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High-Frequency Digital Lock-In Amplifier
Using Random Sampling

Maximiliano O. Sonnaillon, Member, IEEE, Raúl Urteaga, and Fabián J. Bonetto

Abstract—A high-frequency digital lock-in amplifier (LIA) that
uses a random-sampling scheme is proposed and tested exper-
imentally in this paper. By using this sampling strategy, it is
possible to process, without aliasing effects, periodic signals of
frequencies that are several times higher than the Nyquist fre-
quency. Analytical and numerical analyses that show the ad-
vantages and limitations of the proposed scheme are presented.
A high-frequency digital LIA implementation is also described.
The prototype maximum sampling frequency is 150 kHz, and its
maximum signal frequency without aliasing is 2.5 MHz, limited
only by the random-sampling period quantization. Experimental
results that validate the proposal are presented.

Index Terms—Digital-signal processing, high-frequency instru-
mentation, lock-in amplifiers (LIAs), random sampling, synchro-
nous detection.

I. INTRODUCTION

LOCK-IN amplifiers (LIAs) are measurement instruments
widely used in science and engineering. They can accu-

rately measure low-level signals, even in the presence of high
noise levels. LIAs use synchronous detection, so the input-
signal frequency must be locked to a reference that is used to
carry out the measurements [1].

Traditional LIAs are built with analog electronics, but mod-
ern ones use digital-signal processors (DSPs) to compute the
measurement algorithms. When using standard digital-signal-
processing techniques (i.e., uniform sampling), the input signal
must be sampled at more than twice the maximum frequency
present in the analog spectrum in order to avoid aliasing effects,
as stated in the sampling theorem [2].

If the frequency of the reference signal is in the range of a
few hundred kilohertz, the required sampling frequency can be
reached with current technology of analog-to-digital converters
(ADCs) and DSPs. Modern LIAs are fully implemented with
digital electronics in frequency ranges from dc to 2 MHz [3],
[4]. However, if the input frequency is higher (more than a few
megahertz), the technological limitations of the ADCs and the
DSPs make the implementation of a complete digital LIA of
this frequency range not practical or at least not economically
convenient. For instance, a commercial high-frequency LIA is
built with mixed analog and digital electronics [5].
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In this paper, a different approach to perform the digital-
signal processing of an LIA is proposed. The input signal
is sampled and processed at random-sampling times [6]. The
advantages and limitations of the random-sampling scheme
are demonstrated analytically, and these results are validated
with numerical simulations. A high-frequency LIA prototype
is implemented, and representative tests are presented as an
application example of the proposed scheme.

When the samples are taken at random instants, the sampling
frequency can be reduced below the frequency imposed by the
sampling theorem, without the aliasing effects that certainly
occurs with uniform sampling [6], [7]. Hence, the ADC speed
requirements and DSP processing requirements can be reduced.
The sample-and-hold (S/H) device analog bandwidth limits the
maximum operating frequency, mainly due to its acquisition
time. The present technology of S/H devices sets a very high-
frequency limitation (e.g., [8]).

It is worth noting that the random-sampling scheme has
significant benefits with respect to traditional undersampling
schemes, such as equivalent-time sampling used in digital oscil-
loscopes, which are based on uniform sampling. The uniform-
sampling schemes are not able to distinguish between the
aliased frequencies. Therefore, these types of techniques can
only be applied when the frequency spectrum of the measured
signal is previously known, and no aliasing effects will affect
the measurement.

In previous works, random-sampling strategies were applied
to different types of instruments to avoid aliasing effects when
sampling below the Nyquist frequency. In [9], an applica-
tion of a random-sampling scheme for dc-signal measure-
ment is demonstrated analytically and tested experimentally.
However, in [9], the frequency limitation imposed by the
random-sampling period quantization is not evaluated. A simi-
lar sampling scheme is applied to a digital wattmeter [10] and a
harmonic analyzer [11]. The digital-signal processing required
for these instruments is different from the processing needed in
a digital LIA. The signal-processing algorithms of a digital LIA
with uniform sampling are described in [12].

