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Abstract

We propose an organizing principle for string theory moduli spaces in six dimensions with

N = (1, 1), based on a rank reduction map, into which all known constructions fit. In

the case of cyclic orbifolds, which are the main focus of the paper, we make an explicit

connection with meromorphic 2D (s)CFTs with c = 24 (c = 12) and show how these encode

every possible gauge symmetry enhancement in their associated 6D theories. These results

generalize naturally to non-cyclic orbifolds, into which the only known string construction (to

our awareness) also fits. This framework suggests the existence of a total of 47 moduli spaces:

the Narain moduli space, 23 of cyclic orbifold type and 23 of non-cyclic type. Of these only

17 have known string constructions. Among the 30 new moduli spaces, 15 correspond to pure

supergravity, for a total of 16 such spaces. A full classification of nonabelian gauge symmetries

is given, and as a byproduct we complete the one for seven dimensions, in which only those

of theories with heterotic descriptions were known exhaustively.
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1 Introduction

There has been some recent progress in understanding string theory in the regime with sixteen

supercharges, which serves to test various ideas that could be generalized to other regimes.

Some of the most prominent amongst these [1–8] come from the Swampland program [9,10], in

which many conjectures about the consistency of quantum gravity theories are made; particu-

larly relevant to this work is the idea that string theory is a universal description of theories of

quantum gravity (the so-called String Lamppost Principle.) Many other applications related

to this work can be found in [11–17], which roughly speaking center around the appearance

of moonshine in string theory.

It has been noted for example that the full moduli space of string vacua with N = 1 in

dimensions 9, 8 and 7 was missing various connected components associated to string theories

with discrete theta angles [18]. This was predicted by noting that M-Theory compactifica-

tions on K3 surfaces with possible frozen singularities encompassed all known moduli space

components given by other stringy descriptions [19], and that there were three more possib-

ilities not accounted for in the literature [20], one of which naturally lifts to eight and nine

dimensions.

On the other hand there has been some interest in the patterns of gauge symmetry en-

hancement in these theories, from the point of view of heterotic strings in [21–26] and Type

IIB string junctions in [27]. It has been shown in particular that from the gauge symmetry

groups appearing in the Narain component (e.g. heterotic strings on tori), one can obtain

those in the other moduli space components by a suitable rank reduction map.

The goal of this paper is to determine at once what are all the possible components in the

moduli space of string vacua in six dimensions with N = (1, 1) and what are all the possible

nonabelian gauge symmetries that arise in them. The key idea is that the map which relates

the Narain component to the others is known to be the same that relates moduli spaces of

flat G-bundles on T 2 with G a compact non-simply-connected Lie group [28–30] in the cases

where we have explicit control over the computation of gauge groups1 [24]. Roughly speaking,

for a non-simply-connected gauge group G in the Narain component, each order n element in

the fundamental group π1(G) defines a mapping to another gauge group G′. For five types of

mapping, where the orders are 2, 3, 4, 5, 6, we know that G′ belongs respectively to a heterotic

Zn-triple of [19].

There are however other possible mappings, many of which, as we will show, correspond

to other known components in the moduli space which are described by cyclic orbifolds. This

is achieved with the help of a relation between these components and meromorphic (s)CFTs

with c = 24 (c = 12) that appear in the worldsheet CFTs of their T 4 compactifications, i.e.

in 2D. In turn, the classification of such CFTs [14,31] allows to predict the existence of eight

more moduli space components given by cyclic orbifolds. An explicit connection between the

string theories and this classification is given along the lines of Höhn’s reconstruction of the

1By this we mean that we are able to extract the information of the gauge group of a given string vacuum
from an associated lattice embedded into the overall charge lattice of the theory.
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current algebras in Schellekens’ list [32], i.e. the case c = 24, although we show that this

construction, with a minor amendment, also gives those for the c = 12 sCFTs.

We also show that the Niemeier lattices with roots encode every possible gauge symmetry

enhancement in the Narain component, and combining this with the map to other components

we find that all the enhancements in them are encoded by the so-called orbit lattices. These

results are checked against those of [24] with perfect agreement, but we emphasize here that

we have access to many more components.

More speculatively but also completely naturally, we propose that the rank reduction

map may be applied iteratively until the resulting gauge group is simply-connected, and that

this exhausts every possible nonabelian gauge symmetry group for a 6D string vacuum with

N = (1, 1). Encouragingly, the Z2 × Z2 asymmetric orbifold of [19] corresponds precisely

to a case of applying the rank reduction two times, but there are still other 22 potential

constructions not accounted for in the literature, which we believe to be realizable as non-

cyclic orbifolds. Remarkably, four of these exhibit the novel property of having odd gauge

group rank; two have rank 5, one has rank 3 and another rank 1. This extends the possibler

rank reductions r in 6D theories with 16 supercharges to

r = 8, 12, 14, 15, 16, 17, 18, 19, 20 . (1.1)

In the end we are led to a picture in which the complete moduli space consists of 47 connected

components, of which 30 have no known string theory description. These are recorded in

Tables 5 and 6 of Appendix B. The gauge symmetry enhancements for every component are

recorded in an online database [33].

We start in Section 2 with a treatment of the Narain component which we generalize in

Section 3 to the CHL string. In Section 4 we present the generalization to every component of

cyclic orbifold type; the rest of the (non-cyclic) cases are considered in 5. Section 6 presents

our conclusions.

2 Narain Component

In this section we recall the basic aspects of symmetry enhancement in the Narain component

of the moduli space of six dimensional N = (1, 1) string vacua in the language of lattices. We

show how to obtain every possible enhancement using the Niemeier lattices, and interpret this

result in terms of the structure of the theory when compactified further on T 4.

2.1 Preliminaries

The simplest string vacua in six dimensions with N = (1, 1) supersymmetry are described by

any of the heterotic strings compactified on T 4 or, equivalently, type IIA strings compactified
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on K3. They live in the Narain moduli space

M' O(4, 20,Z)\O(4, 20,R)/O(4,R)×O(20,R) , (2.1)

where the dilaton contribution R+ is omitted. The discrete group O(4, 20,Z) is the T-duality

group of the theory in the heterotic string description, and corresponds to the automorphism

group of the Narain lattice Γ4,20. The symmetric space which it quotients is the Grassmannian

with signature (4, 20). In other words,

M' O(Γ4,20)\Gr(4, 20) . (2.2)

Points in this space may be interpreted as the possible orientations of a negative definite

4-plane relative to the lattice Γ4,20, both embedded into R4,20.

At special points in M, the orthogonal complement of the 4-plane intersects a positive

definite sublattice W of Γ4,20, with rank r = 1, ..., 20. These sublattices are primitive, which

means that the intersection of their real span W⊗R with Γ4,20 is W itself. Of these, some enjoy

the property of having a root sublattice (a lattice generated by vectors with norm v · v = 2) of

maximal rank, which means that they are Lie algebra lattices, and can be interpreted as the

weight lattices of certain nonabelian simply-laced Lie groups G. In fact, the physics of the

theory works out such that at these points the gauge symmetry of the vacua have nonabelian

part exactly given by G.2 In general we have the result that, at a given point in moduli space,

WG ↪→ Γ4,20 ⇔ Gauge group = G× U(1)20−r , (2.3)

where WG is the weight lattice of G with rank r and its embedding into Γ4,20 is primitive.

Generic points have abelian symmetry group, and so the appearance of nonabelian factors is

referred to as symmetry enhancement. For r = 20, the enhancement is said to be maximal.

It may be helpful to elaborate on the meaning of WG. We take it to be the weight

lattice in the same sense as one usually refers to the lattice D16 extended by the positive

spinor class (1
2
, ..., 1

2
) as the weight lattice of Spin(32)/Z2. For any primitive embedding

WG ↪→ Γ4,20, the self-duality of the host charge lattice ensures that its projection onto the real

space spanned by WG is W ∗
G [34]. Since the spectrum of the theory is complete, W ∗

G encodes

the allowed charges under the gauge symmetry group ensuring that the fundamental group

π1(G) is exactly the quotient of WG by its root sublattice, as should be for a simply-laced

group. This picture breaks down and must be generalized for theories with non-self-dual

charge lattices. A treatment of this problem can be found in [26].

Relation (2.3) allows to study symmetry enhancements from a purely lattice-theoretical

point of view, for which many tools are available. This is specially true for the case at hand

since Γ4,20 is an even self-dual lattice. Even more, the fact that the rank of this lattice is 24,

which is a particularity of six dimensional theories, makes it so that the problem of determining

2In this paper we ignore the contributions to the gauge group coming from the gravity multiplet, as well
as discrete factors such as found in E8 × E8 o Z2.
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every possible WG is exactly solvable without too much effort. Let us show how this is done.

2.2 Symmetry enhancements from Niemeier lattices

Euclidean even self-dual lattices exist only when their rank is a multiple of 8. Of rank 24

there exist 24 such lattices, of which 23 are Lie algebra lattices while the other has no roots

at all. The former are known as Niemeier lattices and will be central to our analysis; they are

briefly described in Appendix A.1. The later, known as the Leech lattice, will not be relevant

for us. Indeed, our interest is in nonabelian gauge symmetry enhancements, i.e. Lie algebra

lattices.

To get a sense of how Niemeier lattices enter into the discussion of symmetry enhancements,

take the lattice Nγ = 3E8 and draw its Dynkin diagram:

(2.4)

Deleting a node in this diagram selects a rank 23 primitive sublattice W23 ↪→ Nγ, e.g. W23 =

2E8 ⊕ E7. If one interprets Nγ as the weight lattice of the gauge group GNγ = E3
8 , this

procedure is equivalent to moving away from a point of symmetry enhancement in moduli

space (as we will see, this scenario does appear in two spacetime dimensions where the gauge

groups have rank 24). Repeating this procedure a total of four times, we are left with a rank

20 weight lattice for some gauge group (in this case a root lattice since the gauge group is

simply connected).

Our claim is that the procedure just outlined, if done in all possible ways for all Niemeier

lattices, will produce a complete list of the maximal symmetry enhancements of the Narain

component discussed in the previous section. This will be proven shortly. It is however

instructive to note first that after deleting four nodes arbitrarily in one of the E8 sublattices

of Nγ, the result is a gauge group of the form

G = E2
8 ×G(4) ,

where G(4) is an arbitrary simply-laced compact Lie group of rank 4. It is well known that

such a gauge group can be obtained in the E8 × E8 heterotic string on T 4 with null Wilson

lines and appropriate values for the metric and B-field (see e.g. [35]). The analogous case of

the Spin(32)/Z2 heterotic string is to be found by deleting four nodes in the E8 sublattice of

Nβ = WSpin(32)/Z2 ⊕ E8.

In the language of lattice embeddings, our claim is based on two statements:

1. Any Lie algebra lattice WG of rank 20 which embeds primitively into Γ4,20 also embeds

primitively into some Niemeier lattice NI . The converse is also true.

2. The root sublattice of WG can be made to correspond to a rank 20 subdiagram of the
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Dynkin diagram of the Niemeier lattice into which it is embedded.

The first of these two statements follows directly as a corollary of theorems 1 and 2 of [13]

(recorded in Appendix A.2,) by virtue of WG being a lattice whose embedding corresponds

to a point in moduli space which is completely fixed by a subgroup of O(Γ4,20) (the Weyl

group of the associated root sublattice). The second statement follows from the possibility of

matching the generating roots of the root sublattice of WG with a subset of those of NI by

applying an appropriate transformation in the Weyl group of NI .

This result can be generalized to every other symmetry enhancement, not necessarily

maximal, by observing that all possible gauge groups with rank < 20 are obtained from

those of rank 20 by deleting nodes. This is in contrast to compactifications to seven or more

spacetime dimensions, where there is a special nonabelian gauge group of rank 16 which does

not admit further enhancements [36]. It is of the form

G =
Spin(16)2

Z2

,
Spin(8)4

Z2
2

,
Spin(4)8

Z5
2

, resp. d = 9, 8, 7 . (2.5)

As is easy to infer, the next in the sequence is abelian.

It is satisfying that applying this method we obtain a list of gauge groups in perfect

agreement with the results of [24], which were obtained by means of an algorithm which

finds embeddings of lattices WG into Γ4,20 in an exploratory manner developed in [22,23,25].

This gives evidence for the effectiveness of the exploration algorithm, which has the added

advantage of producing values for the moduli for which the enhancements occur and is not

restricted to the six dimensional case.

