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Stability of the Steady-State Displacement of a Liquid Plug Driven by a Constant
Pressure Difference along a Prewetted Capillary Tube

Sebastián Ubal,†,‡ Diego M. Campana,†,‡ María D. Giavedoni,*,† and Fernando A. Saita†

INTEC (CONICET-UniVersidad Nacional del Litoral), Güemes 3450, 3000 Santa Fe, Argentina, and Facultad de
Ingeniería, UniVersidad Nacional de Entre Ríos, Ruta ProVincial 11, km 10, 3101 Oro Verde, Entre Ríos, Argentina

In this work we study the stability of a liquid plug driven along a capillary tube by a constant pressure
difference. The methodology is based on the analysis of the values of the steady-state film thickness as a
function of the plug length and the Capillary number, when the pressure drop and the Laplace number are
fixed; thus, we extend our previous work where the plug was forced to move at a constant speed [Campana;
et al. Stability of the steady-state motion of a liquid plug in a capillary tube. Ind. Eng. Chem. Res. 2007, 46,
1803]. The stability charts, built for selected values of the Laplace number and a wide range of the dimensionless
parameters, show the existence of a small stable region whose size increases as the Laplace number is
augmented.

1. Introduction

Liquid plugs are commonly encountered in a large number
of technological applications such as oil recovery and micro-
channel reactors; also, they may form in the respiratory tree
either naturally from an instability of the liquid film lining the
walls of the smallest conduits during the expiration process in
certain pathological conditions or from the instillation of a liquid
for therapeutic purposes.

A prototype of this problem is the motion of a certain volume
of liquid inside a capillary tube coated by a film of the same
fluid. When the propagation is steady, the thickness of this film
(the precursor film) must be equal to the thickness of the film
left by the bubble traveling behind the plug (the deposited or
trailing film). This steady motion might be the result of drawing
out the front bubble with constant velocity or, more commonly,
of applying a constant pressure drop between the front and the
rear gas phases.

When the liquid plug is large, the gas phases can be regarded
as semiinfinite bubbles traveling alone, and the flow problem
can be split into two smaller ones (one for the rear meniscus of
the leading bubble and the other one for the front meniscus of
the trailing bubble, which are located ahead and behind of the
plug, respectively).

The steady motion of a semiinfinite bubble in a capillary tube
or between two closely spaced parallel plates initially filled with
a liquid has been extensively studied analytically, numerically,
and experimentally since the pioneering works of Taylor1 and
Bretherton.2 The effect of inertia forces3–5 and, more recently,
the role played by soluble or insoluble surface active agents6–8

on the system have been the topics of some of those works.
When the distance between the tips of two consecutive

bubbles is small, the propagation of the plug is affected by the
interaction of the gas phases, and the velocity and pressure fields
must be simultaneously computed in the whole domain. The
works on this subject are considerably less numerous, and,
mainly motivated by the transport of liquid plugs in the

pulmonary airways, the group led by Professor Grotberg carried
out most of them. These studies theoretically or numerically
investigated the effects of propagation speed, surfactants, and
gravity on the motion and splitting of a liquid plug.

Fujioka and Grotberg9 presented a numerical study on the
steady propagation of a liquid plug in a small gap formed
between two parallel plates; their analysis includes the effect
of inertia forces, the length of the plug, and the ratio between
inertia and capillary forces. The numerical scheme employed
to solve the governing equations and boundary conditions is
based on the finite volume technique and does not allow the
authors to obtain solutions for Capillary numbers larger than
0.4 and plug lengths smaller than half the gap of the channel.

The effect of a soluble surfactant was studied analytically
by Water and Grotberg10 and numerically by Fujioka and
Grotberg.11 The first analysis is based on matched asymptotic
expansions and lubrication theory and is valid for very small
Capillary numbers, when the distance between the menisci is
of the order of one tube radius and there are traces of surfactant
in the liquid. The numerical study mentioned in the second place,
solves the Navier-Stokes and continuity equations and the mass
balance of surfactant with their boundary conditions using the
SIMPLER algorithm together with a boundary fitted coordinate
transformation.

To account for the effect of gravity, Suresh and Grotberg12

presented an asymptotic analysis for the motion of a liquid plug
between two parallel plates that form an angle equal to R with
the direction of gravity; their analysis is valid for small Capillary
number, negligible Reynolds number, and arbitrary Bond
number. They obtained expressions for the trailing and leading
film thickness as a function of R and the other dimensionless
parameters, and quantified the asymmetry in the volume of
liquid that is above and below the center plane of the channel.