This paper is organized as follows. First, the processing
algorithms of a basic LIA are briefly presented. In Section III,
the random-sampling scheme is defined, and the absence of
aliasing effects is demonstrated for frequencies up to a maxi-
mum limit, which is given by the quantization of the random-
time generation. In Section IV, an experimental prototype of the
proposed LIA is described. Advantages and limitations of the
proposed scheme are demonstrated with experimental results.
Finally, the authors’ conclusions are presented.
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II. BASIC LIA

An LIA uses a reference signal that can be generated by the
same instrument or can be generated externally. In the latter,
the LIA uses a phase-locked loop (PLL) to internally generate
a low-distortion sinusoidal waveform with the same frequency
and phase of the input reference. A general expression of the
internal reference is

r(t) = sin(2πf0t). (1)

The input signal i(t) is composed of a sinusoidal signal of
frequency f0 added to a function n(t) that represents noise and
harmonic distortion

i(t) = A sin(2πf0t + θ) + n(t) (2)

where A is the input-signal amplitude, and θ is its phase with
respect to the reference. The LIA amplifies and multiplies
the input signal by the in-phase and quadrature (shifted 90◦)
components of the reference

pp(t) = i(t)rp(t)

=
1
2
A cos(θ) − 1

2
A cos(4πf0t + θ) + np(t) (3)

pq(t) = i(t)rq(t)

=
1
2
A sin(θ) +

1
2
A sin(4πf0t + θ) + nq(t) (4)

where rp and rq represent the in-phase and quadrature refer-
ences, respectively, and np and nq represent the noise functions
after the products.

The ac components of (3) and (4) are filtered out by using
low-pass filters (LPFs) in order to estimate the dc values.
Hence, two signals with measurements of the in-phase and
quadrature components of the input signal are obtained

X = 2pp ≈ A cos(θ)

Y = 2pq ≈ A sin(θ). (5)

Thus, the magnitude and phase of the input signal with
respect to the reference can be computed. White noise and fre-
quency components close to f0 introduce measurement errors.
These errors can be reduced by lowering the cutoff frequency
of the LPF (incrementing the measurement time).

III. LIA WITH RANDOM SAMPLING

The proposed sampling scheme is called additive random
sampling [6] or recursive random sampling [10]. The input

signal is sampled at random time instants defined by the fol-
lowing expression:

ti+1 = ti + Ti =
i∑

j=1

Tj (6)

where ti is the ith sampling instant, and Ti is the ith random
period defined by

Ti = (M + ri)δ (7)

where δ is the minimum time step, which is a constant that
represents a hardware limitation (e.g., due to the random time
generator or the S/H synchronization). The value of Mδ is the
minimum sampling interval that depends mainly on the ADC
and processing times, and ri is a random integer number with
uniform probability density function (pdf) in the interval [0, R].
The maximum sampling period is given by (M + R)δ.

The digital LIA samples the input signal (2) at times ti.
Then, it multiplies the input by the internal in-phase and
quadrature references, obtaining the sampled versions of (3)
and (4).

By Fourier series, an arbitrary time-limited (or periodic)
signal can be represented by an infinite sum of sine waves.
Knowing that the lock-in measurement has a finite duration, the
noise signal in (2) can be represented by

n(t) =
∞∑

k=0

ak cos(2πfkt + θk). (8)

Using (8), (3) and (4) can be also represented by a sum of a
dc value and cosine functions

p(ti)=D + B1 cos(2πf1ti + θ1)+B2 cos(2πf2ti + θ2) + · · ·
(9)

where D is the dc component. Bi, fi, and θi are arbitrary am-
plitudes, frequencies, and phases, respectively. The LIA must
measure D and reject all the ac signals. For this reason, the case
of a dc value plus a single generic cosine function is considered
in the analysis. This cosine function has arbitrary frequency f ,
magnitude B, and phase θ. For the special case of f = 2f0, the
magnitude and phase values (B and θ) are the result of the sum
of the fixed frequency sine wave of (3) and (4) and the generic
noise component at this particular frequency. By linearity, the
results are valid for the sum of several cosine functions. Hence,
the generic signal to be analyzed, called x(ti), is

x(ti) = D + B cos(2πfti + θ + φ). (10)

In (10), φ is a random variable with uniform pdf in the
interval [−π, π] that represents the phase shift of the sine wave
with respect to the initial sampling time of the LIA filter.
Therefore, θ has no influence and can be removed.