2.3 Connection to the 2D theory

A physical interpretation is available for the results just reported in considering a further

compactification of the theory on T 4 down to two dimensions. From the point of view of

the heterotic string on T 8, the Narain lattice is now Γ8,24. Its uniqueness as an even self-

dual lattice with signature (8, 24) implies that any other such lattice is isomorphic to it. In

particular, we have the isomorphisms

Γ8,24 ' NI ⊕ E8(-1) . (2.6)

This means that there are 23 points (ignoring one associated to the Leech lattice) in the

moduli space where the Narain lattice splits into two Euclidean lattices (here we take the

active interpretation of the moduli space as that of polarizations of the Narain lattice, where

the fixed negative definite plane corresponds to the subspace R8,0 ⊂ R8,24). At these points,

the gauge symmetry group is precisely the one whose weight lattice is NI .

Our results show then that performing four or more symmetry breakings on these 23 special

points in moduli space produces every possible nonabelian gauge symmetry in the parent six

dimensional theory. This is analogous to the case of discrete gauge symmetries as analysed
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in [11]. In this reference, however, the lattice Γ8,24 is taken as the full nonperturbative charge

lattice of the theory in three and not two dimensions. The reader is free to interpret our

results also in that context.

We consider the two dimensional case since the gauge groups given by the Niemeier lattices

are visible as current algebras in the heterotic string worldsheet CFT. The fact that the Narain

lattice splits into two Euclidean lattices signifies that the worldsheet CFT factorizes into two

chiral (s)CFTs. The left moving CFT is a meromorphic CFT with c = 24 with nontrivial

current algebras at level 1 while the right moving sCFT is the meromorphic sCFT with c = 12

based on the E8 lattice. These worldsheet CFTs are examples of the family studied in [15].

These facts will play a key role in understanding the overall structure of the moduli space in

six dimensions.

3 Chaudhuri-Hockney-Lykken Component

It will be our main objective to extend the analysis carried out so far to other connected

components in the moduli space. These take the generic form

M = O(Γc)\Gr(4, 20− r) , (3.1)

where Γc is the charge lattice analog to the Narain lattice in the standard component, and

r ∈ {8, 12, 14, 16, 18, 20}3. We start by focusing our attention on the unique component with

r = 8, which we will refer to as the Chaudhuri-Hockney-Lykken (CHL) component.

3.1 Basic generalizations

The CHL component [37,38] can be described in various ways, most notably as an asymmetric

orbifold [34] of the E8 × E8 heterotic string on T 4 which realizes a holonomy along one

of the compact directions whose action exchanges the E8 factors. There are various other

descriptions, which can be found in [19]. Its charge lattice was computed by Mikhailov [39]

and is of the form

Γc = Γ1,1 ⊕ Γ3,3(2)⊕ E8 . (3.2)

Here the parentheses denotes a scaling of Γ3,3 by
√

2. This theory exists in nine dimensions,

where the charge lattice is Γ1,1 ⊕ E8, and each compactification on S1 extends it by adding

Γ1,1(2). This can be interpreted as a relative reduction in the size of the circle supporting the

holonomy, and is a generic feature of rank reduced charge lattices.

The Mikhailov lattice Γc enjoys various presentations. In particular, it can be written as

Γc = Γ4,4 ⊕ [8A1 |Z2] , (3.3)

where the lattice [8A1 |Z2] is the weight lattice of the gauge group SU(2)8/Z2 with Z2 diagonal.

3For the predicted non-cyclic orbifolds in Section 5, we also have r = 15, 17, 19.
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Moreover, Γc admits a primitive embedding into Γ4,20, wherein its orthogonal complement is

also [8A1 |Z2]. This rank 8 lattice can be compactly written as D∗8(2), but it is the form we

have chosen which will generalize to other components.

Importantly, Γc is not self-dual. This calls for generalizations of the statements made for

the Narain lattice regarding symmetry enhancements. Firstly, root lattices may have roots

with norm 4 instead of 2, leading to gauge algebras of the type BCF when they are mixed with

roots with norm 2, and scaled type A algebras otherwise. Secondly, if a root sublattice has

longest root with norm 4, its current algebra level is 1; if the longest root has norm 2, the level

is 2. Finally, the topology is not directly encoded in the overlattice of the root lattice with

respect to its embedding into Γc, to which we have referred as WG in the Narain component.

The fundamental group π1(G) can be obtained instead as the quotient W∨
G/(WG)∨root, where

(WG)∨root is the coroot lattice and W∨
G its overlattice with respect to an embedding into Γ∗c [26].

Indeed note that this procedure reduces to the one outlined in the Narain component in the

case that Γc is self-dual and G is simply-laced.

We refer the reader to [23] for more details on the CHL string and its symmetry enhance-

ments.

3.2 From Narain to CHL: the rank reduction map

The procedure of computing the possible gauge groups from lattice embeddings is rather

tedious. Fortunately, there is an alternative method. There exists a map that takes as input

some suitable gauge group arising in the Narain component and returns a gauge group in

the CHL component [24]. It will be instructive to briefly review its derivation from lattice

embedding techniques.

As we have remarked above, Γc admits a primitive embedding into Γ4,20 with ortho-

gonal complement [8A1 |Z2]. This implies that to any weight lattice WG ↪→ Γ4,20 for which

[8A1 |Z2] ↪→ WG one can associate another lattice in Γc as the orthogonal complement of

[8A1 |Z2] in WG. From this newfound lattice one may apply the procedure outlined above to

compute the corresponding gauge group G′, establishing a map G 7→ G′. That [8A1 |Z2]

is primitively embedded into WG implies that the gauge group G is an enhancement of

SU(2)8/Z2. The generator k of this Z2 will correspond then to an order two element in π1(G),

from which we can determine that G can be mapped to some G′ in the CHL component.

The effect of taking the orthogonal complement of [8A1 |Z2] in WG and computing the

gauge group G′ using the rules for the CHL string, for every one of the possible groups G in

the Narain component, makes clear that at the level of the gauge groups the map is as follows.

Let

G =
G̃

π1(G)
=
G̃1 × · · · × G̃s

π1(G)
, (3.4)

where G̃ is the universal cover of G and G̃i its simple factors. Denote by k = (k1, ..., ks) the

elements of π1(G), with ki the projections of k onto the centers Z(G̃i). Let ` be an order 2

element of π1(G) corresponding to an element in the lattice WG which reduces to the order
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two weight vector in its sublattice [8A1 |Z2]. If the projection `i of ` onto Z(G̃i) is nonzero,

G̃i undergoes a transformation according to the rules

G̃i G̃′i `i

SU(2) ∅ 1

SU(2n) SU(n) n ≥ 2

Spin(2n) Sp(n− 2) v

Spin(4n) Spin(2n+ 1) s

E7 F4 1

(3.5)

Here v and s are respectively the vector and positive chirality spinor classes in the center of

Spin(2n), the later of which is always of order 2 in Spin(4n). Depending on the chosen basis,

one may have the negative chirality spinor c instead of s. The fundamental group transforms

as

π1(G) 7→ π1(G
′) ' π1(G)/Z2 , Z2 = {0, `} . (3.6)

The levels of the worldsheet current algebras will also change generically. All of the trans-

formed simple factors are now associated to root sublattices where the longest root has norm

4, and so they are at level 1. Every spectator term will however change its level from 1 to 2.

A simple example is provided by a group of the form Spin(32)/Z2×G4. Indeed, Spin(32)/Z2

can be broken to SU(2)8/Z2, and is mapped to Spin(17). The result is then the gauge group

Spin(17)×G4 with current algebra B̂8,1 + Ĝ4,2, with hats denoting affinization, as usual, and

rightmost subscripts denoting the level.

Remarkably, this same map arises in studying the moduli space of flat connections for a

group G over the torus T 2 [28]. As such, it was expected that it would appear naturally in

the CHL string in eight dimensions [29]. Here we see that a precise realization exists instead

in six dimensions, but the reason for this is so far elusive. On the other hand, in the more

recent mathematical literature this map was used to rederive the classification of meromorphic

CFTs with central charge 24 [32]. We will be able to understand precisely how this method is

connected with the structure of the moduli space of six dimensional N = (1, 1) string vacua

in the following.

3.3 Symmetry enhancements from orbit lattices

As we have seen, every possible gauge symmetry group arising in the Narain component can be

obtained as a symmetry breaking of a rank 24 gauge group G with WG one of the 23 Niemeier

lattices. Here we wish to show that an analogous result holds in the CHL component. The

basic idea is that applying the rank reduction map to a set of gauge groups obtained from

some Niemeier lattice NI is equivalent to applying the same map to the rank 24 gauge group

associated to NI and then extracting gauge groups G′ by symmetry breaking.

Let us illustrate this procedure with an example. Consider the Niemeier lattice Nβ with

root sublattice D16⊕E8, and associated gauge group Spin(32)/Z2×E8, and delete four nodes
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in the E8 as above. In every case, we are left with a group G which can be mapped to

the CHL string, which may as well have been obtained by deleting four nodes in the E8 of

Spin(17) × E8. In this case, the operations of rank reduction and node deletion commute.

Can this be generalized to node deletions in the Spin(32)/Z2 factor?

We must consider the cases in which deleting a node from the Dynkin diagram of Spin(32)/Z2

preserves the fundamental group Z2. It helps to make explicit the primitive embedding

8A1 ↪→ D16 of the root sublattice of [8A1 |Z2] into the root sublattice of WSpin(32)/Z2 in

the Dynkin diagram:

(3.7)

The order 2 element of the fundamental group corresponds to a vector in the real span of

the roots whose nodes are colored. If any of these is deleted, the fundamental group becomes

trivial. The white nodes, on the other hand, can be deleted without altering π1, thus still

allowing the rank reduction map to be applied. Deleting one of them and then applying the

rank reduction map is in fact equivalent to mapping first Spin(32)/Z2 → Spin(17) and then

appropriately deleting one of the eight nodes.

In this case, the group Spin(17)×E8 has a corresponding lattice given by the orthogonal

complement of [8A1 |Z2] in Nβ. Following [32], where lattices of this type have also made an

appearance to be explained below, we will refer to it as an orbit lattice (more details are given

in Section 4.1). Indeed, the rank reduction map has an action on the affine Dynkin diagram

given by a folding which corresponds to an element of the center of G̃, and accordingly, the

resulting affine algebra is known as an orbit (affine) Lie algebra [28].

There are 17 primitive embeddings of [8A1 |Z2] into Niemeier lattices, each of which pro-

duces a different orbit lattice for the CHL component. The same considerations as above

apply, and so we have 17 special rank 16 gauge groups from which every possible gauge group

in the CHL component can be obtained by four or more symmetry breakings. These are

recorded in Table 3. As in the Narain component, the results obtained in this way agree with

those found in [24] using an exploration algorithm.

3.4 Connection to the 2D theory

Mirroring the discussion in Section 2.3, we now want to show that the 17 gauge groups

corresponding to orbit lattices N ′I in the CHL component are realized in the moduli space of

the theory when compactified further on T 4. To this end it suffices to prove that there is an

isomorphism

Γ4,4 ⊕ Γ4,4(2)⊕ [8A1 |Z2] ' N ′I ⊕ E8(-2) , (3.8)

for each possible N ′I , analogous to the isomorphisms in (2.6).

The easiest way to prove eq. (3.8) is by showing that each one of the 18 lattices involved

belong to the same lattice genus using for example SAGEMATH or MAGMA. It is a standard theorem

of lattice theory that for even lattices with Γ1,1 sublattice each genus contains exactly one

10



lattice. More generally, it can be proven using standard lattice embedding theorems that any

pair of lattices Γc and M defined as the orthogonal complement of some lattice Λ primitively

embedded respectively into Γ4,20 and NI enjoys the relation

Γc ⊕ Γ4,4(n) 'M ⊕ E8(-n) (3.9)

for arbitrary n; (3.8) is a special case. To see that there are no other possible orthogonal

decompositions, it suffices to compute the genus of the Euclidean lattices N ′I , which consists

exactly of these 17 lattices. Indeed, taking orthogonal complements in the Niemeier lattices

with respect to embeddings of a given lattice, in this case [8A1 |Z2], is a standard way of

computing lattice genera, known as the Kneser-Nishiyama method [40,41].

From (3.8) we also learn that the 17 gauge groups associated to the orbit lattices arise in

points in moduli space where the heterotic worldsheet CFT factorizes. This has the implication

that the current algebras at these points correspond to chiral CFTs with c = 24. As we will

see, for all cyclic orbifolds these are in fact meromorphic; such algebras were notably classified

by Schellekens in [31] and we find indeed that this set of 17 algebras are reported in this

reference. The right-moving sCFT is again the one based on the E8 lattice.

