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Abstract. This work addresses the problem of heat transfer through the roof of a family home 
with the purpose of improving air-conditioning energy savings during hot summer days. To 
this end, the air natural convection in a right-angle triangular cavity, resembling an attic, is 
numerically analyzed. The air cavity is assumed as naturally ventilated through two openings 
that induce an external air-stream flowing into and out of the cavity. The governing equations 
for both flow and heat transfer are simultaneously solved with appropriate boundary 
conditions. Finite element technique is employed to transform the original set of differential 
equations into a non-linear discrete one, which is finally solved by Newton iteration. Two 
major assumptions are made, namely: radiation heat transfer is negligible and the air flow is in 
laminar regime; in addition, the usual Boussinesq approximation is employed. Under these 
assumptions the numerical predictions show that the amount of heat transferred through the 
ceiling rapidly diminishes as the flow through the cavity increases. Therefore; whether or not 
the ceiling is insulated, the energy transfer is reduced by more than 50% and energy savings 
are considerably improved.  

1. Introduction 
The roof of a family home is usually the component that transfers more heat than any other wall of the 
house. The large temperature gradient that exists between the roof and the ceiling on days of 
extremely hot temperatures, introduces important amounts of energy that needs to be eliminated to 
keep the interior comfortable. In this sense, an air cavity located between the roof and the ceiling 
might produce important energy savings if it is properly designed. To this end is crucial to know the 
mechanisms and details by which the airflow in the cavity moves and transports heat from the roof 
toward the ceiling and vice-versa. 

Several authors have studied buoyancy driven flows in cavities motivated by a number of 
engineering applications. Rectangular cavities ([1], [2], [3], [4], [5], [6]), triangular cavities ([7], [8]) 
and also cylindrical cavities [9] have received special attentions. The latter geometry has also been 
applied to study sterilization processes of canned foods [10]. 

Recently, Basak et al. [8] numerically solved a natural convection model in a triangular cavity 
employing the penalty finite element technique. The goal was to study the temperature distribution and 
the heat transfer through the base of a closed triangle that very much resembles a roof with an attic 
space. Their predictions show that the amount of heat transferred through the base increases with the 
Rayleigh number, i.e. with the flow speed; they also conclude that the Prandtl number has much less 
influence on heat transfer than the Rayleigh number. 
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Hirunlabh et al. [11] analyzed the performance of Roof Solar Collectors (RSC) in several different 
design configurations; they studied the airflow rate through a channel of constant section located just 
beneath the RSC and found that the induced flow rate depends on both roof inclination and solar 
intensity radiation. Nonetheless, they also found that not even those configurations that maximize the 
air convection provide sufficient natural ventilation as to satisfy resident’s comfort. Ciampi et al. [12] 
studied a roof configuration similar to the one analyzed by Hirunlabh; they paid particular attention to 
microventilation, i.e. to roof with small-sized-thickness ducts in which the airflow is laminar. The 
airflow rate in the channel depends not only on the heat field but also on several other factors like duct 
geometry, fluid dynamic head losses, etc, and it is estimated through an equation obtained from a 
simplified one-dimensional flow model. These authors found that microventilation might produce 
energy savings as large as 30%, this percentage can be improved with larger flow passage sections and 
larger roof inclination angles. 

Asan and Namli [13] numerically analyzed the two-dimensional laminar convection in a closed 
triangular cavity shaped by an inclined roof and a suspended ceiling. Assuming summer day boundary 
conditions, they used the stream function-vorticity formulation to solve the equation for different 
values of the Rayleigh number. These authors concluded that the height-base ratio of the triangle is the 
parameter that most affects the heat transfer through the base; in fact, as this ratio increases they found 
that heat transfer decreases. 

Oztop et al. [14] solved a very similar problem, i.e. they used the same geometry, boundary 
conditions and numerical formulation as Asan and Namli, but they also considered a roof with and 
without eaves. The predictions obtained by Oztop et al. show that heat transfer strongly depends on 
both the aspect ratio and the length of the overhanging portion of the roof. 

The analyses performed in all the works previously mentioned were carried out on closed cavities; 
the goal of the present work is to assess the influence that natural ventilation of the cavity might have 
on the amount of heat conducted through the ceiling toward the interior of the house. For that purpose 
we will employ geometries similar to those used by Asan and Namli —which are also similar to the 
roof geometries analyzed by Oztop et al.— but we will also consider openings located on the lateral 
walls supporting the roof. Thus, natural ventilation will occur driven by buoyancy forces originated in 
the temperature difference that exist between the roof and the ceiling. The temperature gap will be 
extreme on summer days when the roof is exposed to solar radiation and more energy will be 
consumed by the air conditioning system to keep the interior comfortable.  