A simple digital LIA takes n consecutive samples (e.g., the
last n samples) and computes a moving average filter (MAF)
for each component (in-phase and quadrature). This filter is
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optimum for filtering random noise with a given settling time
[2]. The outputs will be given by an expression like

on =
1
n

n∑
k=1

x(tk) (11)

where tk are the random instants, which depend on all the
previous random periods given by (7).

In [9], a similar sampling scheme is evaluated for measuring
dc signals. However, the minimum time-step limitation is not
considered. This limitation is significant in high-frequency
systems. The following analysis is similar and demonstrates
that the expected value of the filter is the dc value.

Replacing (6) and (10) in (11), we get

on =
1
n

n∑
k=1


D + B cos


2πf

k∑
j=1

Tj + φ





 . (12)

To demonstrate that the MAF is an unbiased estimator of the
dc value, the expected value of the output is computed as

E{on}=
∞∑

r1=−∞

∞∑
r2=−∞

· · ·
∞∑

rn=−∞

∞∫
−∞

on · fφ,r1,r2,...,rn
dφ (13)

where fφ,r1,r2,...,rn
is the joint pdf of on. Since the random vari-

ables are statistically independent, the joint pdf is the product
of the individual pdfs. Replacing (12) in (13), we obtain

E{on} = D +
1

2π(R + 1)n

R∑
r1=0

R∑
r2=0

· · ·
R∑

rn=0

π∫
−π

1
n

×
n∑

k=1

B cos


2πf

k∑
j=1

(M + rj)δ + φ


 dφ. (14)

The integral in φ vanishes for any value of R, δ, m, and n.
Hence, the expected value of the MAF is

E{on} = D. (15)

This result proves that the MAF is an unbiased estimator
of the dc value D, including the case of uniform sampling
when R = 0. The value of the variance is computed in order to
analyze the performance of the sampling scheme with different
values of the constants R, δ, M , and n and the arbitrary
frequency f . The variance is given by

σ2
n = E

{
o2

n

}
− (E{on})2 (16)

where

E
{
o2

n

}
=

1
2π(R+1)n

R∑
r1=0

R∑
r2=0

· · ·
R∑

rn=0

π∫
−π

1
n

×


 n∑

k=1


D+B cos


2πf

k∑
j=1

(M+rj)δ+φ










2

dφ.

(17)

Fig. 1. Normalized variance as a function of frequency with n = 100.
(a) R = 0 (MSF ≈ 1.67 MHz). (b) R = 10 (MSF = 625 kHz). (c) R = 100
(MSF ≈ 94 kHz).

After mathematical simplifications, this expression can be
normalized in relation to B2/2 to obtain

σ2
n =

1
n

+
2
n2

n−1∑
k=1

(n − k)

× cos (kπf(2M + R)δ)
[
sin (fπ(R + 1)δ)
sin(fπδ)(R + 1)

]k

. (18)

For the case of uniform sampling (R = 0), (18) is reduced to

σ2
n =

1
n

+
2
n2

n−1∑
k=1

(n − k) cos(k2πMδf). (19)

When the frequency f has integer multiples of the sampling
period Mδ, the expected square of the error is maximum
(aliasing effect).

In the limit case of infinitesimal time steps (δ → 0), (18) is
simplified to the equation obtained in [9]

σ2
n =

1
n

+
2
n2

n−1∑
k=1

(n − k)

× cos (kπf(2Tmin + Trnd)) [sinc(fπTrnd)]k (20)

where Tmin is the minimum sampling interval, and Trnd is the
maximum random value of Tk.

In the case of R �= 0 (random sampling), the ideal aliasing
limitation is only due to the minimum time step δ. When
frequency f is an integer multiple of 1/δ, the variance is
maximum (aliasing effect). Fig. 1 shows the variance for
n = 100, M = 3, δ = 200 ns, and three different values of
R. The extension of the maximum working frequency with-
out aliasing is evident in the cases of R = 10 and 100. The
increment in R reduces the mean sampling frequency (MSF)
and, thus, relaxes the processing-speed requirements. The max-
imums peaks (σn = 1) in uniform sampling represent the alias-
ing of the spectrum. Besides, the integral of the variance in a
frequency band gives an idea of the total noise energy for a
given value of n. In Fig. 1, this integral between 0 and 5 MHz is
equal for the three different values of R. With random sampling,
the normalized variance can be reduced by incrementing the
number of averaged points (n); thus, the noise floor can be
reduced as low as is desired. The increment of the number of



SONNAILLON et al.: HIGH-FREQUENCY DIGITAL LOCK-IN AMPLIFIER USING RANDOM SAMPLING 619

Fig. 2. Numerical computation of the normalized variance for the case of
R = 10 as compared with the previously shown analytical result.