We have arrived at the notable fact that applying the rank reduction map on the Niemeier

lattices has produced current algebras for meromorphic CFTs with c = 24. This is in fact a

general occurrence, and has been worked out in the (recent) mathematical literature [32]. We

will review this work in the next section. It will provide us with enough information to propose

a natural partial classification of the components in the moduli space of six dimensional string

vacua with N = (1, 1), namely of those defined by orbifolds given by a group of the type Zn.

In each case we are able to extend the methods developed so far to the corresponding moduli

space and the gauge symmetries it presents.

4 Other Components of Cyclic Orbifold Type

The results of last section can be generalized straightforwardly to other known components of

the moduli space, provided that we know how to extract the gauge group data from a lattice

embedding into the charge lattice. Obtaining this information is however quite difficult in

general, as we usually require explicit formulas for the masses of the states in the spectrum

in some stringy description.

We addressed this problem in [25] for four components with rank reduced gauge group apart

from the CHL string which can be described in seven dimensions by asymmetric orbifolds

of the heterotic string on T 3, known as heterotic Zn-triples [19]. The rank reduction map

was consequently obtained for the corresponding six dimensional theories in [24]. Here too

its action on the affine algebras produces an orbit Lie algebra according to the order of an

associated element in the fundamental group of the gauge group G in the Narain component.

In the following we will see that this map is in perfect agreement with the more general

construction proposed in this paper, and so are therefore the derived rules for reading the

11



gauge symmetries from lattice embeddings.

Our approach will be to take an alternative route to the derivation of these rules by

focusing on the relation between orbit lattices and meromorphic CFTs with c = 24 (and

sCFTs with c = 12), which has been worked out in the literature, and lifting them from two

to six dimensional theories. These results apply in fact to almost every known moduli space

component, and predicts the existence of eight more. The outliers correspond to orbifolds not

of cyclic type, which will be considered in Section 5. The fact that the orbit lattices encode

every possible symmetry enhancement in the six dimensional theories ensures that the rules

can be derived in complete generality.

4.1 Höhn’s construction

In [31] Schellekens notably gave a classification of meromorphic CFTs with c = 24, of which

69 have semisimple current algebras. More recently, Höhn showed in [32] that all of these can

be obtained in a simple manner from the Niemeier lattices and the possible orbit lattices that

can be constructed from them as we have exemplified for the CHL string. Let us explain how

this works.

Let L be an even lattice with automorphism group O(L), and g ∈ O(L) an order n

automorphism. The action of g on L leaves invariant a primitive sublattice Lg, referred to

as the invariant lattice. The orthogonal complement of Lg in L, denoted by Lg, is in turn

referred to as the coinvariant lattice. Now suppose that L is a Lie algebra lattice with root

sublattice Lroot, and glue code the abelian group CL = L/Lroot. Each element in CL defines a

special lattice automorphism g corresponding to a symmetry of the affine Dynkin diagram of

Lroot. From each simple root we can construct a g-orbit of roots, their sum being a vector in

L invariant under g. In the case that two roots have nontrivial inner product, their sum must

be multiplied by 2.4 This yields an orbit root lattice R, and so one can construct an invariant

primitive sublattice by taking its overlattice inside L. We refer to the latter as an orbit lattice.

We see then that for a given element g in L/Lroot there is a canonical mapping L 7→ Lg.

This map can be promoted to one between affine Lie algebras if one is able to consistently

assign them to L and Lg. For the problem at hand we take L to give a semisimple affine

algebra g of ADE type at level 1; equivalently we take all the roots of L to be precisely the

norm 2 vectors. For Lg, we take the roots to be those vectors obtained from the g-orbits of

roots, as explained above. The resulting root sublattice Lgroot is then an orthogonal sum of

possibly rescaled root lattices, not necessarily of ADE type. From this we read off the simple

algebras in the sum gg = gg1 ⊕ gg2 ⊕ · · · ; their levels are taken to be equal to 2m/α2
` , where

m is the order of g times an integer λ to be specified later, and α` the longest root in the

corresponding root sublattice.

4In [32] this rule is not implemented; there is rather a scaling of certain root sublattices. Both procedures
allow to get the correct root systems for Schellekens list, but it is the former which makes sense from the
string theory point of view, leading to the map of orbit affine Lie algebras of [28–30]. The corrected results
also agree with the current algebras for the c = 12 sCFT of [14].
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Take now the set of Niemeier lattices, compute all of their corresponding orbit lattices and

assign algebras as above. As Höhn noticed, the subset of algebras with dimension strictly

greater than 24 matches precisely those in Schellekens’ list if λ is appropriately chosen (in

most cases λ = 1 while in a few λ = 2). We refer the reader to Table 3 of [32] for the full set

of relevant data.

It was also observed in [32] that the orbit lattices are arranged into various lattice genera.

For each such genus, there is a unique coinvariant lattice. For example, a set of 17 orbit lattices

corresponding to certain order 2 automorphisms of the NI belong to the same genus and their

coinvariant lattice is [8A1 |Z2]. This is just what we already found by studying the CHL string

in Section 3.4. One immediately suspects that each orbit lattice genus corresponds to a 6D

N = (1, 1) moduli space component and, as we will see, this is the case. This correspondence

will in turn help elucidate the interpretation of certain points not yet clarified such as the role

of the gluing vectors in the orbit lattices5, the meaning of λ and the role of orbit lattices with

algebras of dimension 24.

Parentheses on coinvariant lattices

Before proceeding let us make some observations concerning the coinvariant lattices; we will

call them Λ here. As we have mentioned, they appear naturally as the orthogonal complements

of the charge lattices Γc in the Narain lattice Γ4,20. They all share a common feature, namely

that removing any node in the associated Dynkin diagram, the glue code Λ/Λroot is reduced.

Physically this means that the associated gauge symmetry group (which is indeed realized

in the theory) changes its fundamental group when there is any symmetry breaking; e.g.

G = SU(2)8/Z2 breaks to SU(2)7.

The gluing vectors in Λ correspond precisely to those elements in the glue code of the host

Niemeier lattice which give the automorphism with respect to which Λ is coinvariant. For

this reason, a classification of all sublattices of the NI which exhibit the property mentioned

above amounts to a classification of orbit lattices with respect to any automorphism of the

NI , cyclic or not, by taking orthogonal complements. This point of view allows us to avoid

in practice the process of computing the orbit lattices by explicit use of the automorphisms,

which can be very cumbersome.

4.2 Known components

4.2.1 M-Theory on (K3× S1)/Zn

In the following we wish to examine the moduli space components that are known, and relate

them to the orbit lattice construction just explained.

We start with M-Theory compactified on an orbifold (K3 × S1)/Zn given by an order n

symplectic automorphism of the K3 surface together with an order n shift along the S1. The

5A gluing vector in a lattice L is any vector which is not a linear combination of roots. This is not to be
confused with the notion of gluing vector used in [31]. More concretely, the latter are elements of the gluing
code, which have rescaled gluing vectors.
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possibilities are n = 1, ..., 8, with corresponding charge lattices [19]

n Γc Γ⊥c ↪→ Γ4,20

1 Γ4,20 ∅
2 Γ4,4 ⊕ [8A1 |Z2] [8A1 |Z2]

3 Γ3,3 ⊕ Γ1,1(3)⊕ A2 ⊕ A2 [6A2 |Z3]

4 Γ3,3 ⊕ Γ1,1(4)⊕ A1 ⊕ A1 [2A1 ⊕ 4A3 |Z4]

5 Γ3,3 ⊕ Γ1,1(5) [4A4 |Z5]

6 Γ3,3 ⊕ Γ1,1(6) [2A1 ⊕ 2A2 ⊕ 2A5 |Z6]

7 Γ2,2 ⊕ ( -4 -1
-1 -2 ) [3A6 |Z7]

8 Γ2,2 ⊕ ( -4 0
0 -2 ) [A1 ⊕ A3 ⊕ 2A7 |Z8]

(4.1)

All of the Γc admit a primitive embedding into the Narain lattice Γ4,20, with orthogonal

complements recorded in the rightmost column.

As for the CHL string, which is dual to the n = 2 case here, the lattices Γ⊥c embed

primitively into some Niemeier lattices and play the role of the coinvariant lattice with respect

to certain lattice automorphisms of order n. For n = 2, 3, 4, 5, 6, these theories are dual to the

heterotic triples we examined in [24, 25], and an analysis along the lines of Section 3 carries

through.

The general picture is as follows. The lattices Γc transform as

Γc 7→ Γc ⊕ Γ4,4(n) (4.2)

when the corresponding theories are further compactified on T 4. The resulting lattices enjoy

the isomorphisms

Γc ⊕ Γ4,4(n) ' N g
I ⊕ E8(-n) , (4.3)

and so there are special points in the moduli space where the worldsheet CFT factorizes, from

the point of view of a heterotic string description that we assume to exist (to our knowledge,

they have not been constructed in the literature for n = 7, 8). The left moving CFT at these

points has current algebra given by the N g
I as explained in the previous section, with λ = 1.

Since we know the current algebras at these special points, we can identify the gluing

vectors in the N g
I with the massive states sitting in fundamental representations of the gauge

group, allowing to compute their topology; this is so because the orthogonal splitting of the

charge lattice at these points implies that the projection of Γc into N g
I is N g

I , so that there are

no other vectors in the lattice to be taken into account for. This reproduces for n = 2, ..., 6

the results we get from applying the rank reduction map of the Zn-triples to the groups

corresponding to the Niemeier lattices, as in Section 3. For n = 7, 8 we are instead able to

learn how the gauge groups should be read from lattice embeddings into Γc (the relevant rules

do not depend on the number of spacetime dimensions). As we expect, the resulting rules are

a direct generalization from those of [25], and so the rank reduction map of [24] is trivially

extended to these components.
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From these facts it follows that the the gauge groups given by the orbit lattices yield every

possible nonabelian gauge group to be found in the parent six dimensional theories upon

four or more symmetry breakings, just as for the CHL string. We leave to Appendix A.3

some details regarding how the fundamental groups of the gauge groups change under such

breakings.

4.2.2 M-Theory on (T 4 × S1)/Zn

Another family of M-Theory compactifications with N = (1, 1) corresponds to the orbifolds

(T 4 × S1)/Zn, with n = 2, 3, 4, 6. These are given by an order n symmetry of the T 4 which

breaks half the supersymmetries together with an order n shift along the S1. The charge

lattices and orthogonal complements are

n Γc Γ⊥c ↪→ Γ4,20

2 Γ1,1 ⊕ Γ3,3(2) [16A1 |Z5
2]

3 Γ1,1 ⊕ Γ1,1(3)⊕ A2(-1) [9A2 |Z3
3]

4 Γ1,1 ⊕ Γ1,1(4)⊕ 2A1(-1) [6A1 ⊕ 4A3 |Z2
2Z4]

6 Γ1,1 ⊕ Γ1,1(6)⊕ A2(-2) [5A1 ⊕ 4A2 ⊕ A5 |Z6]

(4.4)

In this case, however, the lattices Γ⊥c are coinvariant with respect to automorphisms of the

NI which define orbit lattices with algebras of dimension 24, respectively

8 Â1,2λ , 3 Â2,3λ , Â3,4λ + 3 Â1,2λ , B̂2,3λ + Â2,3λ + 2 Â1,2λ . (4.5)

These algebras are not in Schellekens’ list; as we now explain, they have to be associated to

chiral sCFTs with c = 12.

First we must note that the isomorphisms of eq. (4.3) are still valid, although, interestingly,

for each component now there is only one corresponding orbit lattice. This means that at a

special point in the moduli space, in some stringy description, the worldsheet CFT factorizes

into meromorphic chiral CFTs, with right moving sCFT based on the E8 lattice. Since the

algebras with dimension 24 are not in Schellekens list, the only possibility is that the left

moving CFT is an sCFT with c = 12, i.e. the relevant string theory is Type II. It was shown

in [14] that there is such a CFT, named F24, which admits various current algebras precisely

of dimension 24, namely

8 Â1,2 , 3 Â2,3 , Â3,4 + 3 Â1,2 , Â4,5 , B̂2,3 + Ĝ2,4 ,

B̂2,3 + Â2,3 + 2 Â1,2 , B̂3,5 + Â1,2 , Ĉ3,4 + Â1,2 .
(4.6)

As we can see, those of (4.5) are included here if we set λ = 1.

We can again associate gauge groups to the orbit lattices for the compactifications at hand

and show that from symmetry breaking one can obtain every possible gauge group in the six

dimensional theories. Take for example the case n = 2, which has gauge group SU(2)8/Z7
2.
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The fundamental group is such that breaking any set of four nodes in the Dynkin diagram one

always ends up with the gauge group SU(2)4/Z3
2, which is the unique maximal enhancement

in the theory. For the other three components, the allowed maximal enhancements are of

rank 2 and readily written down, and we observe that in general there are very few possible

enhancements (see [33] for a list of enhancements.)