Also in connection with the effect of gravity, Zheng et al.13

numerically analyzed the effect of this variable on the steady
motion of a liquid plug between parallel plates in Stokes flow
regime and when the Reynolds number is finite. They studied
the effects of the propagation speed, plug length, and surfactant
transport on the distribution of the plug volume above and below
the center plane, an important issue associated to the splitting
of a plug in an airway bifurcation. Previous to this numerical
work they reported experiments on the subject.14
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An important point of the work by Fujioka and Grotberg9

concerns the stability of the steady states computed. In fact,
the authors conjecture that the lack of convergence of the
numerical algorithm employed within a certain range of the
parameters might be due to the nonexistence of stable steady
states; i.e., if the steady-state solution is perturbed, the distance
between the menisci will either continuously increase or
decrease until the collapse of the plug.

To elucidate that point, we have recently studied15 the stability
of a liquid plug or a train of bubbles in the particular case in
which the leading gas phase is forced to move at a constant
speed. We employed a numerical algorithm based on the
Galerkin/finite element method combined with the parametriza-
tion of the free surface by means of spines for the spatial
discretization of the governing equations and their boundary
conditions and on a finite difference scheme to march in time.
The steady-state dimensionless film thickness, which is the more
relevant parameter of our analysis, was drawn as a function of
the dimensionless plug length within a large range of Reynolds
number and for a Capillary number equal to 0.5, that is, for a
value at which Fujioka and Grotberg could not obtain solutions
for short plugs in the plane case situation.

Depending on the Reynolds number, two types of curves
result when the steady-state values of the film thickness are
depicted versus the plug length for a fixed Ca. From 0 up to a
certain Re, the film thickness increases with the plug length
until it becomes practically constant, while, for larger Re, this
variable first diminishes and then levels off as the distance
between the gas phases becomes longer.

On the basis of the shapes of the curves, the stability of the
steady-state solutions was inferred and the assumptions were
then verified by means of a transient numerical analysis. We
concluded that it suffices to solve the steady-state problem to
determine whether a steady liquid plug moving at constant
velocity is stable or not.

In the present work we show how that methodology can be
applied to study the stability of a liquid plug which propagates
in a capillary tube coated with a layer of the same liquid, when
the constant driving pressure difference between the front and
rear gas phases is perturbed. The paper is organized as follows.
In the next section the mathematical formulation of the problem
is described; the main features of the numerical technique
employed are listed in section 3, and selected numerical results
are presented and discussed in section 4. Finally, section 5
concludes the work.

2. Mathematical Formulation of the Problem

We investigate the stability of the steady-state propagation
of a liquid plug of length lP in a capillary tube of radius R which
is coated with a film of the same liquid whose thickness is h∞

F.
The density (F) and viscosity (µ) of the liquid as well as the
surface tension (σ) at the gas/liquid interfaces are constant; the
gas is regarded as inviscid so that only the fluid dynamics at
the liquid phase is considered. The liquid plug is driven by a
constant pressure difference between the trailing and front gas
phases, ∆p ) pBT - pBF, and the pressure at the front gas phase,
pBF, is taken as the reference pressure and it is set equal to zero.
As the plug propagates inside the tube, a liquid film with
thickness h∞

T is left behind the passage of the liquid lens; this
film is called the deposited or trailing film, and in steady-state
operation it has the same thickness than the precursor film, i.e.
h∞

F ) h∞
T ) h∞. In our model, the frame of reference moves at

a constant speed, U, equal to the steady-state displacement
velocity of the liquid plug. When the motion is unsteady, the

thickness of the trailing and leading films will generally be
different, and both menisci will move with different speeds.
The radius of the tube is small enough to consider negligible
the action of gravity; therefore, the centerline of the tube is a
symmetry line. Under these conditions, the conservation of mass
and momentum in the liquid is described by the continuity and
Navier-Stokes equations, which in dimensionless form reads

∇ · v) 0 (1)

λCa(∂v
∂t

+ v · ∇ v))- 1
Ca

∇ p+ ∇ · S, S) [∇ v+ (∇ v)T]

(2)

where v is scaled with U, p with σ/R, lengths with R, and time
with R/U. The Laplace number is defined as λ ) FσR/µ2, and
the Capillary number as Ca d Uµ/σ.

