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1 Introduction

Non-perturbative contributions to a Lagrangian can typically be safely ignored in the

weakly coupled regime, as they are completely sub-leading with respect to tree-level and

perturbative terms. However, whenever a given coupling is absent at the perturbative

level, the non-perturbative terms are no longer a correction and can completely change the

physics. This is what happens for compactifications of type IIB string theory on Calabi-

Yau manifolds with fluxes, where the fluxes do not couple to the moduli parametrizing the

deformations of the Kähler form of the manifold. This is particularly problematic since

the overall volume of the manifold is a combination of Kähler moduli (or is the Kähler

modulus if there is only one), and thus the absence of couplings implies that any volume

is allowed.

Kachru, Kallosh, Linde and Trivedi (KKLT) [1] realized that non-perturbative effects,

arising either from gaugino condensation on D7-branes or from Euclidean D3-brane in-

stantons, can give rise to the desired couplings, generating a potential that stabilizes these

moduli and giving rise to a supersymmetric AdS4 warped compactification. Furthermore,

they proposed a mechanism to uplift the negative cosmological constant of these compact-

ifications to positive values, making them interesting for explaining the current accelerated

expansion of our Universe.

In the KKLT proposal, the important physics happens at three well-separated scales,

which allows one to split the construction into three steps. Each step addresses one concrete

physical phenomenon while using an effective field theory that captures the main features

of the previous step:

• The starting point is a Type IIB solution à la Giddings-Kachru-Polchinski [2, 3], with

imaginary self-dual 3-form fluxes on an conformally-Calabi-Yau internal manifold

and a vanishing four-dimensional cosmological constant. At this stage, the complex

structure moduli and the dilaton get fixed by the 3-form fluxes. However, this kind

of no-scale compactification leaves the Kähler moduli unfixed.
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• One then includes non-perturbative (NP) effects, coming either from gaugino con-

densation on D7-branes or from Euclidean D3-branes instantons wrapping four-cycles

of the internal manifold. Such effects generate a NP contribution to the 4D super-

potential that depends on the Kähler moduli, and in the effective field theory for

these moduli one finds a supersymmetric AdS4 solution whose negative cosmological

constant comes from the non-zero on-shell value of the superpotential, W .1

• One finally adds a small number of anti D3-branes at the tip of a long warped throat.

These must be located far from Σ4, and the redshift is argued to guarantee a negligible

effect on bulk physics, providing control on the backreaction on moduli stabilization.2

These break supersymmetry and induce an energy contribution suitable for uplift-

ing the cosmological constant to values even above zero. In principle, this has the

advantage of producing a parametrically small Λ.

Although very appealing, up to date there is an on-going debate on whether this

proposal is consistent. While the first step is well understood,3 it is not clear if the other

two steps involved in this construction stand on firm ground. In this paper we focus on

the first and second steps, making only some brief comments on the third one.

While the first step is done at the 10D level, to account for NP effects one needs to resort

to an effective 4D theory. Integrating out the complex-structure moduli and dilaton which

are supposed to be fixed at a higher energy,4 one gets a non-perturbative superpotential for

the Kähler moduli, whose imaginary parts are the volumes of 4-cycles. This is based on the

relation of these moduli with the (imaginary part of the holomorphic) gauge coupling on

the D7-branes, 4πg−2
YM = 1

gs
σ, where σ is the size of the 4-cycle in string units. If the chiral

fields on the D7-branes are massive, the low-energy physics on the world-volume theory, as

seen from four-dimensions, is described by a pure N = 1 Super Yang-Mills theory, which

undergoes gaugino condensation. The associated non-perturbative superpotential and the

strength of the condensate are related to σ = ImT by

WNP ∼ 〈λλ〉 = A exp (iaT ) , (1.1)

1Another proposal to stabilize Kähler moduli is to use NP effects together with the first α′ correction [4].