It turns out that Höhn’s construction, with the minor modification in Footnote 4, produces

all of the algebras in (4.6), so that it not only classifies the algebras for meromorphic CFTs

with c = 24 but also those for those with c = 12. Interestingly, however, some of these seem

to be degenerate, in the sense that the associated root lattices can be found as sublattices of

two inequivalent orbit lattices. The explanation for this is natural from the point of view of

string theory, as we now show.

4.2.3 Theories with discrete theta angle

It was recently shown in [20] that certain components in the moduli space of 7D N = 1

theories come in pairs from the point of view of M-Theory on K3 with frozen singularities,

predicting the existence of three new moduli space components. The stringy description was

provided in [18], where it was shown that such pairs can be understood as different versions

of some string theories distinguished by the presence of a nontrivial discrete theta angle.

Upon further compactification on S1, the versions without theta angle are dual to the

theories described in the previous section with n = 2, 3, 4. The corresponding versions with

theta angle turned on have charge lattices

n Γc Γ⊥c ↪→ Γ4,20

2 Γ4,4(2) [16A1 |Z4
2]

3 Γ2,2(3)⊕ A2(-1) [9A2 |Z2
3]

4 Γ1,1(2)⊕ Γ1,1(4)⊕ 2A1(-1) [6A1 ⊕ 4A3 |Z2Z4]

(4.7)

Note that the lattices Γ⊥c have the same root sublattices as those for their cousins in (4.4),

but the gluing vectors are different (see Table 7 in Appendix B for details). Each one of

these again admits a primitive embedding into some Niemeier lattice, such that its orthogonal

complement gives an orbit lattice.

The orbit lattices corresponding to these theories share the root sublattice with their

aforementioned cousins up to a scaling factor implying that the corresponding algebras are

8 Â1,λ , 3 Â2,λ , Â3,2λ + 3 Â1,λ . (4.8)

We see then that λ must be chosen respectively as 2, 3 and 2 in order to match the algebras

in (4.6). It is interesting to note that in each case, Γc is a sublattice of index precisely λ of the

charge lattice for the theories without theta angles. It would be good to understand better

this relation.

As before, we can assign gauge groups to the orbit lattices and obtain from them the six
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dimensional symmetry enhancements. The difference with respect to those of the previous

section is in the gluing vectors; the gauge algebras are exactly the same, but the gauge groups

differ in their topologies, i.e. at the level of massive charged states in the spectrum. Indeed

this was already observed in [20] for the seven and eight-dimensional decompactifications of

the n = 2 cases.

4.2.4 Dabholkar-Harvey string island

In [42] it was shown that certain pure supergravity theories, i.e. with no vector multiplets, can

be obtained as the low energy limits of string compactifications, and some explicit construc-

tions were provided. This includes the case of six dimensions and N = (1, 1) supersymmetry,

which can be obtained from a Z5-asymmetric orbifold of the Type II string on T 4. The only

modulus is the dilaton, and so the charge lattice is negative definite, namely

Γc = A4(-1) . (4.9)

This theory fits as well into the framework of orbit lattices. The orthogonal complement

of Γc in Γ4,20 is [5A4 |Z2
5], which is the coinvariant lattice corresponding to the orbit lattice

with algebra Â4,5 in (4.6). Deleting four nodes in the Dynkin diagram completely breaks the

gauge symmetry, as should be.

4.3 New components

We have seen how every moduli space component of cyclic orbifold type in the literature (to

our knowledge) fits into the framework of orbit lattices. There are however ten lattice genera

unmatched. In this section we assign to them new moduli space components together with

their charge lattices, and discuss possible stringy constructions. We also show that except for

special cases analogous to those of Section 4.2.3, the T 2 compactifications of every theory are

dual to four dimensional CHL models, which have been classified in [16].

A rank 8 and a rank 2 theory

Out of the ten new components, eight are string islands. Let us then first describe the two

which are not. They correspond to the genera D and J of [32]. The coinvariant lattices are

respectively

[12A1 |Z2] , [3A1 ⊕ 3A5 |Z6] , (4.10)

which embed primitively into the Narain lattice Γ4,20 with orthogonal complements

Γ4,4(2)⊕D4 , Γ2,2(2)⊕ A2(-1) . (4.11)

To match the appropriate algebra levels, we must choose λ = 2.

Here we should note that upon compactification on T 2 down to four dimensions, the

corresponding theories will be dual to certain CHL models described in detail in [16]. These
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are theories constructed e.g. as orbifolds of Type II strings on K3 × S1 × S1, given by an

order n symmetry of the K3 sigma model together with an order 2n shift along one S1, with

n = 2, 6, respectively. Here we have that n is just the order of the automorphism on the

Niemeier lattice which defines the orbit lattices, but the actual order of the orbifold symmetry

in the physical theory is 2n.

As explained in [16], the extra factor of 2 in the shift is necessary for it to be made along

a physical compact direction. Indeed, the lattices in (4.11) get extended to

Γ4,4(2)⊕ Γ2,2(4)⊕D4 , Γ2,2(2)⊕ Γ2,2(12)⊕ A2(-1) (4.12)

upon compactification on T 2, matching those in the classification of [16]. Here then the choice

of λ can be understood as a correction of the overall order of the orbifold symmetry such that

a shift can be made along an S1. This is in contrast with the cases in Section 4.2.3, where

λ > 1 but the shifts are unaffected (the reason for this is not yet clear to us).

Another peculiarity of these two theories is that they are the only ones of cyclic orbifold

type for which there are two orbit lattices that are isometric. It would be interesting to

understand the physical meaning of this.

Since these theories are related to meromorphic CFTs with c = 24 it is likely that they

can be formulated as asymmetric orbifolds of heterotic strings on T 4 or perhaps F-Theory on

(K3× T 2)/Zn with order 2, 6 symmetries of F-Theory on K3× S1 and order n = 4, 12 shifts

along the remaining S1.

Five Type II string islands

There are other five genera of orbit lattices associated to current algebras of dimension 24

and rank 4. These then correspond to Type II string islands, similarly to the one described

in Section 4.2.4. The charge lattices are (12, 19-21 and 23 in Table 5)

n Γc Γ⊥c ↪→ Γ4,20

5

(
-4 1 1 1
1 -4 1 1
1 1 -4 1
1 1 1 -4

)
[5A4 |Z5]

8 A1(-1)⊕ A3(-1) [3A1 ⊕ A3 ⊕ 2A7 |Z2Z8]

8 3A1(-1)⊕ A1(-2) [3A1 ⊕ A3 ⊕ 2A7 |Z8]

10

(
-2 0 0 1
0 -2 0 1
0 0 -2 1
1 1 1 -4

)
[3A1 ⊕ 2A4 ⊕ A9 |Z10]

12

(
-2 1 1 1
1 -2 0 0
1 0 -2 0
1 0 0 -4

)
[2A1 ⊕ 2A2 ⊕ A3 ⊕ A11 |Z12]

(4.13)

Interestingly, we see that among the string islands there are two pairs corresponding to

n = 5 and n = 8 (cf. Section 4.2.4), in the sense that their coinvariant lattices share root

sublattices. This is precisely what happens in the theories that we know that admit discrete

theta angles, and so it suggests that the Dabholkar-Harvey string island admits such a theta

angle and the second item in the table above also. It would be interesting to explore this
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further. As before, the three models “without discrete theta angle” can be identified upon

compactification on T 2 with CHL models in [16].

Heterotic island

Finally there is a string island associated to the orbit lattice [2A1 ⊕ 2A9 |Z10], with charge

lattice D4(-1). It is associated to a meromorphic CFT with c = 24 and so we conjecture that

it may be realized for example as an heterotic asymmetric Z10-orbifold.

4.4 Symmetry enhancements in higher/lower dimensions

Let us close this section with a discussion of symmetry enhancements in other dimensions

deriving from the results we have presented above.

4.4.1 The seven dimensional case

In [25] we computed the possible symmetry enhancements in seven dimensional theories with

heterotic string description, namely the Zn-triples of [19]. There are however other components

of the moduli space which can be described e.g. by M-Theory on a K3 surface with partially

frozen singularities or F-Theory on (T 4 × S1)/Zn with possible discrete theta angles [18, 20].

The circle compactification of these theories belong to the family of moduli spaces discussed

in this paper, and we have in particular learned how to compute their possible symmetry

enhancements from the associated lattice embeddings. The rules for reading these gauge

groups are independent of the number of spacetime dimensions and so we are now in a position

to write down exactly what are the possible symmetry enhancements in the aforementioned

seven dimensional moduli spaces.

In Table 8 we record the charge lattices of the seven dimensional theories, together with

the possible uplifts to eight and nine dimensions. For F-Theory on (T 4×S1)/Z2 there is only

one maximal enhancement, namely SU(2)3/Z2
2 with π1 generated by the elements (1, 1, 0)

and (0, 1, 1) of the center Z(SU(2)3). These are indeed the only rank 3 groups which can be

obtained from those in the six dimensional theory by symmetry breaking, hence this result

is as expected. In turning on the discrete theta angle, the maximal enhancement is now the

simply connected SU(2)3. Both of these theories can be lifted to eight dimensions, wherein

the respective maximal enhancements are SU(2)2/Z2 ' SO(4) and SU(2)2, in accordance

with the results of [20,27]. In nine dimensions both of the components have enhancements to

SU(2). In all cases discussed so far the level of the current algebra in the worldsheet is 2, in

accordance with the results of [18, 20].

The remaining moduli space components have rank 1 gauge groups. In the case of (T 4 ×
S1)/Z3 there is one SU(2) enhancement at level 3 in both components (i.e. with and without

theta angle.) For (T 4×S1)/Z4 there are two SU(2) enhancements in each component, one at

level 2 and one at level 4; this is opposed to the results of [20] where one of the enhancements

was naively read off as an SO(3). Finally, there are three SU(2) enhancements in the (T 4 ×
S1)/Z6 component, at level 2, 3 and 6 respectively.
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These results can be summarized in the statement that for these components with low rank

in seven dimensions deleting five nodes in the Dynkin diagrams of the associated orbit lattices

one obtains exactly every possible symmetry enhancement. This is manifestly not true for

the Zn-triples; deleting five arbitrary nodes in the corresponding orbit lattices one gets gauge

groups which are actually not realized in the theory. The statement above is therefore quite

remarkable, and in fact applies to the corresponding theories in eight and nine dimensions.

4.4.2 The cases D = 2, 3, 4, 5

Having the rules for reading off gauge groups from lattice embeddings we can in principle

use the exploration algorithm of [22, 23, 25] to find maximal symmetry enhancements in the

compactifications of the theories discussed here. This is however far out of the scope of

this paper. We wish instead to discuss a few aspects of symmetry enhancements in these

compactified theories in relation to the orbit lattices and their associated gauge groups.

We start with a result regarding the Narain component, stating that deleting n ≤ 4

nodes in the Dynkin diagram of some Niemeier lattice NI one obtains a valid gauge group

in D = 2 + n. To see this, consider first the case n = 1. What we want to show is that

any primitive sublattice W of an NI of rank 23 defined by deleting a node in the Dynkin

diagram admits a primitive embedding into Γ7,23. To this end we note that the orthogonal

complement of W in NI can be embedded primitively into E8, since indeed any even lattice

of rank ≤ 3 admits such an embedding. The rank 7 orthogonal complement T in E8 will then

have the same discriminant group and quadratic form as W , which guarantees the existence

of a primitive embedding of W into Γ7,23 (see e.g. Section 3.1 of [22].) It is straightforward to

extend this result to the cases n = 2, 3; the case n = 4 is of course already a main result of

this paper.

The general situation is that Niemeier lattices encode exactly every possible gauge group

realized in the six dimensional theory, in lower dimensions giving a proper subset of them

and in higher dimensions giving a proper superset. This is easy to see e.g. in nine dimensions

where there are only 44 maximal enhancements [22] while deleting 7 arbitrary nodes off of the

Niemeier lattices obviously produces many more.

This situation is in contrast to what we have already observed in the moduli space com-

ponents discussed in the previous section. In fact we find it natural to conjecture that theories

which are described by worldsheets with cL = 12 in two dimensions are such that their orbit

lattices give the only possible maximal enhancement, and its breakings every possible en-

hancement in the higher dimensional theories obtained by decompactification. This is not too

unexpected in light of the fact that in these moduli space components, where a description is

available to us, there are no perturbative D-branes [18]. The symmetry enhancements come

from nonperturbative effects in a very restricted manner. It would be very interesting to

explore this conjecture further in the various stringy descriptions.