In the next section we present the main features of the model under analysis, i.e. the geometry of 
the cavity, the governing equation, and the appropriate boundary conditions to be used when the 
ceiling is insulated and when it is not. In a short third section we summarize the numerical technique 
employed and we validate the code by comparing our numerical predictions with results already 
published. In section fourth we present the results obtained while the last section is devoted to 
conclusions. 

 
2. The model 
Figure 1 sketches the shape of the domain where the governing equations have to be solved; the roof, 
the ceiling and the lateral walls with openings delimit the domain. The adopted length of the openings 
was 30 cm, which is the standard thickness of an exterior wall made out of bricks, and the adopted 
height was 15 cm; the parameter Am is the average height of the cavity, i.e. the distance between the 
roof and the ceiling at the center of the domain length. The air in the cavity is set into motion driven 
by buoyancy forces; i.e. the density gradients originated in the temperature difference that exists 
between the roof and the ceiling induces the air motion. The phenomenon just described is known as 
natural convection; this type of flow is usually solved with the aid of the so-called Boussinesq 
approximation that considers the density differences small enough to be neglected everywhere, except 
for the term where the density affects the gravity force; in that case the density is supposed to linearly 
change with temperature. In addition to incompressibility, which is already implied in the Boussinesq 
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approximation, we will assume steady-state laminar flow regime and negligible thermal radiation 
effects as well as viscous dissipation [15]. 
 
2.1. Governing equations 
The set of dimensionless governing equations for natural convection flow in a 2-D cavity is given by 
the equation of continuity (1), the x- and y- components of the momentum equation (2), (3), and the 
thermal energy equation (4) 
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In equations (1)-(4) Re= ρUC L/μ and Pr= ν/α are the Reynolds and Prandtl numbers respectively; 

the employed values of the physical properties of the air (density, viscosities, thermal diffusivity and 
thermal expansion coefficient) are obtained at the mean temperature between the roof and the ceiling 
((Tr+Tc)/2). Lengths are measured in terms of the ceiling length (L), temperatures are measured in 
terms of the temperature difference between the roof and the ceiling (Tr-Tc) and velocities are 
measured in terms of the characteristic velocity (U 1/2

C) which is here defined as (β L(Tr-Tc) g) ; being β 
and g the thermal expansion coefficient and the gravity constant, respectively. 

When a thermal insulating layer is located between the ceiling and the cavity, as is shown on the 
left of figure 1, the thermal energy equation for the 2-D heat transfer in the solid (5) must be added to 
the equation set shown above. 
 

2 2

2 20
x y
θ θ⎛ ⎞∂ ∂

= +⎜ ∂ ∂⎝ ⎠
   ⎟                                               (5)    

                         

2.2. Boundary conditions 
The boundary conditions employed for both momentum and energy equations are summarized in 
figure 1. When an insulated ceiling is considered, the appropriate additional boundary condition to be 
imposed is shown in a shaded rectangle appearing at the bottom left side of figure 1. As this figure 
shows, on solid walls the non-slip condition is imposed. At the openings we assume zero traction 
vector (T.n=0), the atmospheric pressure is arbitrarily set equal to zero and we neglect heat 
conduction (∂θ/∂n=0). At the air entrance, in addition to the air temperature, the y- and x-components 
of the velocity are imposed; they are set as zero and constant ((∂u/∂y=0), respectively.  

The temperature of both the roof and the ceiling is constant (Tr and Tc) and their dimensionless 
values are one and zero, respectively. The lateral walls are supposed adiabatic, thus (∂θ/∂n=0). 
Finally, if an insulating layer is set on the ceiling, the flow of thermal energy between the air and the 
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material must be continuous; thus, if b is the dimensionless thickness of the insulating layer, at y = b 
the following relation applies 
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                                                                   (6) 

 
where K and KI A are the coefficients of thermal conductivity of the insulating material and the air, 
respectively. 
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Figure 1. Schematic view of the cavity analyzed and boundary conditions imposed. The left half of 
the figure shows an insulated ceiling while the right half shows a ceiling without insulation. 

3. Numerical technique 
The highly nonlinear and strongly coupled system of governing equations can only be solved by 
numerical means; for that purpose we employed the Galerkin/finite element approach. This is a 
combination of the Galerkin’s weighted residual method with trial functions having support on a few 
elements into which the flow domain is subdivided. In this work we used the so-called mixed 
interpolation technique on quadrilaterals; i.e. we adopted biquadratic trial functions for the expansion 
of velocities and temperature, while bilinear basis functions were employed for pressure. The resulting 
set of nonlinear algebraic equations was solved with the aid of isoparametric mapping and Newton 
iteration. The solution path along Reynolds numbers was traced using zero order continuation; i.e. the 
results obtained for a previous Reynolds value were used as a first guess to start the new Newton 
iteration for a Reynolds value not too much different from the preceding one.  