Boundary conditions imposed at the tube wall and at the
centerline imply that the liquid adheres to the solid surface and
that the centerline is a symmetry line (see Figure 1). Far away
from the menisci, the liquid lining the wall of the tube is stagnant
and viscous stresses vanish. The gas/liquid interfaces are
material surfaces; therefore, the kinematic condition applies there

(v - ẋFS) · n ) 0 (3)

where ẋFS is the velocity of the free surface and n is the unit
normal to the free surface, pointing into the gas phase. Because
the temperature is constant and the system is free of surface
active agents, the tangential component of the traction at each
interface vanishes and the normal component is given by the
following expression

-pn +Can · S ) (-PBi + 2H ) (4)

In eq 4, H(t,xFS) is the local mean curvature of the interface
and PBi is the dimensionless pressure in the gas at the rear (PBT)
or the front (PBF) of the plug.

When the propagation of the plug is steady, both the leading
and trailing film thicknesses are equal and there is not relative
motion between the menisci and the frame of reference. In our
numerical algorithm, U (which is proportional to the Capillary
number) is imposed, and H∞ ) h∞/R and ∆P ) PBT are
unknowns which are simultaneously calculated with the velocity
and pressure fields, and with the interfacial shapes. When the
motion is unsteady, H∞

F * H∞
T and the tips of the bubbles might

have a displacement velocity different from U (the velocity of
the frame of reference); under these conditions, PBT and H∞

F

are fixed and H∞
T is calculated once the flow field is computed

using the following expression,

Q)∫Aout
Vz dA)πH∞

T(2-H∞
T) (5)

where Q is the flow rate evaluated at the annular outflow section
(Aout).

Figure 1. Schematic representation of the flow domain.
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In the next section, the numerical procedure employed to
solve the governing eqs 1 and 2 with their boundary conditions
is briefly explained.

3. Numerical Method

The system of governing equations and boundary conditions
was solved with the same numerical technique employed in a
previous work;15 therefore, only its main features will be
presented here. Nonetheless, we will underline the differences
that exist between the actual and the previous implementation
when computing the transient evolution of the system. The
numerical scheme is based on the finite element method, and
the velocity and pressure fields, as well as the shapes of the
free surfaces, are simultaneously calculated. When the steady
problem is solved for each selected value of Ca and λ, the
driving pressure difference (∆P) and the thickness of the leading
and trailing films (H∞ ) H∞

F ) H∞
T) are unknowns simulta-

neously obtained with the solution. On the other hand, when a
transient case is considered, ∆P is fixed, H∞

F is imposed and
H∞

T is evaluated as was previously done by using eq 5.
The spatial discretization of the problem is accomplished by

a standard Galerkin/finite element formulation. The domain is
tessellated into a structured mesh of Lagrange quadrilateral
elements, which is conveniently divided into seven zones,
labeled a-g in Figure 2.

In this work, the locations of both the inflow and outflow
planes are kept constant during the computations; i.e., the
distances LBF and LBT are not fixed. Those planes are located
according to the expected behavior of the system; for instance,
when the volume of the plug is presumed to indefinetely increase
after the perturbation, they are placed far enough from the core
region so that the evolution of the system can be followed
satisfactorily during the computation. The axial length of the
elements in the zone indicated as d in Figure 2 increases or
diminishes as the distance LP becomes longer or shorter,
respectively, and that of the elements in a and g varies to fit
changes in LBF and LBT, respectively. Also in order to reduce
the distortion of the elements, the base points of the spines in
regions c and e are now located on a curve and not on a straight
line.

To select an appropriate finite element mesh, we looked for
invariance of the solution with the size of the mesh and the
distribution of the elements. As an example of the numerical
tests carried out, we show in Figure 3 the steady-state free
surface shapes and in Table 1 values of the film thickness and
the driving pressure drop computed with three mesh refinements
for Ca ) 0.1, λ ) 1350, and LP ) 0.25. In the table, DOF is
the number of degrees of freedom and NOE is the total number
of elements in each grid. Results reported in the figure show
that the interfacial shapes computed with meshes 2 and 3 are
almost identical; also, it is easy to see from the table that the
relative difference between the values of H∞ and ∆P computed

with those two meshes is smaller than 7 × 10-5 and 10-5,
respectively. Therefore, the meshes adopted to compute the
solutions presented in this work are similar to mesh no. 2; in
fact, they have between 10016 and 12608 elements depending
on LP, and they guarantee with a reasonable computational cost
that the results are practically insensitive to a further refinement.