Finally, it would be interesting to determine if the facts we established above for the Narain

component hold also for other components with cL = 24 in the worldsheet CFT. The difficulty
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Order G̃i G̃′i `i

q SU(q) ∅ 1
q SU(qn) SU(n) n ≥ 2
2 Spin(2n) Sp(n− 2) v
2 Spin(4n) Spin(2n+ 1) s
2 E7 F4 1
3 E6 G2 1
4 Spin(4n+ 2) Sp(n− 1) 1
2 Spin(2n+ 1) Spin(2n− 1) 1
2 Sp(2n) Spin(2n+ 1) 1
2 Sp(2n+ 1) Sp(n) 1

Table 1: Rank reduction map for non-simply connected gauge groups. Compare with partic-
ular case explained in Section 3.2. The level of the associated current algebras will depend on
the specific string theory, being related for example to how the root lattices change in scale
(cf. Section 4.1). For Spin(4n+ 2), we have that {0, 1, 2, 3} ' {0, s, v, c}.

that we encounter is that the orbit lattices in these cases are not self-dual, and it is not clear

how to work with primitive embeddings and orthogonal complements therein.

5 Extension to Non-Cyclic Orbifolds

What we have seen so far can be summarized as follows. The rank reduction map (see

Table 1) applied on the current algebras corresponding to the Niemeier lattices produces the

classification of current algebras for meromorphic (s)CFTs with c = 24 (c = 12). These

algebras appear naturally in 2D string theory vacua with sixteen supercharges, which can be

decompactified to six dimensions to give a list of moduli spaces covering every known case of

cyclic orbifold type and predicting eight more.

A cyclic orbifold symmetry can then be associated to an application of the rank reduction

map atOrder the level of the gauge groups, suggesting that non-cyclic orbifolds are related

to successive applications. This motivates us to consider orbit lattices NGI embedded into

Niemeier lattices NI which are invariant under non-cyclic subgroups G of O(NI). We can then

define, as usual, the charge lattice Γc of the corresponding string theory as the orthogonal

complement of NGI in Γ4,20.

From our discussion in 3.4 we will still have the isomorphisms

Γc ⊕ Γ4,4(n) ' NGI ⊕ E8(-n) , (5.1)

hence there will always be at least one point in the moduli space of the T 4 compactifications

where the string worldsheet factorizes. In this cases, however, the left-moving (s)CFTs will not

be meromorphic, but rather tensor products of one (s)CFT with c < 24 (c < 12) with others to

complete the appropriate central charge. We have no means to compute the appropriate value
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of n, but we suspect it is generically equal to the order of G times some constant depending

on the specifics of the string theory background, as happens in the cyclic cases [16].

5.1 Heterotic Z2 × Z2-quadruple

Let us illustrate the problem with an example. Compactifying the Z2-triple from seven to six

dimensions one can orbifold the theory again using the Z2 symmetry that defines the CHL

string. This leads to a Z2 × Z2-quadruple with rank reduction 12 [19], which can be matched

with the construction outlined above.

A complete classification of coinvariant lattices (see Table 7) includes two of rank 12, one of

which corresponds to a cyclic orbifold. It is therefore natural to assign the other to the theory

considered here, namely [12A1 |Z2
2]. This is precisely what we need, since this lattice contains

inside two copies of [8A1 |Z2], as we would expect from orbifolding two times by a symmetry

associated to a rank reduction of 8 (with respect to groups in the Narain component.) The

charge lattice is

Γc = Γ2,2 ⊕ Γ2,2(2)⊕ 4A1 , (5.2)

and there are 13 corresponding orbit lattices (see Table 6). In this case we have no control over

how the gauge symmetry groups are computed in the theory but it is reasonable to suppose

that the rules in the cyclic cases generalize. In particular, the gauge groups associated to

these 13 orbit lattices can be read from the data in Table 6 and these should encode all the

gauge groups in the six dimensional theory.

To our knowledge, the lattice (5.2) was not computed in the literature (although there is

a related lattice in Table 12 of [19].) Note that if we assume that compactifying further on

S1 extends the lattice as Γc → Γc ⊕ Γ1,1(4), the lattice Γc,4D corresponding to the 4D theory

exhibits the symmetry

Γc,4D = Γ∗c,4D(4) , (5.3)

meaning that the theory exhibits so-called Fricke S-duality [16] as we would expect from a

heterotic construction.

5.2 New components

To our knowledge the only non-cyclic orbifold background in six dimensions is that of the

previous section. Apart from this there are 22 more such components suggested by our

framework (see Table 6 in Appendix B).

It is not clear to us how the corresponding theories could be realized. In many cases we

expect that their compactifications to lower dimensions can be constructed without too much

difficulty. One could then study the possible decompactification limits of such theories and

ensure that the ones we describe do exist. The natural expectation is that this corresponds

to taking out a set of Γ1,1(n) sublattices from the charge lattices of said lower dimensional

theories, such that we recover those listed in Table 6.
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One possibility is that all of the theories considered here may be obtained as orbifolds

of Type IIA string theory on a K3 surface, along the lines of [16] where cyclic orbifolds of

Type IIA on (K3× S1 × S1) were classified. This would require the use of many shift vectors

along the real span of the lattice Γ4,20, i.e. not on extra circles. It would be interesting to

explore this possibility. On the other hand, such theories might also be constructed using

Bieberbach manifolds as Type II backgrounds with possible theta angles such as in [18] or

heterotic asymmetric orbifolds.

We also note that in the non-cyclic case there are nine string islands, for a total of 16. This

significantly extends the results of [42] where only one was found. A straightforward extension

of the methods of this reference is however not enough to find the remaining possibilities.

Understanding this problem is also of interest.

In the following we go through some interesting general properties of the proposed moduli

spaces and their symmetry enhancements.

5.2.1 Uplifting orbifolds of M-Theory on (K3× S1 × · · · × S1)

There are in total fourteen automorphism groups of K3 surfaces with which we may construct

M-Theory vacua with 16 supersymmetries. Seven of these are cyclic, of order 2, ..., 8, and

indeed we have already encountered them in Section 4.2.1. The others have various cyclic

subgroups and for each one we require another circle along which we can put a shift such that

the orbifold is freely acting. As such, they cannot be constructed in six dimensions. These

are (see e.g. Sec. 4.2 of [19])

Z2 × Z2 , Z2 × Z4 , Z2 × Z6 , Z3 × Z3 , Z4 × Z4 , Z3
2 , Z4

2 , (5.4)

of which the first five can be realized in (a maximum of) five dimensions and the last two can

be realized in four and three dimensions respectively.

We claim that all of the theories associated to the non-cyclic orbifolds above admit de-

compactifications up to six dimensions. Indeed we see this is the case for Z2 × Z2 where the

six dimensional theory is just the heterotic quadruple described in Section 5.1 (it can also

be described by F-Theory on (K3 × S1 × S1)/(Z2 × Z2) [19].) To motivate this claim we

compare the theories corresponding to the entries 24, 26, 28, 35, 37, 39 and 43 of Table 6 to

the coinvariant sublattices of the lattice Γ3,19 with respect to the K3 automorphisms, which

were computed in [43] (see p. 15). We can make an explicit match between these lattices for

each G in (5.4) at the level of rank reduction; it is not clear to us how the lattices themselves

should be matched.

Now let us assume that the theories with two generators in G behave such that Γc →
Γc⊕Γ1,1(n) with n = ord(G) upon circle compactification. It can be checked in each case that

the resulting charge lattice obeys the relation

Γc,4D = Γ∗c,4D(n) , (5.5)
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so that they exhibit as symmetries a form of the Fricke S-dualities discussed in [16]. This leads

us to suspect that these theories can be realized in six dimensions as heterotic quadruples

analogous to the one in Section 5.1.

The two remaining cases do not exhibit the property above. It is natural instead to propose

that they admit non-trivial discrete theta angles in some Type II description. This is easy to

see by comparing the lattices 26 and 25 in Table 6 as well as the lattices 28 and 27. We are

therefore led to conjecture that they do not admit heterotic descriptions, as is the case for the

theories discussed in Section 4.2.3 and 4.2.4.

5.2.2 A pair of theories with the same charge lattice

Now we comment on the theories corresponding to entries 31 and 32 in Table 6. They have

the same charge lattice

Γc = Γ2,2(2)⊕ 2A1(-1) , (5.6)

but these are defined as the orthogonal complement of two different lattices in Γ4,20, which

therefore belong to the same genus. Both of these lattices are of the form [18A1 |Z6
2], but

differ in their gluing vectors (see Table 7). In fact, they can be shown to be isometric; the

genus, whose elements are isometry classes of lattices, has only one member.

One qualitative distinction between these two theories is that one has only one associated

orbit lattice while the other, which we distinguish with a prime, has two (see Table 4). In both

cases there is a maximal enhancement to SU(2)2/Z2
2 ' PSO(4), but the latter also admits

the simply connected SU(2)2 ' Spin(4).

This situation is similar to that of the Z5 and Z6 heterotic triples in seven dimensions,

which have the same charge lattice Γ3,3. They are distinguished of course by the order of

the automorphism, but this is not immediately visible at the level of lattices. We see this

distinction explicitly in lower dimensions, where they get extended respectively by Γn,n(5)

and Γn,n(6). It is possible that for the theories considered here a similar situation occurs.

Even though they are associated to the same automorphism group G = Z2
2, there could be

other effects that change how the lattices transform upon compactification, as we have seen

already.

5.2.3 Appearance of SO(3)’s

A remarkable feature of all the moduli spaces found in the literature is that the gauge sym-

metry group SO(3) is not realized in them. We know in the case of eight dimensional theories

that it is indeed ruled out by Swampland considerations [2]. In seven dimensions, although

there is no analogous constraint, it is the case that this group does not appear (see [25] for the

Zn heterotic triples and Section 4.4.1 for the other components.) However, in the potential

components corresponding to the entries 25 to 33 in Table 6 they do appear. This is signific-

ant as it allows for there to be possible odd rank reductions. Indeed, any time a gauge group

can be broken to SO(3) one can apply the rank reduction map associated to the nontrivial

element in π1(SO(3)) = Z2 reducing the rank by 1.
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5.2.4 Rank reduction patterns

If we accept that the theories predicted by our framework do exist, we find an interesting

pattern in the allowed ranks of the gauge groups of theories with 16 supercharges. Namely,

in nine and eight dimensions the allowed rank reductions are

Rank reduction in 8D, 9D = 8 , 16 . (5.7)

In seven dimensions we find more possibilities,

Rank reduction in 7D = 8 , 12 , 14 , 16 , 18 . (5.8)

The pattern that we want to highlight is that between the possible rank reductions there is

a gap, which in eight and nine dimensions is always 8. In seven dimensions, there are three

gaps: 8, 4 and 2. Now, if we look at the six dimensional case we get

Rank reduction in 6D = 8 , 12 , 14 , 15 , ... , 20 , (5.9)

which clearly fits into a pattern; the gaps are 8, 4, 2 and 1, and in particular, odd rank

reductions are now possible. This pattern would be perfect if there existed a theory in eight

dimensions with rank 18 − 12 = 6, such as a decompactification of the heterotic Z3-triple.

However, all evidence suggests that it does not exist (in particular since string universality has

already been claimed to hold in eight dimensions [3, 4].) In any case, it would be interesting

to understand this pattern in the rank reductions.

6 Conclusions

In this paper we have shown that every known connected component in the moduli space

of six dimensional string vacua is connected to the Narain component at the level of gauge

symmetry groups through a rank reduction map, such that the full scope of application of this

map suggests the existence of many other components without any known string theoretical

description.

The cases in which the rank reduction map is applied once correspond to cyclic orbifolds,

and can be related through compactification on T 4 to meromorphic (s)CFTs with c = 24

(c = 12) appearing in the left moving part of the string worldsheet. We used this connec-

tion to determine how nonabelian gauge symmetries are read from lattice embeddings into

the charge lattices, and showed that the gauge groups corresponding to the aforementioned

meromorphic CFTs encode every possible gauge group in the parent six dimensional theories

through symmetry breaking. In this way we have in particular verified the results of [22–25]

which were obtained by different constructive means. Among the identified components we

find the compactifications of the new theories proposed in [18,20], validating such results.

We have essentially suggested that the rank reduction map is always an allowed operation
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in quantum gravity theories in the regime of six dimensions and N = (1, 1) supersymmetry.

As such, consecutive applications of it should be associated to string theory backgrounds given

by non-cyclic orbifolds. The only example of such a construction known to us (the heterotic

Z2 × Z2-quadruple of [19]) indeed fits into this framework.

