig. 4.

Figure 4�b� shows the energy loss rates in case of PA
100%. The relative values of the acoustic power were ob-
tained as 10 log10�energy loss rate /We�. Figure 4�a� shows
that Q values have a maximum when the viscous dissipation
in the liquid becomes dominant �vertical dotted line in Fig.
4� and the total energy stored in the liquid �not shown� reach
the maximum. Besides, as the viscosity of the liquid de-
creases the viscous dissipation into the liquid becomes domi-
nant at higher frequencies. Thus, the maximum Q values
shifts to higher frequencies in turn.

Table II summarizes the experimental values of the fre-
quencies and Q’s for the radially symmetric modes of quartz
and Pyrex made spherical resonators. The eigenfrequencies
of the system were determined by trapping a SL bubble at the
resonator center. The temperature of the resonant system was
controlled during each measurement. Fourth column of Table
II shows the difference between the calculated and measured
eigenfrequencies. The calculated Q values listed in the fourth
and fifth rows of Table II correspond to the first radially
symmetric modes shown in Fig. 4�a�.

In considering the liquid filled spherical shell without
ducts, the model predicts Q	104 for the first radially sym-
metric mode �j0,1�. Then, in modeling the radially symmetric
modes we include the effect of the ducts in terms of the
energy balance. Equation �22� is the boundary condition that
includes the acoustic energy losses through the ducts. In this
case, the model predicts more realistic Q values. The calcu-
lated and experimental data are listed in fifth and sixth col-
umns of Table II, respectively. Since the acoustic impedance
matching at the end of the ducts depends of the particular
experimental conditions, it is not currently contained in the
analytical model �perfect acoustic impedance matching is as-
sumed�. Thus, the quality factor values shown in Fig. 4�a� act
as a lower bound for the Q’s of the actual resonator. Though
these Q values are somewhat underestimated due to model
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FIG. 4. �a� Quality factor as a function of the mode number: Dots, triangles,
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100%, respectively. �b� Energy loss rates in case of PA 100%: Energy loss
rate through the duct wall �filled line�, viscous dissipations rate in the liquid
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energy rate flowing through the liquid within the two cylindrical ducts �dot-
ted line�. The vertical dotted line highlights that the maximum Q value
occurs when the viscous dissipation in the liquid equalizes the energy loss
rate through the duct wall.
limitations, it is clear that the energy loss rate through the
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mechanical coupling is the mechanism that limits the Q of
the system at low frequencies. At higher frequencies, the
viscous dissipation in the liquid becomes dominant in the
energy balance of the system and the duct effect turns not
important �Fig. 4�b��.

C. Relative phase

In a typical SBSL experiment, the acoustic pressure at
the resonator center is usually inferred from the acoustic ac-
celeration at the shell wall.7,28 The latter can be measured by
non-invasive methods �e.g., PZT transducer glued on the
shell wall�. We define the phase shift as the relative phase
between the liquid acceleration at the liquid-shell interface

�̈liq�Ri , t� �i.e., the shell acceleration� and the acoustic pres-
sure at the resonator center pliq�0, t�. Figure 5 shows the
phase shift as a function of the mode number.

In considering the liquid sphere in vacuum �as defined in
Sec. V A�, the spatial profile of the acoustic pressure for the
nth radially symmetric mode �j0,n� has n spherical nodal sur-
faces �pliq=0�. Besides, the surface of the liquid sphere is
one of those nodal surfaces of the pressure �pliq�Ri , t�=0�.
Furthermore, the phase shift for odd and even mode numbers
is 0° and 180°, respectively. On the other hand, taking into
account a solid spherical shell of finite thickness h, an exter-
nal gaseous medium, and a radially symmetric and time-
harmonic external excitation, the liquid pressure does not
vanish at the liquid-shell interface and the balance stated in
Eq. �13� is satisfied instead. Moreover, the phase shift re-
mains the same as the previous case. Then, in considering a
viscous liquid, the phase shift for odd and even mode num-
bers increases from 0° and 180°, respectively, with increas-
ing viscosity and increasing frequency, as shown in Fig. 5.

D. Resonator including the point source

Regardless the resonator shape, the SL bubble is affected
by a complex pressure field. This acoustic field results from
the superposition of the driving pressure and its harmonics.
The former is the standing wave produced by the external
excitation; the latter results from the interaction between the
bubble acoustic emission and the resonator response. We
shall calculate the resulting harmonics of the acoustic field in
case of the spherical resonator.