Fig. 3. Block diagram of the complete system.

averaged points can be achieved with a longer measurement
time or a higher MSF.

Fig. 2 shows numerical computations of the normalized vari-
ance for the previous case of R = 10, superimposed with the
analytical curve [see (18)]. The expected values were computed
by performing a big enough number of numerical experiments
(500). Similar results are obtained for other values of the
parameters R, δ, M , and n, validating the analytical results.

IV. PROTOTYPE IMPLEMENTATION

A. Hardware

The implemented prototype of the LIA is based on a 40-MHz
32-b floating-point DSP from Analog Devices (ADSP-21061)
[13]. This DSP is mounted on an evaluation board (model
EZKIT-Lite). In Fig. 3, a block diagram of the complete system
is shown.

The unknown system is excited by a sine wave generated
by a direct digital synthesizer (DDS) circuit from Analog
Devices (AD9850). This DDS has a 10-b DAC and supports a
maximum clock frequency of 125 MHz. The output frequency
is programmed by the DSP through a serial port.

The DDS is followed by a smoothing filter, which is com-
posed by a five-pole Chebyshev LC filter. A wide-bandwidth
low-noise operational amplifier (OPA350) is used at the output
stage.

The input stage uses the same operational amplifier. A 16-b
ADC from Texas Instruments is used (ADS8342) for digitizing
the LIA input signal. The most important features of the ADC
are the input bandwidth, which depends mainly on the S/H
circuit, and the frequency of the clock that synchronizes the

ADC conversions. The ADS8342 has an input bandwidth of
16 MHz at −3 dB. The minimum conversion time is 4 µs,
and the maximum clock frequency is 5 MHz. This frequency
sets the maximum frequency limit of the instrument operating
without aliasing by imposing the minimum value of δ.

The digital circuit shown in the figure divides the main
clock signal (40 MHz) by eight, generating a 5-MHz
clock that synchronizes the ADC sampling times. The circuit
also has a 6-b presetable counter whose input clock is the same
5-MHz signal. This frequency establishes a quantization time of
δ = 200 ns in the sampling periods. The DSP generates integer
random numbers from 0 to 15 (random variable r) that are
loaded to the external counter. The minimum period is 33 cycles
(Mδ = 6.6 µs), which is limited, in this case, by the processing
time. Therefore, the random-sampling periods varies from 33 to
48 clock cycles (6.6–9.6 µs).

The end-of-count signal starts each ADC conversion. When
the conversion is finished, the ADC generates an external inter-
rupt request in the DSP. The interrupt service routine generates
a new random period and processes the last sample converted
by the ADC, which is read through a 16-b data bus.

The switch shown in the block diagram is implemented using
a relay. This allows bypassing the unknown system in order to
measure the response of the LIA analog circuits, as described
in the next section.

B. Software

The LIA software implemented in the DSP has two main
routines: One is the initialization routine, which is run when the
instrument is powered on, and the second is the external inter-
rupt service, which is generated by the ADC end-of-conversion
signal. This routine performs the following tasks.

1) Generation of the pseudorandom numbers for the sam-
pling periods: A precalculated table with 2000 elements is
used repeatedly (the table size is limited by the available
internal memory).

2) Generation of the internal reference signals in phase and
quadrature: A 64-element table with a precalculated sine
function is used. Linear interpolation is used to compute
the intermediate values.

The main clock synchronizes both the DDS and the
ADC sampling times. The references are generated inter-
nally by the DSP by using the same algorithm as the one
used internally by the DDS for synthesizing the signals.
Thus, the signals generated by the DDS and the DSP
(internally) have exactly the same frequency, and a PLL
is not necessary.

3) Lock-in algorithm: The input signal is multiplied by the
two internal references evaluated exactly at the same
instant. The results are accumulated to compute the
n-point average. When a big number of samples are
added to the same variable, the truncation error of the
32-b word can be significant. In order to avoid this error,
cascaded accumulators are used to compute the averages.
The resultant values are stored in a buffer, which is later
read by a personal computer.
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Fig. 4. Measured frequency response of the RC circuit and the ideal RC curve
that fits the experimental data.