The numerical algorithm was implemented in Matlab 6.0 on a Window XP platform and the 
computing time needed to solve 13000 degrees of freedom in a PC Pentium IV of 3.0 Ghz and 1.0 Gb 
of Ram was about 20 minutes. 

4. Results 

4.1. Validation of the model. 
In order to validate our model we made comparisons with the results presented by Barak et al. [8] and 
by Haese and Teubner [16]; these comparisons are summarized in figure 2. 

Figure 2(a) portrays the isotherms that result in a closed triangular cavity due to air natural 
convection; the shape of the triangular cavity is just the lower half of a square divided along its 
diagonal. The horizontal wall, which coincides with the abscissa, is at θ = 1 while the inclined wall is 
at θ = 0 and the vertical wall is adiabatic. Figure 2(b) shows the temperature variation along the 
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vertical wall when Pr = 0.71 and Re = 31.6; clearly the predictions of our model completely agree 
with those obtained by the authors just mentioned. 

1 1

 
Figure 2. Comparison of the predictions of the present work (full lines) with those obtained by Basak 
et al. [8] and Haese and Teubner [16] indicated with circles. (a): isotherms in a cavity with a hot 
horizontal wall, a cold inclined wall and an adiabatic vertical wall. (b): Temperature along the 
adiabatic vertical wall. 
 

The results to be presented in the following sections were obtained assuming flow motions in 
laminar regime. Though the natural convection of air in cavities can reach turbulent regimes, 
particularly for large cavities and strong temperature gradients, analyses assuming laminar conditions 
are commonly employed to infer the behavior at larger Re ([8], [12], [13]). 

4.2. A cavity without insulation. 
Figure 3(a) compares the amount of heat transferred through the ceiling when air flows across the 
cavity, and when the openings are closed producing just an inner circulation. The amount of heat 
transferred is evaluated by computing the average Nusselt number as follows (see [8]) 
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1 l
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Nu dx
l y
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∂⎛ ⎞= ⎜ ⎟ ∂⎝ ⎠ ∫ ,                                                   (7) 

 
where l is the dimensionless ceiling length, which in our case is just one. 

The results shown in figure 3 pertain to a cavity with Am /L = 0.22 and a roof with an inclination 
angle of 15º; they indicate that both open a closed cavities transfer almost the same amount of heat at 
low values of Re, that is so because the air motion is slow and the heat transfer process is dominated 
by conduction. However, as the Re increases both systems behave completely different; while the 
Nusselt number increases slowly for a closed cavity, it diminishes rather fast for an open cavity. 
Figure 3(a) shows that the flow rate through the openings increases noticeably with Re and most of the 
heat introduced into the cavity is removed by convection. The consequence is that the two curves 
depart from each other indicating that a ventilated cavity becomes more convenient as Re increases. 

Figure 3(b) shows the reduction in the amount of energy that gets across the ceiling when a closed 
cavity is substituted by a ventilated one. That reduction increases with Re and exceeds 50% when Re is 
about 2600.  
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Figure 3. Comparison of the amount of heat transferred through the ceiling for open and closed 
cavities. (a): Average Nusselt and dimensionless flow rate versus Re. (b): Nusselt percentage 
reduction versus Re when an open cavity substitutes a closed one. 

 
  
In Figure 3(a) the dimensionless flow rate per unit length of the opening is given by 
 

2

1

v.n= ∫
h

h

q dy                                                                  (8) 

 
being v the dimensionless velocity vector, n the unit vector normal to the flow passage and h -h2 1=h 
(see figure 1) the dimensionless height of the opening.  

4.2.1. Influence of the cavity volume (Am/L). Figure 4 shows how the volume of the cavity affects the 
amount of heat transferred through the ceiling when the inclination angle of the roof is 15º. No matter 
if the cavity is open or closed, the average Nu decreases as the volume of the cavity increases —i.e. 
when the ratio Am /L increases. Thus, in figure 4 we observe that the curves of constant Re have 
negative slope. For closed cavities, the curves of constant Re move upwards as the Reynolds number 
increases; this result is expected since the heat transported from the roof toward the ceiling should 
increase with convection. On the other hand, when the cavities are open, more heat should be taken 
out of the cavities by convection as the Reynolds number increases; therefore, in this case the curves 
of constant Re move downwards. In addition, the results shown in figure 4 indicate that heat transfer is 
much more sensitive to the Reynolds number in open cavities than in closed ones. 
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4.2.2. Influence of the roof inclination. Roofs are commonly designed with angles between 10º and 
15º, unless the local climate conditions favors the use of larger inclination angles or the space just 
below the roof will be used for storage purposes. Figure 5 portrays predictions of Nu versus Re for 
three different inclination angles; they are 18º, 15º and 10º respectively. These predictions indicate 
better performances for less inclined roofs; thus, in the range of Re explored, the average Nusselt 
number obtained with an inclination of 10º is approximately 12% smaller than the one obtained with 
an inclination of 15º. However, in order to favor both drainage and self-cleaning, the inclination angles 
usually adopted are not too small; for that reason in what follows we use ω = 15º.  
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4.3. A cavity with an insulated ceiling. 
We already pointed out that Am is the average distance between the roof and the ceiling (see figure 1); 
therefore the value of the Am / L does not change when a layer of certain insulating material is set on 
the ceiling as is shown on the left side of figure 1. Also, the adopted dimensionless thickness of the 
layer (b) is 0.02, which amounts to 8cm in thickness when L is 4 m.  