The SL bubble can be considered as a spatially stable
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acoustic source trapped at the resonator center provided low
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driving acoustic pressures. The limits for the driving pressure
amplitude are the Rayleigh–Taylor boundary stability in case
of water28 and the Bjerknes �positional� boundary stability in
case of SA 85% wt.7

The pressure in the liquid due to the isotropic volumetric
oscillations of the bubble is obtained from the compressible
Navier–Stokes equation.4 Besides, purely radial sound field
around the bubble is assumed4 and viscous stresses are ne-
glected. As a result, the excess pressure in the liquid can be
written as4,26

pb�r,t� = �liq · 
R

r
· �R̈ · R + 2 · Ṙ2� −

1

2
· 
R

r
�4

· Ṙ2� ,

�33�

where R, Ṙ and R̈ are the radius, velocity and acceleration of
the bubble wall respectively.

The bubble dynamics is determined by the local com-
plex pressure field surrounding the bubble where the liquid
may be considered incompressible and non-linear inertia
forces, because of the convective accelerations, are
essential.16 In considering the far field of the bubble acoustic
emission, we may approximate the bubble dynamics by as-
suming purely sinusoidal driving pressure. In the field far
from the bubble �r�R�, the weak compressibility of the liq-
uid is essential, and the non-linear convective terms in the
mass and momentum conservation equations are negligibly
small.16 Thus, the field far from the bubble implies negligible
non-linear effects in the resulting acoustic emission from the
bubble collapses. In this work, the dynamics of the SL
bubble was obtained using a comprehensive numerical
model based on the Keller version of the Rayleigh-Plessett
equation generalized for non-equilibrium condensation-
evaporation mass transfer at the bubble interface �see Refs. 9
and 15�. In case of SA 85% wt. aq. solution due to the fact
that the vapor pressure of the solution consists of water va-
por, we have used the accommodation coefficient of water.7,9

Moreover, in all cases presented here we have used argon as
the dissolved gas in the liquid.

For SBSL in water, the non-linear propagation of the
shock wave occurs within of about 5–200 �m from the
bubble.29–32 For larger radii the emitted pressure pulse is
broadened by the spherical spreading mainly. In case of SA
and PA aq. solutions, it is expected that non-linear propaga-

TABLE III. Calculated parameters for SL and non-S

Case Bubble conditions
No. of photon
per SL pulse

1
Non-SL in water

R0=3.5 �m; Pa=1.1 atm.
0

2
SL in water

R0=3.5 �m; Pa=1.19 atm.
7.2�105

3
Non-SL in SA 85% wt.
R0=8 �m; Pa=1.1 atm.

0

4
SL in SA 85% wt.

R0=8 �m; Pa=1.33 atm.
2.6�106
tion vanishes at minor radii due to the higher viscosity of
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these liquids. Our conservative criterion to avoid the non-
linear propagation effects was to calculate the pressure pulse
to be included in Eq. �27� using Eq. �33� in case of r
=2.5 mm �i.e., the far field from the bubble r�R�: pb�t�
= �pb�r , t��r=2.5 mm. Table III shows the calculations for SL and
non-SL bubbles in case of water and SA 85% wt. The ambi-
ent radius �R0� and acoustic pressure �Pa� values shown in
Table III corresponds to typical bubble parameters observed
in SBSL experiments for water28 and SA 85% wt.7 Fourth
and fifth columns of Table III show the amplitude and full
width at half maximum �FWHM� of the emitted pressure
pulse, respectively. Both parameters have been calculated at
r=2.5 mm from the bubble center. The amplitude of the
emitted pressure pulse in case of a SL bubble in water �Case
2 of Table III� is consistent with the experimental data re-
ported in Ref. 31. On the other hand, the calculated FWHM
underestimates the experimental data of Refs. 31 and 33. The
discrepancy in the FWHM may be due to limitations in the
model used to calculate the pressure pulse �Eq. �33��. In all
calculations presented here, we have included the acoustic
emission corresponding to a complete cycle of the bubble
dynamics, i.e., the main collapse and subsequent rebounds.