Even though we have interpreted our results as intrinsic to six dimensional theories, one

can instead focus in the connection between the various left moving CFTs that appear in

the 2D theories. The precise idea is that the meromorphic CFTs given by the Niemeier

lattices can be transformed into all the other meromorphic CFTs with nontrivial current

algebra such that tensoring with the right moving sCFT based on the E8 lattice the resulting

theory can always be decompactified to six dimensions due to having a charge sublattice of

the form Γ4,4(n). More general transformations lead to other CFTs with c = 24 but which

are not meromorphic but rather the product of more than one CFT, but these also admit

decompactifications to 6D corresponding to non-cyclic orbifolds. These statements hinge on

the fact that the right moving sCFT is based on the E8 lattice, which is intimately related

to Γ4,4 and so to decompactifications to six dimensions. It would be certainly interesting to

explore the possibility of tensoring chiral CFTs so as to obtain theories that decompactify

instead to five dimensions, but this does not seem likely; in other words, such a theory which

is intrinsically defined in five dimensions (such as the 5D string island of [42]) may have

an associated 2D compactification whose moduli space does not have points in which the

worldsheet CFT factorizes.

Given that the organizing principle we have proposed for the theories in this paper can be

formulated purely at the level of gauge groups, it seems to us that it may not be too hard to

derive using Swampland constraints. Together with explicit constructions for every proposed

string compactification this would establish string universality in 6D with 16 supercharges.

The strategies developed in [3, 4] may be useful in this regard.

It would also be very interesting to see if the techniques used in this paper can be extended

to settings with less supersymmetry, such as M-Theory on certain Z2 orbifolds of K3 surfaces

recently studied in [44]; the language of lattices is certainly very useful here. On the other

hand, many of the theories we consider here can be formulated also in terms of frozen singu-

larities or Type IIB strings compactified on Bieberbach manifolds, which also have received

attention in the 5D N = 1 regime [45].

Finally, we should also note that when breaking supersymmetry further it may be necessary

to consider non-Abelian orbifolds (see e.g. [46, 47]). It would be very interesting to see how

these could fit into a picture of the type advocated here.

Acknowledgements

We are grateful to Andreas Braun and Peng Cheng for useful discussions. We thank Mari-

ana Graña and Miguel Montero for helpful comments on the manuscript. HPF thanks M.

Montero for collaboration on related topics. This work was partially supported by the ERC

Consolidator Grant 772408-Stringlandscape, PIP-CONICET-11220150100559CO, UBACyT

and ANPCyT-PICT-2016-1358.

26



A Aspects of Lattices

In this appendix we record some facts regarding the theory of lattices and lattice embeddings

that we use in the main text. We record Niemeier lattices, orbit lattices and some theorems.

A.1 Niemeier lattices

Even unimodular (self-dual) Euclidean lattices exist in dimensions d ∈ 8Z. For d = 1 there

is only the E8 lattice; for d = 2 there is the lattice 2E8 and also WSpin(32)/Z2 , obtained by

adding the vector (1
2

16
) to D16. For d = 24, the latter construction of adding gluing vectors

to ADE lattices yields 23 different unimodular lattices known as the Niemeier lattices; there

is a 24th unimodular lattice which has no roots, known as the Leech lattice.

I (NI)root
NI

(NI)root

α D24 Z2 s

β D16 ⊕ E8 Z2 s0

γ 3E8 1 000

δ A24 Z5 5

ε 2D12 Z2
2

sv

cc

ζ A17 ⊕ E7 Z6 31

η D10 ⊕ 2E7 Z2
2

s10

c01

θ A15 ⊕D9 Z8 21

ι 3D8 Z3
2

0cc

sss

c0c

κ 2A12 Z13 15

λ A11 ⊕D7 ⊕ E6 Z12 111

µ 4E6 Z2
3

0111

1012

ν 2A9 ⊕D6 Z2Z10
50s

29c

ξ 4D6 Z4
2

0svc

0csv

s0cv

c0vs

o 3A8 Z3Z9
036

114

π 2A7 ⊕ 2D5 Z4Z8
0231

1112

ρ 4A6 Z2
7

0124

1045

I (NI)root
NI

(NI)root

σ 4A5 ⊕D4 Z2Z2
6

3003c

0255s

2105v

τ 6D4 Z6
2

00sscv

00cvvc

0s0vsv

0c0svs

s00vcs

c00cvv

υ 6A4 Z3
5

001234

010432

100212

ϕ 8A3 Z4
4

00011321

00102333

01001132

10001213

χ 12A2 Z6
3

000001222101

000010110111

000100212012

001000012221

010000122210

100000102122

ψ 24A1 Z12
2

000000000001111100100101

000000000010000101101111

000000000100001011011110

000000001000010110111100

000000010000101101111000

000000100000100111010101

000001000000110010001111

000010000000011000111011

000100000000110001110110

001000000000011111001001

010000000000111110010010

100000000000101011100011

Table 2: Niemeier lattices
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The Niemeier lattices are listed in Table 2. They are specified by their root sublattice

(NI)root together with the gluing vectors, which are encoded in the abelian group NI/(NI)root.

This group is specified as a subgroup of the discriminant group of the root sublattice, N∗I /(NI)root,

by a set of generating elements.

A.2 Correspondence between Narain and Niemeier lattices

Here we record some important results regarding a relation between primitive embeddings of

lattices into the Narain lattice Γ4,20 and the Niemeier lattices NI , derived in [12,13]. We have

the two following theorems:

Theorem 1. (part of Theorem 1 in [13]) Let G be a subgroup of O+(Γ4,20) fixing point-

wise a sublattice ΓG of signature (−4,+d), d ≥ 0. Then there exists a primitive embedding i

of the orthogonal complement ΓG into some positive-definite rank 24 even unimodular lattice

N

i : ΓG ↪→ N . (A.1)

Theorem 2. (part of Theorem 2 in [13]) Let N be a positive definite rank 24 even unimodular

lattice and Ĝ be a subgroup of O(N) fixing pointwise a sublattice N Ĝ of rank 4 + d, d ≥ 0.

Then, there exists a primitive embedding

f : NĜ ↪→ Γ4,20 (A.2)

of the coinvariant sublattice NĜ into the Narain lattice Γ4,20.

Note that, as opposed to [13], we use the conventions in which Γd,d+16 has signature (−d,+d+16)

and not (+d,−d+16). We are interested in the case in which ΓG has roots and N is a Niemeier

lattice NI (recall that in our conventions we take the Niemeier lattices to be those 23 with

roots, separately from the Leech lattice.)

For our purposes we take d = 0 in Theorem 1, so that ΓG is a rank 20 positive definite

lattice. The negative definite 4-plane is polarized according to the values of the moduli in the

theory, so that it being fixed under a subgroup of O+(Γ4,20) means that the corresponding

point in moduli space is fixed. If ΓG is a Lie algebra lattice, the corresponding moduli are

completely fixed by the T-duality subgroup isomorphic to the Weyl group of ΓG. Theorem 1

then states that ΓG can be primitively embedded into some NI . Theorem 2 works inversely,

and in general, for d ≥ 0, we find that any Lie algebra lattice L which admits a primitive

embedding into Γ4,20 also admits one into some NI , and vice versa.

A.3 Comments on gauge group topology and breakings

Here we make some comments regarding the computation of the fundamental groups of the

gauge groups G associated to orbit lattices and their breakings. As discussed int he text,
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these can be extracted from the gluing vectors therein, which represent the massive states

in the spectrum sitting in the allowed representations of G. The actual computation is as

follows [26]. Let W be the orbit lattice in question and L its root sublattice. Scale every root

as

α→ α′ =
2

α2
α (A.3)

to obtain the coroot lattice L∨. Embed L∨ into the dual charge lattice Γ∗c(n) ' W ∗(n) ⊕
E8(−1), with n an appropriate scaling, and compute its overlattice W∨; the quotient W∨/L∨

is then isomorphic to π1(G). We make the observation that this quotient coincides with the

so-called glue code of W , which can be checked explicitly from looking at Tables 5 to 16 in [32].

To see what happens to π1(G) when a node in the Dynkin diagram is deleted, just select the

coroot system corresponding to the remaining nodes and compute the overlattice quotient as

above.

As a simple example consider the lattice W with root sublattice E8 ⊕ B8 (note that

B8 ' 8A1) and gluing vector k = (0, 1). This lattice vector gives rise to massive states in

the fundamental representation of Spin(17) and so G = E8 × Spin(17), coinciding with the

fact that the glue code of W is trivial. Since the associated coroot lattice has no overlattice

in Γ∗c(2), any symmetry breaking leaves the gauge group simply connected, similarly to what

happens in the Narain component.

B Orbit lattices, charge lattices and coinvariant lattices

Here we record first the orbit lattices resulting from the construction in Section 4.1. We use an

unified notation OA in order to make easy reference to it. In each case the orbit lattice is the

invariant sublattice of some Niemeier lattice NI under an automorphism subgroup G ⊂ O(NI),

namely NGI , with coinvariant lattice NI;G also specified. These lattices are equipped with a

choice of root sublattice which is in general not simply-laced, i.e. of ADE type. Therefore the

group OA/(OA)root does not agree with the glue code in general. The former specifies the orbit

lattice itself while the latter specifies the fundamental group π1(G) of the gauge symmetry

group associated to OA, as realized for example in a 2D theory (see previous section.) There

are 59 orbit lattices of cyclic type which we list in Table 3 and 57 of non-cyclic type in Table

4. There are also orbit lattices of rank less than four which we do not include as they are not

relevant for six dimensional theories.

Taking the orthogonal complement of the coinvariant lattices inside Γ4,20 we obtain the

charge lattice Γc associated to some moduli space component. There are 23 charge lattices

of cyclic type, listed in Table 5 and 23 of non-cyclic type listed in 6. The coinvariant lattices

themselves are specified in Table 7. We also record the charge lattices of higher dimensional

theories in Table 8.

The notation in these tables is slightly altered for reasons of space and clarity. In particular,

scalings such as An(n) are written A(n)
n .
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A (OA)root
OA

(OA)root
Glue code I NI,G

1 B8 + E8 Z2 10 1 β

2 B6 ⊕ C10 Z2 11 Z2 11 ε

3 C8 ⊕ 2F4 1 Z2 100 η

4 B5 ⊕ E7 ⊕ F4 Z2 110 Z2 110 η

5 A
(2)
7 ⊕D9 Z8 11 Z4 21 θ

6 B4 ⊕ 2C6 Z2 111 Z2
2

101

110
ι

7 2B4 ⊕D8 Z2
2

01c

10c
Z2
2

00c

11s
ι

8 4C4 Z2 1111 Z3
2

0011

0101

1001

ξ

9 A
(2)
5 ⊕ C5 ⊕ E6 Z6 112 Z6 111 λ

10 A
(2)
4 ⊕ A9 ⊕ B3 Z10 191 Z10 171 ν

11 2B3 ⊕ C4 ⊕D6 Z2
2

011c

101s
Z3
2

010c

100s

001v

ξ [8A1 |Z2]

12 16A1 Z5
2

0000000011111111

0000111100001111

0011001100110011

0101010101010101

1001011001101001

Z11
2

0000000000001111

0000000000110011

0000000001010101

0000000110000110

0000001010000011

0000010010010100

0000100010010001

0001000000010110

0010000010010010

0100000010000101

1000000010010111

ψ

13 2A
(2)
3 ⊕ 2D5 Z2

4
0113

1033
Z2
4

0213

1112
π

14 A
(2)
3 ⊕ A7 ⊕ 2C3 Z2Z4

0411

1201
Z2Z8

2011

1101
π

15 4C2 ⊕ 2D4 Z3
2

0011vv

0101cc

1001ss

Z5
2

0000ss

0000cc

00110v

01010c

10010s

τ

16 2A
(2)
2 ⊕ 2A5 ⊕ C2 Z3Z6

01240

10551
Z2
6

01141

10211
σ

17 4A
(2)
1 ⊕ 4A3 Z3

2Z4

00110022

01010202

10010220

00011113

Z2Z3
4

11110002

00001113

00110013

01010112

ϕ
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A (OA)root
OA

(OA)root
Glue code I NI,G

18 12A1 Z2 111111111111 Z11
2

000000000011

000000000101

000000001001

000000010001

000000100001

000001000001

000010000001

000100000001

001000000001

010000000001

100000000001

ψ

[12A1 |Z2]
19 6C2 Z2 111111 Z5

2

000011

000101

001001

010001

100001

τ

20 4B3 Z2 1111 Z3
2

0011

0101

1001

ξ

21 3B4 Z2 111 Z2
2

011

101
ι

22 2B6 Z2 11 Z2 11 ε

23 B12 Z2 1 α

24 4A
(2)
2 ⊕D4 Z2

3
01110

10120
Z2
6

0111s

1012c
σ

25 2A
(2)
4 ⊕ C4 Z5 120 Z10 121 ν

26 A
(2)
8 ⊕ F4 Z3 30 Z3 30 ζ

27 8A
(2)
1 Z4

2

00001111

00110011

01010101

10010110

Z4
2

00001111

00110011

01010101

10010110

ϕ [16A′1 |Z4
2]