Unlike in KKLT, this mechanism leads to non-supersymmetric AdS vacua. In this paper we use the

supersymmetry conditions and stay at leading order in α′, so we do not consider this type of vacua.
2In this paper we restrict ourselves to supersymmetric configurations. Nevertheless, there have been

concerns regarding the uplifting mechanism [5–10]. Moreover, the difficulties in obtaining solutions with a

positive cosmological constant have led to the conjecture that all de Sitter constructions in string theory

that can be described using effective field theory are not stable. This is known as the de Sitter Swampland

Conjecture [11].
3Though already at the first step, there are questions regarding the validity of the supersymmetry-

breaking Minkowski solution with non-zero W [12].
4The use of effective field theory including warped modes was recently shown to be much more subtle than

it appears, as the complex-structure modulus corresponding to the size of the S3 has also an exponentially

small mass [10, 13].
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for some constant A.5 For SU(ND7) one has a = 2π
ND7

.6 In the simplest compactifica-

tions with a single Kähler modulus (and hence a single NP term), the Kähler potential

is K(T ) = −3 log(−i(T − T̄ )) = −3 log(2σ). The non-perturbative effect balances against

some classical and, in principle, tunable contribution W0 coming from the fluxes, leading

to the following F-term condition on the supersymmetric solution:7

W0 = −Ae−aσ∗
(

1 +
2

3
aσ∗

)
→ Λ = −3e−K(σ∗)|Won−shell|2 = −a

2A2e−2aσ∗

6σ∗
. (1.2)

When the non-perturbative effects come from Euclidean D3-branes wrapping the same

4-cycle Σ4, the analogous F-term condition is obtained by replacing ND7 → 1 [14].

Even if this second step involves reasonably well-known ingredients in string theory, the

existence and main features of the supersymmetric vacuum solution were obtained using

4D supergravity. This raises the question of whether the effective field theory approach

captures the relevant physics (namely, the vacuum solution as well as its deformations), or

if the higher dimensional analysis may reveal new features of the compatification that the

effective field theory misses. In particular, the inclusion of NP effects leads to a small 4D

(negative) cosmological constant, resulting in an AdS scale much larger than the KK scale,

a feature that has recently been conjectured not to be possible in the landscape [9, 15].

On the other hand, the AdS background is the seed solution to ultimately obtain de Sitter

compactifications, and in this process the NP effects are key in evading classical no-go

theorems [16, 17]. Recent results revealed that in order to properly address whether the

KKLT uplifting mechanism can work or not using a Maldacena-Núñez-like approach, it is

crucial to understand what is the effect of NP physics on the geometry [8, 9, 18–22].

With all these motivations in mind, our purpose is to present the main features of the

supersymmetric AdS vacuum and the non-perturbative effects that give rise to it, directly

in the ten-dimensional geometry. Let us first comment on some crucial issues: first, it is not

clear that gaugino condensation actually happens when the extended part of the D7 brane

worldvolume is not flat. Here we will assume it does, without studying the whole dynamical

process leading to the condensate developing a vev.8 A second non-trivial issue is whether

these effects can be captured by ten-dimensional supergravity. Based on previous work,

and on the results of this paper, we will argue they can. Hence, the main questions about

the 10D description of the supersymmetric N = 1 AdS4 vacua are:

• How do we include the NP effects in the 10D supersymmetry conditions?

• How do these effects back-react on the internal geometry and fluxes?

5More precisely, A depends on the complex-structure and open-string moduli, but at this stage these

are taken to be fixed.
6The functional dependence of this constant is different for other gauge groups, such as SO/USp (which

arise when the branes are on top of orientifold planes).
7Note that W0 has to be very small in order to compete with the NP effect and stabilize the Kähler

modulus. This smallness and the exponential dependence of the NP effect on the modulus lead to a large

cycle size, which allows one to control higher-order NP corrections. Nevertheless, it is still not clear that

the fluxes can be tuned to make W0 so small.
8Alternatively, we could consider NP contributions sourced by Euclidean D3-brane instantons wrapped

on the internal space.
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The first step towards answering the first of these questions was beautifully addressed

by Koerber and Martucci in [23, 24], using the framework of Generalized Complex Geom-

etry (GCG; for a review, see [25]), which we shall use. They first showed (see also [26])

that the conditions for N = 1 supersymmetry (in the absence of condensates) [27] are

equivalent to the F- and D-flatness conditions for the 10D off-shell superpotential [28–30]

that generalizes the Gukov-Vafa-Witten superpotential [31] for 3-form fluxes on Calabi-

Yau manifolds. Then they were able to identify how some of these conditions are modified

in the presence of non-perturbative contributions from space-filling D7 branes wrapping

four-cycles on the internal manifold. One of the most important observations is that the

back-reaction modifies the structure of the manifold. Thus, even if one started from a flux

compactification on a Calabi-Yau manifold, or more generally on a manifold of SU(3) struc-

ture (but not necessarily of SU(3) holonomy), the gaugino condensate on the D7 branes

deforms the structure into a more general (pair of) generalized complex structures.