4. Results

As it was mentioned in the introduction, this work is the
sequel of a previous one in which we analyzed the stability of
a liquid plug which is forced to move at a constant speed inside
a uniformly prewetted capillary tube; thus, the results of that
study and those next discussed are structured in a similar way.
That is, we first present solutions for the steady-state displace-
ment; in particular, we illustrate the trend followed by the film
thickness (H∞) vs the length of the plug (LP). From those curves,
we inferred the stability of the system, and then, we carried out
transient selected numerical computations to confirm our
presumptions.

In this paper, we also depict the stability maps for selected
values of the parameters and we discuss the location of the
region where the steady-state solutions might be stable.

The properties of the system were chosen in order to
encompass a large number of practical situations; in fact, the

Figure 2. Sketch of the mesh showing the distribution of the spines and
their base points. The regions of the mesh are also depicted.

Figure 3. Free surface shapes computed for the three degrees of mesh
refinement described in Table 1: Top, front gas phase; bottom, rear gas
phase.

Table 1. Pressure Difference (∆P) and Asymptotic Film Thickness
(H∞) Computed for Three Different Degrees of Mesh Refinement

mesh 1 mesh 2 mesh 3

NOE 3984 10016 40064
DOF 39078 94357 368995
∆P 3.05036 3.02702 3.02699
H∞ 0.229045 0.224520 0.224505
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speed of the plug was varied between 10-4 and 0.1 m/s, the
liquid viscosity between 10-3 and 0.1 Pa s, the surface tension
from 0.020 to 0.070 N/m, and the radius of the tube from 10-5

to 2 × 10-3 m. The liquid density was set equal to 1000 kg/
m3, and the length of the plug was within the range of 0.05R e
lP e 4.3R.

4.1. Steady-State Solutions. Consider a liquid plug of length
LP inside a capillary tube driven by a constant pressure drop
(∆P ) PBT). For fixed liquid properties and a given tube radius,
there is only one value of the displacement velocity for which
the motion of the plug is steady; under these conditions, the
films located behind and ahead of the plug have the same
thickness (H∞

T ) H∞
F ) H∞), and the Laplace number λ )

Re/Ca ) FσR/µ2 is a constant; i.e., any change in the velocity
of the plug affects both the Capillary and the Reynolds numbers,
keeping λ unchanged. If, during a short period of time, ∆P
suffers a small perturbation, the system will depart from the
steady state: the front and the rear gas phases will not necessarily
travel at the same speed, and the length of the plug will change.
Once the original pressure drop is reestablished, either one of
the two following situations occurs: the system returns to the
initial steady state, or it moves away from it. The former steady
states will be regarded as stable while the latter ones will be
considered unstable.

To study the stability of a plug driven by a constant pressure
difference between the rear and front gas phases, we carried
out computations for λ ) 100, within a large range of Capillary
numbers and for values of LP between 0.05 and 4.3. In Figure
4, we depict the film thickness, H∞, as a function of LP;
dotted-dashed lines correspond to a specific Capillary number
and the solid ones to a given driving pressure drop.

From a quick examination of the curves along which ∆P is
constant, one could conclude that they all have negative slope
within the range of LP here considered. However, a closer
inspection (see Figure 5) indicates that there is a small region
delimited by the dashed line, where (∂H∞/∂LP)∆P > 0. That is,
for λ ) 100 there is a range of Ca for which the film thickness
corresponding to a given ∆P first increases and then decreases
as LP is augmented. This behavior is the basis of the following
discussion regarding the stability of the steady motion of a plug
driven by a constant pressure difference. It is worthy to note
first that any two lines along which either ∆P or Ca is constant
intercept each other. When one moves along a constant-∆P
curve in the direction of increasing LP, Ca diminishes as a

consequence of the smaller displacement velocity of the plug;
a totally expected behavior because the same driving pressure
difference is imposed across a larger amount of liquid. This
smaller velocity is usually associated with a thinner steady film
thickness.

Consider for instance a steadily advancing liquid plug
corresponding to a point where (∂H∞/∂LP)∆P > 0 (i.e., inside
the region delimited by a dashed line in Figure 5) and imagine
that the driving pressure difference is suddenly increased by a
small amount. As a result, the deposited film (H∞

T) will become
thicker while the thickness of the precursor film (H∞

F) will
remain the same. Therefore, the outflow rate will be larger than
the inflow rate, and the distance between the front and the rear
menisci will shorten; i.e., LP will diminish. When, after a very
short period of time, the original pressure drop is restored, H∞

T

will tend to be slightly smaller than H∞
F, because the length of

the plug is now somewhat smaller than the initial one.
Consequently, the liquid accumulates between the gas phases
until the initial state of the system is recovered; i.e., this state
is stable. Also, if we imagine that ∆P is slightly reduced instead
of increased, we will arrive to the same conclusion regarding
the stability of the system.