In considering the bubble at the resonator center, the
amplitude of the driving pe�t� was set to produce the Pa

values listed in Table III. The frequency of the driving was
set to the eigenfrequency of the first radially symmetric
mode of the resonator �f0,1 listed in fourth and fifth rows of
Table II�. The harmonics of the acoustic field were calculated
using Eq. �32� and taking into account the boundary condi-
tion given by Eq. �22�.

Figure 6�a� shows the temporal evolution of the bubble
wall �R�t�� in case of the SL bubble in SA 85% wt. �case 4 of
Table III�. The acoustic emission from the bubble collapses
pb�t� is also shown in Fig. 6�a� for a complete period of the
bubble dynamics. Figure 6�b� shows the resulting acoustic
pressure calculated at r=2.5 mm from the resonator center.
The complex pressure field shown in Fig. 6�b� is constituted
by harmonics from the driving wave extending up to
1000f0,1	30 MHz. It is important to note that a bandwidth
of about 150 MHz it is required to fully resolve the calcu-
lated pulse temporal width in case of the SL bubble in SA
85% wt. �FWHM=6.97 ns�. However, Fig. 6�b� allows com-
parison of the relative amplitudes of the outgoing and refo-
cused pressure pulses for both the main collapse �C1�, and

bles in case of water and SA 85% wt.

r=2.5 mm r=Ri

THD of the shell acceleration
�for a bandwidth of 1.5 MHz�

ressure
�atm�

FWHM
�ns�

0.0151 63.4 �0.1%

1.1 1.88 2.4%

0.066 131.2 2.2%

2.25 6.97 59.3%
L bub

s P
the first rebound �C2�.
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In our range of frequency, we have �
�v for the four
liquid listed in Table I. As a consequence, the phase speed is
c=� /	�c0. So, the reflected pressure pulses �produced by
the main collapse C1� do not suffer significant viscous at-
tenuation or spreading in time such that weaker secondary
reflection occurs. Moreover, in case of the SL bubble in wa-
ter �not shown� and SA 85% wt., the pressure pulses due to
the bubble rebounds �i.e., C2 in Fig. 6 for SA 85% wt.� have
small amplitudes even below the amplitude of weaker sec-
ondary reflections due to C1. This is consistent with the ex-
perimental observations of Ref. 29 for SBSL in case of water
and cylindrical symmetry.

In the region near the bubble the non-linear propagation
of the shock wave occurs at high Mach numbers.29–32 After
this short distance �of the order of hundreds of microns�, the
speed of the pressure pulse is c0 and the pulse propagates to
the outer liquid-shell interface, reflects, and moves inward
again. Thus, the refocused pulse reaches the bubble again
about 2Ri /c0 seconds after leaving it. Besides, due to the
boundary condition imposed by the elastic solid shell, we
obtain 1 / f0,1�2Ri /c0 for the first radially symmetric mode
of the resonator. As a consequence, the refocused pressure
pulse reaches the bubble after its maximum compression
stage. Moreover, in considering the spherical shape perturba-
tions of the actual solid shells, the distorted reflected pres-
sure pulse could cause significant disturbances in the bubble
spatial stability. This effect could be very significant in case
of the SL bubble in SA 85% wt. due to the higher amplitude
of the emitted shock wave as compared to that of the SL
bubble in water �see fourth column of Table III�. It is impor-
tant to note that in the calculations presented here the tem-
poral evolution of the bubble dynamics do not account for
the reflected pulses at the liquid-shell interface.

As described in Sec. V A, in the second radially sym-
metric mode of the resonator, the minimum liquid-shell in-
teraction occurs. Besides, we have found that the eigenfre-
quency of the second mode produces 1 / f0,2	Ri /c0. As a
consequence, the refocused pressure pulse reaches the bubble
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FIG. 6. �a� Normalized temporal evolution of the bubble wall �black line� in
case of the SL bubble in SA 85% wt. �case 4 of Table III�. The radius was
normalized with Rmax=35.4 �m. The emitted pressure from the bubble dy-
namics was calculated at r=2.5 mm from the bubble �gray line�. The pres-
sure was normalized with Pmax=2.25 atm. �b� Pressure field at r=2.5 mm
from the resonator center. The resulting pressure is constituted by the har-
monics from the driving wave �f0,1 listed in the fifth row of Table II� ex-
tending up to 1000f0,1	30 MHz. Secondary reflections are due to C1.
just about its maximum compression stage. In such a condi-
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tion, the refocused pressure pulses could contribute to en-
hance the intensity of the bubble main collapse. This behav-
ior also occurs for high frequency modes in which
eigenfrequencies �f0,n� are close to n ·c0 /2·Ri asymptotically
�i.e., large n values�.