The second question was studied later in several papers, from different points of view.

A computation of the first-order back-reaction felt by probe D3-branes was presented

in [32] in the context of the AdS/CFT correspondence, giving a geometrization of the

non-perturbative effects in terms of imaginary anti-self-dual (IASD) fluxes. These fluxes

were proposed to be sourced via a coupling (first studied by [33] for other purposes) in

the fermionic D7-brane action between the gaugino mass term and the IASD fluxes. A

more precise analysis of the back-reaction was later performed in [34] for a non-compact

transverse manifold. Finally, a detailed study of one particular example was carried out

in [35], which proposed to use a dynamic SU(2) structure to characterize the generalized

deformation.

This paper has three purposes. The first is to connect the approaches above. The sec-

ond is to find the 10D mechanism by which the Kähler moduli are stabilized. We show that

in the presence of a 4D cosmological constant, one of the supersymmetry equations, (3.5),

implies that the four-cycle wrapped by D7 branes with a non-trivial gaugino condensate

cannot collapse. Hence these D7 branes do not undergo the usual geometric transition.

The third purpose is to use this 10D description to obtain a relation between the parame-

ters of the vacuum solution and see if it can match the EFT results. We find that the size

of the four-cycle is determined by matching the solution near the D7 branes (in the region

where the non-perturbative effects sourced by the gaugino condensate dominate over the

4D cosmological constant), and the solution far from them (where the cosmological con-

stant dominates). This gives us equation (4.24), which confirms the validity of the KKLT

relation (1.2) obtained using four-dimensional EFT.

As we will explain in section 3, our results also imply that a 4D cosmological constant

is incompatible with D5-brane Killing spinors, even in the presence of non-perturbative

effects. In particular, backgrounds that contain geometrically-transitioned D5 branes and

have D5 brane Killing spinors, such as the Maldacena-Núñez throat [36, 37] or the Baryonic-

Branch throat [38] cannot be part of a supersymmetric AdS compactification. Note that

this is a local constraint, and hence it is much more powerful than the global arguments

that have been used in the past against the presence of baryonic-branch throats in flux

compactifications.
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The paper is organized as follows. We begin in section 2 by very briefly reviewing

compactifications in the language of GCG, including some simple examples. In section 3

we review previous results on the 10 dimensional description of non perturbative effects in

the framework of GCG, and combine them to show how moduli stabilization happens from

a 10D point of view. Then, in section 4 we focus on the solution in [35] and describe how the

matching of the near- and far-brane behaviors determines the 10D equation governing the

volume stabilization and the vacuum KKLT solution. Finally, we discuss the consequences

of our results and the possibilities for future lines of work in section 5.

2 Generalized geometry language for type II compactifications

Consider type II superstring theory on a warped product of a four-dimensional Mink4 or

AdS4 manifold, and a compact internal six-dimensional manifold M6:

ds2
10 = e2A(y)gµν(x)dxµdxν + hmn(y)dymdyn , (2.1)

where xµ, µ = 0, . . . 3 are coordinates on Mink4 or AdS4, and ym, m = 1, . . . 6 are coordi-

nates on M6. The most general 10D Majorana-Weyl supersymmetry spinors of solutions

that preserve N = 1 supersymmetry in four dimensions split as

ε1 = ζ+ ⊗ η1
+ + ζ− ⊗ η1

− , ε2 = ζ+ ⊗ η2
∓ + ζ− ⊗ η2

± (2.2)

where ζ∗+ = ζ− and ηi∗+ = ηi−. Although most of the analysis of this paper takes place in

type IIB string theory, some results apply equally well to type IIA compactifications, so we

will use conventions in which the upper (lower) sign corresponds to type IIA (IIB). The

four-dimensional spinors satisfy

2∇νζ− = ±µγνζ+ (2.3)

with µ the value of the on-shell superpotential, such that the 4D cosmological constant is

Λ = −3|µ|2. The internal spinors ηi+ are globally defined and identically normalized.