With a similar reasoning, it is easy to see that any steady
state located at a point where (∂H∞/∂LP)∆P < 0 is unstable. In
fact, if ∆P is increased a little, the deposited film will become
thicker while the precursor film will not change; thus, the
outflow rate of liquid will be larger than the inflow rate and the
distance between the menisci will diminish. When the driving
pressure difference is reestablished, H∞

T tends to be somewhat
larger than H∞

F producing a net flow of liquid out of the plug;
therefore, the distance between the menisci will continuously
diminish until another steady state is eventually achieved or
the bubbles collapse. If ∆P is reduced by a small quantity, the
deposited film becomes thinner and, thus, the gas phases move
apart from one another. Once the original pressure drop is
restored, H∞

T tends to be somewhat thinner than H∞
F, leading

to the accumulation of more liquid between the menisci;
therefore, LP will continuously increase and the original con-
figuration of the system will not be recovered.

From the above discussion, we argue that the points lying
on a constant-∆P curve for which (∂H∞/∂LP)∆P < 0 represent
unstable steady states; those for which (∂H∞/∂LP)∆P > 0,
correspond to stable steady states and, finally, the points at which
(∂H∞/∂LP)∆P ) 0 are neutrally stable. To verify those specula-

Figure 4. Steady-state film thickness as a function of plug length for λ )
100 and selected values of the Capillary number (dotted-dashed lines).
Lines of constant ∆P are drawn in solid line.

Figure 5. Zoom of Figure 4, near the region where (∂H∞/∂LP)∆P > 0 (dash
line).
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tions, we perturbed a steady-state solution and numerically
followed its evolution.

4.2. Transient Numerical Solutions. To assess the validity
of the analysis presented in the above section, we designed
numerical experiments that closely reproduce the situations
described there. Starting from a steady-state solution, the
pressure of the back gas phase (PBT) is 10% either increased or
decreased during the first 10 time steps (0 e t ≈ 0.02), and
then the original pressure drop is restored. The systems selected
for the experiments are indicated with a cross in Figure 5.

Parts a and b of Figure 6 illustrate the transient evolution of
a plug located inside the region presumed stable when a short
positive pulse is applied to the back gas pressure (PBT); the
characteristic dimensionless numbers of this case are Ca )
0.237, LP ) 0.102, PBT ) 2.3837, and λ ) 100. The moment
just before the pressure pulse is applied, the liquid plug is at
rest because we use a reference frame that moves with it;
however, just at the instant a positive pressure pulse occurs,
the plug starts to move toward the left since the reference frame
is unchanged. The motion is given by �(t) that measures the
distance the central point of the plug has moved from its original
location; i.e., � ) zP- zP(t ) 0), where zP is the plane amidst
the tips at time t. It is easy to see that the abrupt increase in the
pressure first affects the length of the plug that almost
instantaneously reduces its length by =0,2% and starts moving
to the left. The nearly instantaneous reduction of LP indicates
that liquid is rapidly flowing outside the plug; actually, the
pressure pulse produces a flow-rate pulse that travels down-
stream and is detected, as Figure 6b shows, at t ≈ 10.24 when
it reaches the boundary of the domain considered. Once the

pressure pulse has finished, the original value of ∆P is restored,
but it is now applied to a shorter plug that accordingly moves
faster than the steady-state case, leaving behind a film thinner
than H∞

F. Consequently, liquid begins to accumulate inside the
plug and LP increases toward its equilibrium value that is reached
at t ≈ 270.

The motion of the plug is in agreement with the process
described above: its large initial velocity rapidly decreases once
the pressure pulse has finished and the plug asymptotically
comes to stop when t ≈ 270.

If the applied pressure pulse is negative, the numerical
solutions not presented here show that the plug also recovers
the initial steady state, confirming our presumptions about its
stability.

The other system selected in the analysis is defined by Ca )
0.178, LP ) 0.102, PBT ) 1.83327, and λ ) 100, and results
corresponding to the numerical evolution of a perturbation equal
to 1.1 PBT are depicted in Figure 7a,b.