In figure 6 we summarize the average Nusselt values obtained for a cavity with and without 
insulation when Re ≤ 6.1 103. On the top of figure 6 the curves denoted as (I) and (II) pertain to a 
closed cavity and depict the results for the non-insulated cavity and the insulated one, respectively. In 
this case we have considered an insulation material having exactly the same thermal conductivity as 
the air; therefore, the ratio between K  and KI A appearing in (8) is just one (K = K  / KI A = 1). Clearly, at 
very small values of Re the curves coincide since the mechanism of heat transfer is exclusively by 
conduction. As the values of Re increase the effect of convection becomes evident and the insulated 
cavity performs slightly better allowing less heat to be transferred through the ceiling. 

The curves denoted as (III), and (IV) correspond to an insulated and a non-insulated open cavity, 
respectively. The remarkable outcome is that the non-insulated case performs slightly better than the 
insulated one when the Reynolds number is smaller than 4.0 103. Both curves are coincident at very 
small values of the Reynolds number; when Re exceeds 5.0 102 they start to separate from each other 
until they meet again when the Reynolds value is about 4.1 103. Finally, when Re becomes larger than 
4.1 103 the two curves change their relative position indicating that at higher Reynolds the use of an 
insulated ceiling becomes advantageous. This result was expected since the heat transported toward 
the ceiling by convection must increase with Re; in addition, this behavior should be enhanced 
significantly when air flow in the cavity is turbulent.  
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Figure 6. Effect on the average Nu of an insulating layer located on the ceiling of both closed and 
open cavities. 

Figure 6 portrays some interesting results when an open cavity is considered; one of them is that at 
relatively low values of the Reynolds number, the heat transfer through the ceiling strongly decreases 
as the air flow rate across the cavity increases, i.e. as the Re increases. Actually, when Re is about       
6.0 103 the heat transfer is just 28% of the amount of heat transferred at Re smaller than 200. However, 
if Re is further increased the curve of Nu becomes almost horizontal indicating that no additional 
benefits are gained as long as the flow keeps its laminar regime. It is not known the exact value of the 
Rayleigh number at which turbulent regime appears in this type of cavity, but it is believed that it 
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7might happens when the values are between 10  and 108 [17]. These values occur when the Reynolds 
number we use in this work is in the range: 3.7 103 - 1.2 104.  

Another result that must be noticed is the small effect produced by the insulating layer located on 
the ceiling; the reason for this behavior is a consequence of both temperature and flow fields in the 
cavity. The temperature field shows that the air inside the cavity is rather stratified, being the warmer 
layers located near the roof and the cooler ones near the ceiling. Though the warmer layers move at 
considerable speeds toward the exit openings, the cooler layers are almost stagnant; therefore the heat 
in this region is mostly transported by conduction and the insulating layer produces just a small 
reduction in the heat transported. 

5. Conclusion 
In this work we have studied the influence of a ventilated attic on the heat transferred from the roof 
and through the ceiling, toward the interior of a building of a family house. We numerically solved the 
complete set of governing equations that couples flow and heat transfer in natural convection. For that 
purpose, and in addition to the usual Boussinesq approximation, we made two important assumptions: 
namely, the air flow is in laminar regime and radiation has negligible effect on heat transfer. Under 
these assumptions we found that on hot summer days, an attic with suitable openings can significantly 
reduce heat transfer and produce considerable energy savings in air conditioning.  

If one assumes that an appropriate radiant barrier is employed, the results obtained should also be 
valid regardless of how important the radiation transfer might be. Nonetheless, in future analyses we 
will consider the influence of radiation and we will also explore the turbulent regime —which might 
occur if the roof temperature is high enough— where the heat transfer by convection should be more 
important and the employment of insulating layers must be necessary to preserve significant energy 
savings.  
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