28 8A1 Z2 11111111 Z7
2

00000011

00000101

00001001

00010001

00100001

01000001

10000001

ψ [16A1 |Z5
2]

29 A
(3)
5 ⊕ E7 Z6 11 Z2 31 ζ

[6A2 |Z3]

30 E6 ⊕ 3G2 1 Z3 1000 µ

31 A
(3)
3 ⊕D7 ⊕G2 Z4 130 Z4 110 λ

32 6A2 Z3 111111 Z5
3

000012

000102

001002

010002

100002

χ

33 2A
(3)
2 ⊕ A8 Z2

3
016

106
Z9 111 o

34 3A
(3)
1 ⊕ A5 ⊕D4 Z3

2

0013c

0103v

1003s

Z2
2Z6

0013v

0103s

1001c

σ
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A (OA)root
OA

(OA)root
Glue code I NI,G

35 3A
(3)
2 Z2

3
012

102
Z3 111 o [9A2 |Z2

3]

36 3A2 1 Z3
3 χ [9A2 |Z3

3]

37 A
(4)
3 ⊕ C7 Z4 11 Z2 21 θ

[2A1 ⊕ 4A3 |Z4]

38 A
(4)
2 ⊕ C

(2)
2 ⊕ E6 Z6 111 Z3 101 λ

39 2A
(4)
1 ⊕ C3 ⊕D5 Z2

2
0112

1012
Z2Z4

1110

0011
π

40 A
(2)
1 ⊕ 3A3 Z2 1222 Z3

4

0011

0101

1001

ϕ

41 3A
(4)
1 ⊕ A7 Z3

2

0010

0100

1004

Z8 0011 π

42 3A
(4)
1 ⊕ A

(2)
3 Z3

2

0010

0100

1002

Z4 0011 π [6A1 ⊕ 4A3 |Z2Z4]

43 3A
(2)
1 ⊕ A3 Z2 1112 Z2

2Z4

0110

1010

0011

ϕ [6A1 ⊕ 4A3 |Z2
2Z4]

44 2A
(5)
1 ⊕D6 Z2

2
01c

10s
Z2
2

01c

10s
ν

[4A4 |Z5]
45 2A4 1 Z2

5 υ

46 A
(5)
4 Z5 1 δ [5A4 |Z5]

47 A4 1 Z5 υ [5A4 |Z2
5]

48 2A
(3)
1 ⊕ A

(2)
2 ⊕ C2 Z2 1101 Z2Z6

0101

1011
σ [5A1 ⊕ 4A2 ⊕ A5 |Z6]

49 A
(6)
1 ⊕ C5 ⊕G2 Z2 110 Z2 110 λ

[2A1 ⊕ 2A2 ⊕ 2A5 |Z6]
50 A

(3)
1 ⊕ A5 ⊕ C2 Z2 131 Z2Z6

101

011
σ

51 A
(2)
2 ⊕D4 1 Z2Z6

0c

1s
σ

[3A1 ⊕ 3A5 |Z6]
52 A

(6)
2 ⊕ F4 Z3 10 1 ζ

53 A6 1 Z7 ρ [3A6 |Z7]

54 A
(4)
1 ⊕D5 Z2 10 Z4 01 π [A1 ⊕ A3 ⊕ 2A7 |Z8]

55 A
(8)
1 ⊕ C

(2)
3 Z2

2 1 θ [3A1 ⊕ A3 ⊕ 2A7 |Z8]

56 A
(4)
1 ⊕ C3 Z2 10 Z2 01 π [3A1 ⊕ A3 ⊕ 2A7 |Z2Z8]

57 A
(5)
1 ⊕ B3 Z2 11 Z2 11 ν [3A1 ⊕ 2A4 ⊕ A9 |Z10]

58 C4 1 Z2 ν [2A1 ⊕ 2A9 |Z10]

59 C
(2)
2 ⊕G2 Z2 10 1 λ [2A1 ⊕ 2A2 ⊕ A3 ⊕ A11 |Z12]

Table 3: Orbit lattices OA ↪→ NI for cyclic orbifolds
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A (OA)root
OA

(OA)root
Glue code I NI,G

60 3C
(2)
2 ⊕D6 Z3

2

0010

0100

1000

Z2
2

000s

000c
ξ

[12A1 |Z2
2]

61 2C
(2)
3 ⊕ C6 Z2

2
010

100
Z2 001 ι

62 4A
(4)
1 ⊕ 2D4 Z4

2

000100

001000

010000

100000

Z4
2

00000s

00000c

0000s0

0000c0

τ

63 2C
(2)
2 ⊕ 2C4 Z2

2
0100

1000
Z2
2

0001

0010
ξ

64 C
(2)
4 ⊕ 2F4 Z2 100 1 η

65 12A1 Z2
2

000011111111

111100001111
Z10
2

000000000011

000000001100

000000010101

000000100001

000001000101

000010000001

000100000100

001000000101

010000000100

100000000101

ψ

66 6C2 Z2
2

001111

110011
Z4
2

000011

001100

010101

100101

τ

67 3B4 Z2
2

011

101
Z2 111 ι

68 A
(4)
1 ⊕ 3A

(2)
2 ⊕ A5 Z3Z6

00114

11012
Z3Z6

00112

01011
σ

69 2A
(4)
1 ⊕ 3C2 ⊕D4 Z3

2

00111s

010000

100000

Z4
2

00000s

00001c

00010c

00100c

τ

70 2B3 ⊕ C
(2)
2 ⊕ C4 Z2

2
0010

1101
Z2
2

1100

0101
ξ

71 6A
(2)
1 ⊕ 2A3 Z4

2

00001122

00110022

01010102

10010120

Z2
2Z

2
4

00111100

11001100

00001111

01010101

ϕ

72 2A
(2)
3 ⊕ 2C3 Z2Z4

0211

1101
Z2Z4

0211

1101
π

73 4A
(2)
2 ⊕ C2 Z2

3
01110

10120
Z3Z6

01120

10111
σ

[14A1 |Z2
2]

74 2A
(2)
4 ⊕ C

(2)
2 Z10 121 Z5 120 ν

75 10A1 1 Z10
2 ψ

76 2A
(4)
1 ⊕ 4C2 Z2

2
010000

100000
Z4
2

000001

000010

000100

001000

τ

77 2B3 ⊕ 2C
(2)
2 Z2

2
0001

0010
Z2
2

0100

1000
ξ

78 B4 ⊕ 2C
(2)
3 Z2

2
001

010
Z2 100 ι
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A (OA)root
OA

(OA)root
Glue code I NI,G

79 2C
(2)
5 Z2

2 1 ε [14A1 |Z2
2]

80 7A
(2)
1 ⊕ A3 Z4

2

00011110

00100112

01001012

10001102

Z3
2Z4

00011110

01100110

10101010

00101101

ϕ

[14A1 |Z3
2]

81 10A1 Z2 0011111111 Z9
2

0000000001

0000000110

0000001010

0000010000

0000100010

0001000010

0010000010

0100000010

1000000010

ψ

82 2A
(4)
1 ⊕ 4C2 Z3

2

001111

010000

100000

Z3
2

000011

000101

001001

τ

83 4A
(4)
1 ⊕ C2 ⊕D4 Z4

2

000100

001000

010000

100000

Z3
2

00000s

00000c

000010

τ

84 3C
(2)
2 ⊕ C4 Z3

2

0010

0100

1000

Z2 0001 ξ

85 A
(4)
1 ⊕ 4A

(2)
2 Z3Z6

00112

11011
Z2
3

00111

01012
σ

[15A1 |Z3
2]

86 9A1 1 Z9
2 ψ

87 3A
(4)
1 ⊕ 3C2 Z3

2

001000

010000

100000

Z3
2

000001

000010

000100

τ

88 B3 ⊕ 3C
(2)
2 Z3

2

0001

0010

0100

Z2 1000 ξ

89 3C
(2)
3 Z3

2 1 ι

90 9A1 Z2 011111111 Z8
2

000000011

000000101

000001001

000010001

000100001

001000001

010000001

100000000

ψ

[15A1 |Z4
2]

91 5A
(4)
1 ⊕D4 Z5

2

000010

000100

001000

010000

100000

Z2
2

00000s

00000c
τ

92 8A1 1 Z8
2 ψ

[16A1 |Z4
2]

93 4A
(4)
1 ⊕ 2C2 Z4

2

000100

001000

010000

100000

Z2
2

000001

000010
τ

94 4C
(2)
2 Z4

2 1 ξ
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A (OA)root
OA

(OA)root
Glue code I NI,G

95 7A1 1 Z7
2 ψ

[17A1 |Z5
2]

96 5A
(4)
1 ⊕ C2 Z5

2

000010

000100

001000

010000

100000

Z2 000001 τ

97 6A1 1 Z6
2 ψ [18A1 |Z6

2]

98 6A
(4)
1 Z6

2 1 τ
[18A′1 |Z6

2]
99 6A1 1 Z6

2 ψ

100 5A1 1 Z5
2 ψ [19A1 |Z7

2]

101 4A1 1 Z4
2 ψ [20A1 |Z8

2]

102 4A2 1 Z4
3 χ

[8A2 |Z2
3]

103 4G2 1 1 µ

104 4A
(3)
1 ⊕D4 Z3

2

0011s

0101v

1001c

Z3
2

0011s

0101v

1001c

σ [8A2 |Z2
3]

105 2A2 1 Z2
3 χ [10A2 |Z4

3]

106 2A
(2)
1 ⊕ 2A3 Z2 1122 Z2Z2

4

1100

0011

0101

ϕ

[4A1 ⊕ 4A3 |Z2Z4]
107 2A

(4)
1 ⊕ 2C3 Z2

2
0111

1011
Z2
2

0011

1101
π

108 4A
(2)
1 Z2 1111 Z3

2

0011

0101

1001

ϕ [8A1 ⊕ 4A3 |Z3
2Z4]

109 2A3 1 Z2
4 ϕ [6A3 |Z2

4]

110 4A
(4)
1 Z3

2

0001

0010

1100

Z2 0011 π [2A1 ⊕ 6A3 |Z2
4]

111 A
(2)
1 ⊕ A3 1 Z2Z4 ϕ [2A1 ⊕ 6A3 |Z2Z2

4]

112 A
(3)
1 ⊕ A

(4)
1 ⊕ A

(2)
2 Z2 010 Z6 101 σ [6A1 ⊕ 2A2 ⊕ 2A5 |Z2Z6]

113 A
(4)
1 ⊕ A5 Z2 10 Z6 01 σ [3A1 ⊕ 3A5 |Z2Z6]

114 A
(2)
2 ⊕ C2 1 Z6 σ [5A1 ⊕ 3A5 |Z2Z6]

115 D4 1 Z2
2 σ [4A5 |Z3Z6]

116 2A
(3)
1 ⊕ C2 Z2 111 Z2

2
011

101
σ [2A1 ⊕ 4A2 ⊕ 2A5 |Z3Z6]

Table 4: Orbit lattices OA ↪→ NI for non-cyclic orbifolds (of rank ≥ 4).
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# Γc r G Γ⊥c Gen. Theory

1 Γ3,3 ⊕ Γ
(2)
1,1 ⊕ 2D4 16 Z2 [8A1 |Z2] B M on K3×S1

Z2

2 Γ
(2)
4,4 ⊕D4 12 Z2 [12A1 |Z2] D ?