Also in this case, LP and � are the variables which first notice
the perturbation; nevertheless, the evolution of these variables
now show that the menisci continuously approach one another
and that the displacement velocity of the plug (inferred from
the curve of � vs t) increases monotonically until it eventually
ruptures because the rear and front gas phases contact. Actually,
with the mesh adopted for this particular case the evolution of
the gas phases can only be predicted until the distance between
the tips is nearly 0.08.

Similarly to the previous example, the perturbation is not
detected immediately at the outflow plane; the deposited film
thickness presents a small maximum at t ≈ 10, and then this

Figure 6. Time evolution of LP and � ) zP- zP(t)0) (a) and of the deposited
film thickness, H∞

T, (b) after a 10% perturbation of the pressure at the back
gas phase.

Figure 7. Time evolution of LP and � (a) and of the deposited film thickness,
H∞

T, (b) after a 10% increase of the pressure at the rear gas phase.

Ind. Eng. Chem. Res., Vol. 47, No. 16, 2008 6311



variable increases monotonically until the end of the computa-
tion inducing a continuous flow of liquid out of the plug.

If PBT is 10% reduced instead of increased, the numerical
solutions (not presented here) show the same results regarding
the stability of the plug, but in this case the distance between
the front and the rear interface increases after the perturbation.
To determine the magnitude of this perturbation, we took into
account that a 10% disturbance of the pressure produces
approximately a 0.1% initial variation of LP.

From the results of the previous numerical experiments we
conclude that the analysis carried out in the previous section is
useful to assess the stability of the steady displacement of a
liquid plug driven by a constant pressure difference. Moreover,
the transient evolution of the plug computed numerically is
qualitatively very similar to that imagined from the steady-state
solutions portrayed in Figure 5.

It might be interesting to analyze the influence of the slope
of the constant-∆P curve on the time required for the collapse.
To this end, we studied the transient evolution of the various
plugs identified with a dot in Figure 5, and the results obtained
are depicted in Figure 8. We first consider the plugs character-
ized by Ca ) 0.2046, LP ) 0.36 and Ca ) 0.171, LP ) 0.73,
respectively, which are located on the curve ∆P ) 2.38. When
the driving pressure is 10% increased during a very short interval
of time and is then restored, the distance between the menisci
continuously diminishes, confirming that both steady states are
unstable. The curves for the time derivative of LP show that the
velocity at which the gas phases approach each other rises as
the initial plug length and (∂H/∂LP)∆P become larger. In fact,
for the plug mentioned in the first place, the speed at which the
tips come closer is of order 10-3, while, for the latter one, it is
of order 10-2.

Figure 8. Time evolution of LP, � (- · -) and dLP/dt. From top to bottom, Ca ) 0.2046, LP ) 0.36; Ca ) 0.1710, LP ) 0.73; and Ca ) 0.221, LP ) 0.73,
after a 10% increase of the pressure at the rear gas phase.
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We examine now the plug whose length is also equal to 0.73
but is located on the curve ∆P ) 2.99 (Ca ) 0.221). Although
it is not easy to see from Figure 5, (∂H/∂LP)∆P)2.99 is slightly
smaller than (∂H/∂LP)∆P)2.38. Results illustrated in Figure 8 point
out that once the plug is perturbed, the menisci move toward
each other with a slightly smaller velocity than when Ca )
0.171; for instance, the time elapsed when LP reduces from 0.73
to 0.40 is 50 units of dimensionless time longer than in the
previous case.

The temporal evolution of �(t) illustrated in Figure 8 shows
that, after the perturbation, the dimensionless speed of the plug
is barely larger than 1 (i. e., the dimensionless velocity of the
frame of reference); considering the characteristic scales
employed for time and length, it is straightforward to see that
the distance traveled by the plug before the simulation crashes
is indeed quite large in the three cases (about 360R for Ca )
0.2046, LP ) 0.36; 160R for Ca ) 0.171, LP ) 0.73; and 210R
for Ca ) 0.221, LP ) 0.73).

The above analysis suggests that the system moves away
faster from an unstable steady state whenever the slope of the
curve of H∞ vs LP is larger.