4) Output reference programming: When the LIA is per-
forming a variable-frequency measurement, the DDS is
programmed periodically to change its output frequency.

When the measurement of each frequency is started, the
LIA makes a calibration measurement. Here, the response of
the LIA analog circuits (e.g., ADC, DAC, and amplifiers) is
measured by connecting the LIA output signal directly to its
input [12]. After this measurement, the relay connects the LIA
input to the unknown system, and the LIA performs a second
measurement. With both measurements, a frequency-domain
division is computed (equivalent to a deconvolution in the time
domain) in order to obtain the response of the unknown system
without influence of the LIA analog circuits.

V. EXPERIMENTAL RESULTS

In order to experimentally validate the proposed LIA, two
different tests are shown. The first is the measurement of the
frequency response of a first-order LPF (RC network). The
second test is an experimental verification that the performance
of the proposed LIA is not influenced by aliasing effects.

In Fig. 4, the measured magnitude and phase responses of
the RC circuit are shown for a frequency spectrum from 10 Hz
to 2.5 MHz. The ideal frequency response is plotted for com-
parison. This ideal curve is the analytical representation of the
circuit, with an RC constant that minimizes the mean-square
error of the measurements. At high frequencies (above 1 MHz),
the measured response does not fit exactly the ideal one. This
can be attributed to the parasitic impedance components of the
capacitors and resistors.

The second experimental test was carried out by operat-
ing the LIA with a fixed reference frequency (100 kHz) and
varying the input signal between 5 and 500 kHz with 1-kHz
steps. At the output, an averaging of n = 250 000 points
was used.

The measurement shown in the first plot of Fig. 5 was taken
with the LIA working with uniform sampling (125 kHz). This
sampling scheme produces the expected aliasing effect that is
evident in the figure. The LIA cannot differentiate the 100-kHz

Fig. 5. LIA response to a frequency scan. The top plot shows the LIA response
working with uniform sampling (125 ksps) and the bottom plot shows the
response of the LIA working with random sampling (123 kHz of MSF). The
internal reference frequency is 100 kHz.

signal with respect to the aliased frequencies (e.g., 25, 150, 225,
125 k ± 25 kHz, with k ∈ N). In addition, other minor peaks
are present in the figure (−50 dB). These are produced by the
aliasing of the second harmonic of the input signal because of
a slight distortion in the generated sinusoidal waveform. These
peaks are placed at frequencies of (125 k ± 25)/2 kHz with
k ∈ N, k ≥ 3.

In the second plot of Fig. 5, the same measurement, with the
LIA working with the proposed random-sampling scheme, is
shown. The MSF is 123 kHz. The only frequency that the LIA
detects is 100 kHz, without aliasing in any frequency of the
spectrum. The noise level present in the other frequencies can
be reduced by increasing the number of averaged points (n).

VI. CONCLUSION

A high-frequency fully digital LIA based on random sam-
pling is proposed in this paper. The analysis presented shows
that the LIA algorithms can be computed by using random-
ized signal processing. It is demonstrated that the maximum
working frequency can be several times higher than the Nyquist
frequency given by the sampling theorem. In addition, it is
demonstrated that the maximum frequency is limited by the
minimum time step of the random-time generation.

The implemented high-frequency digital LIA prototype val-
idates the theoretical results. It is shown that the implemented
LIA can measure at much higher frequencies than the maxi-
mum sampling frequency without errors produced by aliasing.
As in a traditional LIA, the influence of noise (e.g., white noise)
can be reduced by incrementing the measurement time (the
number of averaged samples n).

Experimental measurements in a bandwidth of more than five
decades are shown, using a maximum sampling frequency of
150 kHz and measuring signals of up to 2.5 MHz. The mini-
mum operating frequency is only limited by the measurement
time, and the maximum operating frequency is limited by the
minimum quantization time of the random periods.
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The application of this sampling strategy significantly re-
duces the speed requirements of the ADC and the DSP.
This reduces costs and makes possible the implementation
of complete digital high-frequency LIAs. The complete digi-
tal implementation improves its performance and extends its
range of applications with respect to analog or mixed-signal
implementations.
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