Using these spinors one can build two polyforms or pure spinors which characterize

the background geometry, and are defined as

Ψ± ≡ −
8i

||η||2
∑
p

1

p!
η2†
± Γm1...mpη

1
+ dy

m1 ∧ · · · ∧ dymp . (2.4)

These spinors define an SU(3)× SU(3) ⊂ Spin(6, 6) structure, and contain all the informa-

tion about the internal metric.

We introduce for later use the Mukai pairing, which is the form version of the inner

product between Spin(6,6) spinors

〈Ψ,Φ〉 ≡ Ψ ∧ α(Φ)|top , α(ωp) = (−1)
p(p−1)

2 ωp, (2.5)

where |top means the top-form piece (for compactifications to 4 dimensions this is a 6-form).
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As found in [27], the pure spinors allow a compact and elegant rewriting of the super-

symmetry conditions δψM = δλ = 0 in the string frame:

dH

(
e3A−φΨ2

)
= 2iµe2A−φIm Ψ1 (2.6a)

dH

(
e2A−φIm Ψ1

)
= 0 (2.6b)

dH

(
e4A−φRe Ψ1

)
= 3e3A−φRe (µ̄Ψ2) + e4A ∗6 α(F ) (2.6c)

where F is the sum of the internal RR fluxes,

Ψ1 = Ψ∓ , Ψ2 = Ψ± upper (lower) sign for IIA (IIB) (2.7)

and we have used the H-twisted exterior derivative dH ≡ d + H3∧. Of course, for µ

non-zero (2.6b) is a consequence of (2.6a). For µ = 0 the first two of these equations are

twisted integrability conditions. Once an internal generalized geometry satisfying these

equations is specified, one can use the last equation to fix the RR fluxes necessary to build

a consistent supersymmetric ten-dimensional supergravity background. The equations of

motion (EOMs) of these fluxes are automatic, but one still has to impose by hand the EOM

of the NSNS flux H3 and all the Bianchi identities; the latter can be written schematically as

dH F = sources . (2.8)

We quickly review the familiar type IIB compactifications on SU(3) structure manifolds

with µ = 0. These only have one well-defined spinor on the internal space and therefore

the two spinors on the decomposition of 10D supersymmetry parameters differ at most by

a relative phase. We take η2
+ = −ieiθη1

+, such that θ = 0 for D3/D7-type supersymmetry,

while θ = π/2 for D5-type supersymmetry. The pure spinors are

Ψ2 = Ψ− = ie−iθΩ , Ψ1 = Ψ+ = e−iθ exp(−iJ), (2.9)

where J and Ω are the real (1,1)-form and holomorphic (3,0) form defining the SU(3)

structure. For D3/D7-type supersymmetry, θ = 0, and the conditions (2.6b), (2.6a) imply

respectively that e2A−φJ (the 2-form in Im Ψ1) and e3A−φΩ are closed. For constant

dilaton,9 these imply that the metric e2Ahmn is Calabi-Yau. Eq. (2.6c), the six-form

in (2.6a) and the five-form in (2.6b) say respectively that e−φH3 = − ∗6 F3, H3 ∧ Ω = 0

and J ∧H3 = 0. Equivalently, the complex 3-form flux

G3 ≡ F3 + ie−φH3 (2.10)

is imaginary self-dual (ISD), primitive and has no (0,3) component (in other words, it is

(2,1)). The one-form component of (2.6c) relates the warp factor and F5 by d(4A − φ) =

eφ ∗6 F5. For backgrounds with calibrated D5-branes θ = π/2 and the real and imaginary

parts of Ψ1 get switched, which implies, among other things, that F3 is related to dJ

(instead of H3) through an ISD condition (we expand on this later, in (4.26))

9The equations impose the axion-dilaton τ ≡ C0 + ie−φ to be holomorphic, allowing for D7-brane

configurations. Constant dilaton is a particular subcase.
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In type IIA, with the supersymmetry of D6-branes, one sees that the two pure

spinors exchange roles. This is nothing but the mirror-symmetric picture of the type

IIB construction.

We will see that SU(3) structure is too restrictive to account for the back-reaction

of D7-branes with gaugino condensates, where the angle between the two supersymmetry

spinors depends on the distance to the brane (this is not the phase of spinors of solutions

with an SU(3)-structure, but an angle between the two well defined spinors of these more

general solutions). In terms of a structure group on the internal manifold, this is called

“dynamic SU(2) structure” (as opposed to a “rigid SU(2)” where the two spinors are always

orthogonal); however, as a structure group on the tangent bundle it is not well defined since

the spinors become parallel at some points, this SU(2) structure is not globally defined.