To complete the analysis of the transient evolution of the
system, we calculated the stream function at selected instants
of time in all the unstable cases discussed above. To make the
interpretation of the resulting instantaneous streamlines simpler,
we used here a reference frame that moves with the front tip of
the plug. Since the chronological sequence of patterns are very
similar in the four situations considered, we only discuss here
the streamlines for Ca ) 0.1710, LP ) 0.73, and λ ) 102. These
streamline patterns are portrayed in Figure 9 for the three instants
of time marked with dots in Figure 8; they correspond to the
beginning of the process, to an intermediate point, and to an

instant near the end of the computation, respectively. There are
two sets of streamlines in Figure 9, each of them plotted at
equally spaced levels; one set is associated with negative stream
function values (solid lines) and the other one, which shows
the flow in the core region, with positive stream function values
(dashed-dotted lines).

The streamline pattern for t ) 1.180 resembles that of the
steady state in which four stagnation points are present: two at
the tips and the other two on each interface. The similarities
between both patterns are due to the very small speed at which
the length of the plug is decreasing (see Figure 8) and to the
fact that far away from the menisci the thickness of the precursor
and deposited films and are almost equal.

Differences between the flow patterns for t ) 130.1 and the
steady state are easily detected in the second picture, agreeing
with the larger dimensionless speed at which LP diminishes (see
Figure 8). In fact, there is a streamline sthe one indicated with
the letter Osthat starts at the rear tip and moves along the
centerline and the front interface, and finally it is directed toward
the trailing film region. Details of the flow field for the regions
enclosed in the rectangles are depicted in the insets. The more
salient feature is the saddle point located near the region where
the streamlines that detach from the rear interface are directed
either downward or upward (see the inset at the right); another
characteristic which can be observed in the inset placed at the
left are the streamlines which begin at the front interface and
go into the film region.

As the process continues and the distance between the menisci
shortens, the saddle point moves away from the interface and
the size of the recirculation diminishes along both the z- and
the r-coordinates as it can be observed in the snapshot for t )
162.2. This is due to the relatively larger extension of the domain
where the fluid is flowing from the rear interface toward the
film region.

From the analysis of the evolution of the shapes of both
interfaces, we can conclude that they remain almost the same
during the whole process.

In the next section we present the stability maps for selected
values of the Laplace number.

4.3. Stability Maps. To detect the influence of λ on the
location of the parameter region where the steady-state displace-
ment of a plug is stable, we carried out numerical computations
for λ ) 10, 103, and 104 within the range of Capillary numbers
and plug lengths previously established. The computed values
of H∞ and ∆P for each set (LP, Ca) were used to draw stability
charts similar to those depicted in Figures 4 and 5.

From the analysis of the map corresponding to λ ) 10, that
is not depicted here, we conclude that all the curves corre-
sponding to a fixed driving pressure drop have a negative slope,
pointing out that for this particular value of the Laplace number
the steady propagation of any plug is unstable for 0.0001 e Ca
e 1, and 0.05 e LP e 4.3.

Results reported in Figures 10a,b and 11a,b together with
those depicted in Figures 4 and 5 show that as the Laplace
number increases, i.e., as both inertia and surface tension forces
turn relatively more important than viscous forces, the stable
region extends over a larger range of Ca and LP values. For
each λ selected, the stable region always encompasses short
plugs moving at relatively high velocities; moreover, according
to our numerical solutions the estimated upper limit of this zone
seems to be a line where H∞ is nearly constant for a certain
∆P. This line represents marginally stable plugs, which move
with a decreasing velocity as the length of the plug increases,

Figure 9. From top to bottom: instantaneous streamlines for Ca ) 0.1710,
LP ) 0.73, λ ) 100, at t ) 1.18, t ) 130.1, and t ) 162.2.
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the thickness of the film coating the tube wall being nearly the
same in all of them.

Another feature of the results illustrated in those figures is
that the maximum length of a stable plug is approximately equal
to the tube radius (for λ ) 104); also when the distance between
the front and rear gas phases is large enough so that they do
not interact, the steady states are always unstable in the range
of λ selected in this work.

5. Conclusion

In this paper we extended the methodology presented in a
previous work15 to study the stability of the steady displacement
of a liquid plug forced to move at a constant speed to the more
common situation in which the plug is driven by a constant
pressure difference between the front and the back gas phases.
To this end, the curves of the steady-state film thickness versus
the length of the liquid plug for a fixed value of both the
Capillary number and the driving pressure difference were built
for selected values of the Laplace number. With similar
arguments to those used previously, we related the slope of H∞
versus LP to the stability of the solutions, and we then confirmed
our arguments perturbing the steady state and following its
evolution numerically.

The results of this work together with those of our former
paper15 lead to the conclusion that it suffices to solve the steady-
state problem to determine whether a steady-state plug is stable
or not.