Figure 7 shows the amplitude relative to the driving for
harmonics of the acoustic pressure at r=2.5 mm from the
point source �resonator center�. In Fig. 7 the harmonic am-
plitudes are given from the driving wave extending up to
50f0,1	1.5 MHz. In case of water and SA 85% wt., the har-
monics have large amplitudes of 20 dB below that of the
driving. This amplitude values are consistent with the experi-
mental results stated in Ref. 13 for a SL bubble in water
�cylindrical resonator�. In addition, for non-SL bubbles
�cases 1 and 3�, the harmonics have large amplitudes of
about 40 dB below that of the driving.

Figures 8 and 9 show the amplitude relative to the driv-
ing for the harmonics of the shell acceleration in case of
water and SA 85% wt., respectively. We define �f as the
frequency difference between the harmonic of the driving
and the closest eigenfrequency of the resonator. Harmonics
that produce minimum ��f � have maximum amplitude be-
cause they produce maximum resonator response. This fact
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FIG. 8. �Higher graph� Relative amplitude of the shell acceleration as a
function of the harmonic number �n� in case of the water filled resonator.
Case 1: Non-SL bubble. Case 2: SL bubble �see Table III�. �Lower graph�
Frequency difference ��f� as a function of the harmonic number �n�. The
parameter �f is defined as the frequency difference between the harmonic of

the driving �n · f0,1� and the closest eigenfrequency of the resonator.
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can be understood taking into account that the acoustic emis-
sion of the point source �Eq. �28�� is constituted by harmon-
ics of the driving �n · f0,1�. Therefore, a minimum ��f �=
�n · f0,1− f0,m� implies maximum mode excitation of the cor-
responding eigenfrequency f0,m. We emphasize that, due to
the symmetry of the system, only radially symmetric modes
have been considered.

Figure 8 �case 2� shows that the acceleration has large
amplitudes of 20 dB below the driving, and Fig. 9 �case 4�
show that the acceleration has large amplitudes of 7 dB be-
low the driving. Accordingly, the fourth column of Table III
shows that the pressure pulse amplitude for the case 4 is
about twice the amplitude of the case 2.

The large amplitudes of the harmonics are mainly deter-
mined by the intensity of the bubble acoustic emission. On
the other hand, the frequency and relative amplitude of the
peaks �local maxima of the harmonic amplitudes� shown in
Figs. 8 and 9 are determined by the properties of the acoustic
resonator �mainly by the liquid and solid shell properties�
and are insensitive to the Q of the resonator. This is due to
the fact that as the quality factor increases, the eigenfre-
quency of the modes remains almost unchanged and so the
frequency difference �f . Then, compensation occurs be-
tween decreasing full-width half-power bandwidth �Q� and
increasing amplitude of the mode responses.

The decay of the acceleration amplitude as a function of
��f � �not shown� is approximately potential. For the harmon-
ics in which ��f � �1.5 kHz we obtain a maximum resonator
response �peaks in Figs. 8 and 9�. In case of SA 85% wt.,
Fig. 10 shows that the phase of the shell acceleration relative
to the driving has small phase shift between adjacent har-
monics of the driving and phase jumps at the local maxima
of the resonator response �peaks in higher graphs of Figs. 9
and 10�. Moreover, the phase shifts between adjacent har-
monics are larger in case of the SL bubble. This behavior is
related with higher intensity of the acoustic emission from
the SL bubble.

We have calculated the resulting total harmonic distor-

tion �THD=�n=2
50 ��̈shell,n�2 / ��̈shell,1�2� of the shell acceleration
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FIG. 9. �Higher graph� Relative amplitude of the shell acceleration as a
function of the harmonic number in case of SA 85% wt. Case 3: Non-SL
bubble. Case 4: SL bubble �see Table III�. �Lower graph� Frequency differ-
ence ��f� as a function of the harmonic number �n�. The parameter �f is
defined as the frequency difference between the harmonic of the driving
�n · f0,1� and the closest eigenfrequency of the resonator.
extending up to the 50th harmonic of the driving �50f0,1
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	1.5 MHz�. The THD values are listed in the sixth column
of Table III. In case of water, the non-SL bubble produces a
negligible THD. On the other hand, the SL bubble in SA
85% wt. produces a THD about 20 times higher than that of
the SL bubble in water. These results are consistent with
observations of the signal from the typical PZT transducer
�microphone� glued to the resonator wall.7,8,28

VI. SUMMARY AND CONCLUSIONS

An analytical model for a spherical resonator has been
described. The eigenfrequencies and quality factors of the
radially symmetric modes have been calculated from j0,1 up
to j0,50. In case of the first and second radially symmetric
modes, we have obtained a good agreement with the experi-
mental data in terms of the eigenfrequencies as well as the Q.