3 Γ
(2)
4,4 8 Z2 [16A′1 |Z4

2] F on S1 × (T 4×S1)′

Z2

4 Γ1,1 ⊕ Γ
(2)
3,3 8 Z2 [16A1 |Z5

2] M on T 4×S1

Z2

5 Γ3,3 ⊕ Γ
(3)
1,1 ⊕ 2A2 12 Z3 [6A2 |Z3] C M on K3×S1

Z3

6 Γ
(3)
2,2 ⊕ A

(-1)
2 6 Z3 [9A2 |Z2

3] F on S1 × (T 4×S1)′

Z3

7 Γ1,1 ⊕ Γ
(3)
1,1 ⊕ A

(-1)
2 6 Z3 [9A2 |Z3

3] M on T 4×S1

Z3

8 Γ3,3 ⊕ Γ
(4)
1,1 ⊕ 2A1 10 Z4 [2A1 ⊕ 4A3 |Z4] E M on K3×S1

Z4

9 Γ
(2)
1,1 ⊕ Γ

(4)
1,1 ⊕ 2A

(-1)
1 6 Z4 [6A1 ⊕ 4A3 |Z2Z4] F on S1 × (T 4×S1)′

Z4

10 Γ1,1 ⊕ Γ
(4)
1,1 ⊕ 2A

(-1)
1 6 Z4 [6A1 ⊕ 4A3 |Z2

2Z4] M on T 4×S1

Z4

11 Γ3,3 ⊕ Γ
(5)
1,1 8 Z5 [4A4 |Z5] F M on K3×S1

Z5

12
( -4 1 1 1

1 -4 1 1
1 1 -4 1
1 1 1 -4

)
4 Z5 [5A4 |Z5] ?

13 A
(-1)
4 4 Z5 [5A4 |Z2

5] IIA on T 4

Z5

14 Γ1,1 ⊕ Γ
(6)
1,1 ⊕ A

(-2)
2 6 Z6 [5A1 ⊕ 4A2 ⊕ A5 |Z6] M on T 4×S1

Z6

15 Γ3,3 ⊕ Γ
(6)
1,1 8 Z6 [2A1 ⊕ 2A2 ⊕ 2A5 |Z6] G M on K3×S1

Z6

16 Γ
(2)
2,2 ⊕ A

(-1)
2 6 Z6 [3A1 ⊕ 3A5 |Z6] J ?

17 Γ2,2 ⊕ ( -2 1
1 -4 ) 6 Z7 [3A6 |Z7] H M on K3×S1

Z7

18 Γ2,2 ⊕ A
(-1)
1 ⊕ A

(-2)
1 6 Z8 [A1 ⊕ A3 ⊕ 2A7 |Z8] I M on K3×S1

Z8

19 3A
(-1)
1 ⊕ A

(-2)
1 4 Z8 [3A1 ⊕ A3 ⊕ 2A7 |Z8] ?

20 A
(-1)
1 ⊕ A

(-1)
3 4 Z8 [3A1 ⊕ A3 ⊕ 2A7 |Z2Z8] ?

21
( -2 0 0 1

0 -2 0 1
0 0 -2 1
1 1 1 -4

)
4 Z10 [3A1 ⊕ 2A4 ⊕ A9 |Z10] ?

22 D
(-1)
4 4 Z10 [2A1 ⊕ 2A9 |Z10] K ?

23
( -2 1 1 1

1 -2 0 0
1 0 -2 0
1 0 0 -4

)
4 Z12 [2A1 ⊕ 2A2 ⊕ A3 ⊕ A11 |Z12] ?

Table 5: Charge lattices Γc for cyclic orbifolds and, for the 15 known cases, examples of
theories where they are realized. r denotes the rank and Gen. the genus on [32]. The primes
in the F-Theory backgrounds denote a non-trivial theta angle [18].
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# Γc r G Γ⊥c Theory

24 Γ2,2 ⊕ Γ
(2)
2,2 ⊕ 4A1 12 Z2

2 [12A1 |Z2
2] Z2 × Z2-quadruple

25 Γ
(2)
4,4 ⊕ 2A1 10 Z2

2 [14A1 |Z2
2] ?

26 Γ1,1 ⊕ Γ
(2)
3,3 ⊕ 2A1 10 Z3

2 [14A1 |Z3
2] ?

27 Γ
(2)
4,4 ⊕ A1 9 Z3

2 [15A1 |Z3
2] ?

28 Γ1,1 ⊕ Γ
(2)
3,3 ⊕ A1 9 Z4

2 [15A1 |Z4
2] ?

29 Γ
(2)
3,3 8 Z2

2 [16A1 |Z4
2] ?

30 Γ
(2)
3,3 ⊕ A

(-1)
1 7 Z3

2 [17A1 |Z5
2] ?

31 Γ
(2)
2,2 ⊕ 2A

(-1)
1 6 Z2

2 [18A1 |Z6
2] ?

32 Γ
(2)
2,2 ⊕ 2A

(-1)
1 6 Z2

2 [18A′1 |Z6
2] ?

33 Γ
(2)
1,1 ⊕ 3A

(-1)
1 5 Z3

2 [19A1 |Z7
2] ?

34 4A
(-1)
1 4 Z2

2 [20A1 |Z8
2] ?

35 Γ
(3)
2,2 ⊕ Γ2,2 8 Z2

3 [8A2 |Z2
3] ?

36 2A
(-1)
2 4 Z2

3 [10A2 |Z4
3] ?

37 Γ2,2 ⊕ Γ
(2)
1,1 ⊕ Γ

(4)
1,1 8 Z2Z4 [4A1 ⊕ 4A3 |Z2Z4] ?

38 D
(-2)
4 4 Z2

2 [8A1 ⊕ 4A3 |Z3
2Z4] ?

39 Γ2,2 ⊕ 2A
(-2)
1 6 Z2

4 [6A3 |Z2
4] ?

40 2A(-1) ⊕ 2A
(-2)
1 4 Z2Z4 [2A1 ⊕ 6A3 |Z2

4] ?

41 A
(-1)
3 ⊕ A

(-2)
1 4 Z2Z4 [2A1 ⊕ 6A3 |Z2Z2

4] ?

42 A
(-1)
1 ⊕ A

(-2)
2 ⊕ A

(-3)
1 4 Z2Z6 [6A1 ⊕ 2A2 ⊕ 2A5 |Z2Z6] ?

43 Γ2,2 ⊕ A
(-1)
1 ⊕ A

(-3)
1 6 Z2Z6 [3A1 ⊕ 3A5 |Z2Z6] ?

44 3A
(-1)
1 ⊕ A

(-3)
1 4 Z2Z6 [5A1 ⊕ 3A5 |Z2Z6] ?

45 D
(-1)
4 4 Z3Z6 [4A5 |Z3Z6] ?

46
( -2 0 1 1

0 -2 -1 1
1 -1 -4 0
1 1 0 -4

)
4 Z3Z6 [2A1 ⊕ 4A2 ⊕ 2A5 |Z3Z6] ?

Table 6: Charge lattices Γc for non-cyclic orbifolds
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Coinvariant lattice Glue code

[8A1 |Z2] 11111111

[12A1 |Z2] 111111111111

[12A1 |Z2
2]

000011111111
111100001111

[14A1 |Z2
2]

00000011111111
11111100000011

[14A1 |Z3
2]

00000011111111
00111100001111
11001100110011

[15A1 |Z3
2]

000000011111111
000111100001111
111011100010001

[15A1 |Z4
2]

000000011111111
000111100001111
011001100110011
101010101010101

[16A′1 |Z4
2]

0000000011111111
0000111100001111
0011001100110011
1100001100111100

[16A1 |Z4
2]

0000000011111111
0000111100001111
0011001100110011
1101010000010111

[16A1 |Z5
2]

0000000011111111
0000111100001111
0011001100110011
0101010101010101
1001011001101001

[17A1 |Z5
2]

00000000011111111
00000111100001111
00011001100110011
01101010001001101
10101000100011110

[18A1 |Z6
2]

000000000011111111
000000111100001111
000011001100110011
000101010101010101
001001011001101001
110000001101100101

[18A′1 |Z6
2]

000000000011111111
000000111100001111
000011001100110011
000101010101010101
011000011000110101
101000001101010110

[19A1 |Z7
2]

0000000000011111111
0000000111100001111
0000011001100110011
0000101010101010101
0001001011001101001
0110000001101101010
1010000011001011100

[20A1 |Z8
2]

00000000000111101111
00000001111000001111
00000110110010100110
00001010011011001010
00010010101001100011
00100000011010110011
01000000110001110101
10000000101011011001

Coinvariant lattice Glue code

[6A2 |Z3] 112222

[8A2 |Z2
3]

00111111
12001122

[9A2 |Z2
3]

000111122
122002201

[9A2 |Z3
3]

000111222
011012012
102011110

[10A2 |Z4
3]

0000111112
0012001222
0102022012
1002021101

[2A1 ⊕ 4A3 |Z4] 111113

[4A1 ⊕ 4A3 |Z2Z4]
11110022
00111113

[6A1 ⊕ 4A3 |Z2Z4]
1111000202
0000111133

[6A1 ⊕ 4A3 |Z2
2Z4]

0011110022
1100110202
0000111333

[8A1 ⊕ 4A3 |Z3
2Z4]

000011110022
001100110202
110000110220
000000111111

[6A3 |Z2
4]

011123
101312

[2A1 ⊕ 6A3 |Z2
4]

00011112
11100331

[2A1 ⊕ 6A3 |Z2Z2
4]

11000222
00011112
00101233

[4A4 |Z5] 1334

[5A4 |Z5] 11114

[5A4 |Z2
5]

01234
10432

[5A1 ⊕ 4A2 ⊕ A5 |Z6] 1111111221

[2A1 ⊕ 2A2 ⊕ 2A5 |Z6] 111255

[3A1 ⊕ 3A5 |Z6] 111111

[6A1 ⊕ 2A2 ⊕ 2A5 |Z2Z6]
1000010033
0111111245

[3A1 ⊕ 3A5 |Z2Z6]
101330
011251

[5A1 ⊕ 3A5 |Z2Z6]
11000303
00111155

[4A5 |Z3Z6]
2042
3111

[2A1 ⊕ 4A2 ⊕ 2A5 |Z3Z6]
00110044
11001151

[3A6 |Z7] 135

[A1 ⊕ A3 ⊕ 2A7 |Z8] 1113

[3A1 ⊕ A3 ⊕ 2A7 |Z8] 111135

[3A1 ⊕ A3 ⊕ 2A7 |Z2Z8]
101204
010131

[3A1 ⊕ 2A4 ⊕ A9 |Z10] 111119

[2A1 ⊕ 2A9 |Z10] 1117

[2A1 ⊕ 2A2 ⊕ A3 ⊕ A11 |Z12] 111115

Table 7: Coinvariant lattices NI,G specified by their glue code, which is equivalent to
NI,G/(NI,G)root in virtue of always having roots of norm 2.
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d # Γc r G Γ⊥c Theory

7

1 Γ3,3 ⊕ 2D4 14 Z2 [2D4] F on K3×S1

Z2

3 Γ
(2)
3,3 6 Z2 [4D4 |Z2] F on (T 4×S1)′

Z2

4 Γ1,1 ⊕ Γ
(2)
2,2 6 Z2 [4D4 |Z2

2] F on T 4×S1

Z2

5 Γ3,3 ⊕ 2A2 10 Z3 [2E6] F on K3×S1

Z3

6 Γ
(3)
1,1 ⊕ A

(-1)
2 4 Z3 [3E6] F on (T 4×S1)′

Z3

7 Γ1,1 ⊕ A
(-1)
2 4 Z3 [3E6 |Z3] F on T 4×S1

Z3

8 Γ3,3 ⊕ 2A1 8 Z4 [2E7] F on K3×S1

Z4

9 Γ
(2)
1,1 ⊕ 2A

(-1)
1 4 Z4 [D4 ⊕ 2E7] F on (T 4×S1)′

Z4

10 Γ1,1 ⊕ 2A
(-1)
1 4 Z4 [D4 ⊕ 2E7 |Z2] F on T 4×S1

Z4

11 Γ3,3 6 Z5 [2E8] F on K3×S1

Z5

14 Γ1,1 ⊕ A
(-2)
2 4 Z6 [D4 ⊕ E6 ⊕ E8] F on T 4×S1

Z6

15 Γ3,3 6 Z6 [2E8] F on K3×S1

Z6

8

1 Γ2,2 ⊕D8 12 Z2 [D8] CHL string

4 Γ1,1 ⊕ Γ
(2)
1,1 4 Z2 [2D8 |Z2] ∗

3 Γ
(2)
2,2 4 Z2 [2D8] ∗

9

1 Γ1,1 ⊕ E8 10 Z2 [E8] CHL string

4 Γ1,1 2 Z2 2E8 M on KB

4 Γ1,1 2 Z2 [D16 |Z2] IIB on DP, C0 = 0

3 Γ
(2)
1,1 2 Z2 [D16] IIB on DP, C0 = 1

2

Table 8: Charge lattices Γc for 7, 8 and 9 dimensions with examples of theories where they
are realized. # denotes the number in Table 5 of the dimensional reduced theory in 6d. The
asterisks mean circle compactifications of the corresponding 9D theories at the bottom of the
table. Both 9D theories with # = 4 compactify become dual when compactified to 8D.
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