The stability maps built show that the region where the
steady-state displacements are stable becomes larger as the
Laplace number increases; moreover, this region encompasses
liquid plugs with lengths as large as the tube radius when λ )
104; a particularly interesting result if one takes into account
that for air-water and most air-aqueous solution systems, this
parameter is approximately equal to 70000.

Acknowledgment

The authors greatly appreciate the assistance of Marcelo Berli
with the drawings of the streamlines. This work was supported
by CONICET, ANPCyT, and UNL.

Literature Cited

(1) Taylor, G. I. Deposition of viscous fluid on the wall of a tube. J.
Fluid Mech. 1961, 10, 161.

(2) Bretherton, F. P. The motion of long bubbles in tubes. J. Fluid Mech.
1961, 10, 166.

(3) Giavedoni, M. D.; Saita, F. A. The axisymmetric and plane cases of
a gas phase steadily displacing a Newtonian liquid-A simultaneous solution
of the governing equations. Phys. Fluids 1997, 9, 2420.

(4) Giavedoni, M. D.; Saita, F. A. The rear meniscus of a long bubble
steadily displacing a Newtonian liquid in a capillary tube. Phys. Fluids 1999,
11, 786.

(5) Heil, M. Finite Reynolds number effect in the Bretherton problem.
Phys. Fluids 2001, 13, 2517.

Figure 10. (a) Steady-state film thickness as a function of plug length for
λ ) 103 and selected values of the Capillary number (dotted-dashed lines).
Lines of constant ∆P are drawn as solid lines. The region where (∂H/∂LP)
> 0 is approximately delimited by a dashed line. (b) Enlarged view of the
region delimited by a dashed line in a.

Figure 11. (a) Steady-state film thickness as a function of plug length for
λ ) 104 and selected values of the Capillary number (dotted-dashed lines).
Lines of constant ∆P are drawn as solid lines. The region where (∂H/∂LP)
> 0 is approximately delimited by a dashed line. (b) Enlarged view of the
region delimited by a dashed line in a.

6314 Ind. Eng. Chem. Res., Vol. 47, No. 16, 2008



(6) Wassmuth, F.; Laidlaw, W. G.; Coombe, D. A. Calculation of
interfacial flows and surfactant redistribution as a gas-liquid interface moves
between two parallel plates. Phys. Fluids A 1993, 5, 1533.

(7) Ghadiali, S. N.; Gaver, D. P., III. The influence of non-equilibrium
surfactant dynamics on the flow of a semi-infinite bubble in a rigid
cylindrical capillary tube. J. Fluid Mech. 2003, 478, 165.

(8) Severino, M.; Giavedoni, M. D.; Saita, F. A. A gas phase displacing
a liquid with soluble surfactants out of a small conduit: The plane case.
Phys. Fluids 2003, 15, 2961.

(9) Fujioka, H.; Grotberg, J. B. Steady propagation of a liquid plug in
a two-dimensional channel. ASME J. Biomech. Eng. 2004, 126, 527.

(10) Waters, S. L.; Grotberg, J. B. The propagation of a surfactant laden
liquid plug in a capillary tube. Phys. Fluids 2002, 14, 471.

(11) Fujioka, H.; Grotberg, J. B. The steady propagation of a surfactant-
laden liquid plug in a two-dimensional channel. Phys. Fluids 2005, 17,
082102.

(12) Suresh, V.; Grotberg, J. B. The effect of gravity on liquid plug
propagation in a two-dimensional channel. Phys. Fluids 2005, 17, 031507.

(13) Zheng, Y.; Fujioka, H.; Grotberg, J. B. Effects of gravity, inertia,
and surfactant on steady plug propagation in a two-dimensional channel.
Phys. Fluids 2007, 19, 082107.

(14) Zheng, Y.; Fujioka, H.; Grotberg, J. C.; Grotberg, J. B. Effects of
inertia and gravity on liquid plug splitting at a bifurcation. ASME J. Biomech.
Eng. 2006, 128, 707.

(15) Campana, D. M.; Ubal, S.; Giavedoni, M. D.; Saita, F. A. Stability
of the steady-state motion of a liquid plug in a capillary tube. Ind. Eng.
Chem. Res. 2007, 46, 1803.

ReceiVed for reView January 8, 2008
ReVised manuscript receiVed May 5, 2008

Accepted May 19, 2008

IE8000309

Ind. Eng. Chem. Res., Vol. 47, No. 16, 2008 6315