The model reveals that in case of low frequency mode,
the quality factor is mainly determined by the acoustic en-
ergy flowing through the mechanical coupling of the resona-
tor. Then, the exact prediction of the Q value depends on the
details of the external mechanical coupling of the system. On
the other hand, for high frequency modes the quality factor is
mainly determined by the viscous dissipation in the liquid
and the effect of the mechanical couplings turns not impor-
tant. Besides, we found that the liquid viscosity produces a
phase shift between the shell acceleration and the pressure at
the resonator center. This phase shift is relevant in case of
large viscosity and high frequency modes.

We have used a numerical model to obtain the bubble
dynamics and the acoustic emission in case of water and SA
85% wt. aqueous solution. The calculations have shown
good agreement with the observed amplitude of the outgoing
shock wave from the main collapse of a SL bubble in water.
On the other hand, the calculated FWHM of the shock wave
underestimates the experimental data. It was found that the
pressure pulse amplitude from the main collapse of a typical
SL bubble in SA 85% wt. is about twice the amplitude ob-
tained in case of a SL bubble in water. The model predicts a
FWHM of the outgoing shock wave about four times greater
in case of a SL bubble in SA 85% wt. than of the SL bubble
in water.

We found that the reflected pressure pulses produced by
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FIG. 10. Amplitude �higher graph� and phase �lower graph� of the shell
acceleration relative to the driving as functions of the harmonic number for
the SL and non-SL bubbles in case of SA 85% wt. The relative phase is
normalized in the range 0–360°.
the main collapse do not suffer significant viscous attenua-
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tion or spreading in time such that weaker secondary reflec-
tions occur. Moreover, in case of the SL bubble in water and
SA 85% wt., the pressure pulses due to the bubble rebounds
have small amplitudes even below the amplitude of weaker
secondary reflections due to the main collapse. In consider-
ing the SL bubble driving at the eigenfrequency of the first
mode, the model predicts that the converging pressure pulses
reflected at the spherical shell do not affect the dynamics of
the bubble main collapse. This is due to the delayed arrival
of the refocused pulse relative to the bubble main collapse.
On the other hand, by modifying the properties of either the
solid shell or the liquid of the resonator, the arrival time of
the refocused pulse relative to the bubble main collapse can
be adjusted. This mechanism could be used to enhance the
intensity of the bubble main collapse.

We also found that for the radially symmetric mode
whose eigenfrequency is very close to the eigenfrequency of
the elastic shell, the minimum liquid-shell interaction occurs.
Moreover, the eigenfrequency of this mode is very close to
the corresponding eigenfrequency of the liquid sphere with-
out the solid shell. As a consequence, if the SL bubble is
driven at the eigenfrequency of this mode, the refocused
pressure pulse reaches the bubble just about its maximum
compression stage. This behavior also occurs for high fre-
quency modes of the resonator.

The complex acoustic field in the liquid of the resonator
results from the superposition of the driving pressure and its
harmonics. The former is the standing wave produced by the
external excitation; the latter results from the interaction be-
tween the bubble acoustic emission and the resonator re-
sponse. We found that the relative amplitude of the harmon-
ics as a function of the harmonic number shows peaks �i.e.,
local maximum amplitudes�. A local maximum of the har-
monic amplitude occurs when the harmonic of the driving
produces minimum frequency difference with an eigenfre-
quency of the resonator. The frequency and relative ampli-
tude of the local maximum amplitudes of the harmonics are
determined by the properties of the acoustic resonator
�mainly by the liquid and solid shell properties�. On the other
hand, the large amplitudes of the harmonics are mainly de-
termined by the intensity of the bubble acoustic emission.

Under the scope of the energy concentration maximiza-
tion, a remaining challenge is to develop a model for the
calculation of the bubble dynamics accounting for the re-
flected shock waves.
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