This is where GCG comes at play: all of these structures become the same from the point of

view of the generalized tangent bundle, they are all SU(3)×SU(3) structures, fully encoded

in the pure spinors Ψ+,Ψ− in (2.4). We will come back to this point in section 4, where

we will give the polyform expression for the pure spinors for a dynamic SU(2) structure.

Ten-dimensional perspective. One can show that eqs. (2.6) can be derived from a

superpotential. Going back to the CY example, we know that some of these equations,

more precisely those related with the 3-form flux G3 in (2.10), can be understood by looking

at the Gukov-Vafa-Witten (GVW) superpotential [31] (we work with ls = 1)

WGVW = −
∫
M6

Ω ∧G3, (2.11)

which was obtained by studying domain-wall tensions in the four-dimensional effective

theory. In this truncated effective theory the fluctuations only include the massless modes

on the CY, and there is no warping. Thus, this is not suited for deriving the complete ten

dimensional supersymmetry conditions in more general compactifications.

This puzzle was beautifully solved in a series of papers [23, 24, 28, 30]. Keeping in

mind the familiar expressions in backgrounds compatible with D5 and D6-branes

WD5 = −
∫
M6

Ω ∧
(
F3 + ie−φdJ

)
, WD6 =

∫
M6

(J − iB) ∧
(
F4 + id[e−φRe Ω]

)
, (2.12)

the authors showed that the form of the 10D off-shell superpotential for warped compact-

ifications in terms of the pure spinors and the Mukai pairing is given by

W10D =

∫
M6

〈e3A−φΨ2, dH [C + ie−φReΨ1]〉 =

∫
M6

〈Z, d T 〉 (2.13)

where C are the RR gauge potentials (dHC = F ) and in the last equality we have introduced

the proper holomorphic fields in 10D10

Z = e3A−φeBΨ2 , T = eB(C + ie−φRe Ψ1) . (2.14)

10Note that in the last equality in (2.13) we switched from the twisted exterior derivative to the ordinary

one, and twisted the pure spinors instead by eB . Both formulations are equivalent but the latter is necessary

to define the proper holomorphic fields which include the B-field.
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Given this superpotential, refs. [23, 24] and [26] showed that the F-flatness and D-

flatness conditions amount to the full supersymmetry conditions (2.6). For that, one has

to perform a dimensional reduction, using the (string-frame) metric Ansatz (2.1). Crucially,

the reduction is done without the need to specify a particular set of modes to expand the

fields into (such as the harmonic forms used in CY compactifications). The first supersym-

metry equation, (2.6a), which is the one we will focus on, was shown to be equivalent to the

F-flatness condition for the modulus T . This is not hard to see for µ = 0, by integrating

W10D in (2.13) by parts. When the cosmological constant is not zero, one has to take the

covariant derivative of the superpotential, and the extra term of this covariant derivative

(involving the superpotential times the derivative of the Kähler potential) gives precisely

the right-hand side of (2.6a).

3 Gaugino condensation

As discussed in the introduction, one of the necessary ingredients of the KKLT proposal

is the inclusion of NP effects. We want to see how to include the NP effects in the super-

symmetry conditions, and how they backreact on the internal geometry and fluxes. We

concentrate on the situation where the NP contribution is coming from gaugino condensa-

tion induced by strong-coupling physics of the N = 1 SYM theory on ND7 > 1 space-time

filling D7-branes wrapping an internal four-cycle Σ4.

Before trying to answer this question, let us make a few remarks. First, if one wants

M6 to be compact it is mandatory to ensure that all p-form charges add-up to zero. This

implies that one must also have O7-planes in the background. In what follows, we do

not need to assume anything about the location of O7-planes, they could be on top of

the D7-branes (changing the gauge group from SU(ND7) to SO(2ND7)) or further apart.

Second, it is important to recall that supersymmetry forces Σ4 to be a generalized calibrated

manifold11 [39, 40]. In the absence of world-volume fluxes F and for a Calabi-Yau manifold

(or, more generally, a manifold with an SU(3) structure) this implies that Σ4 has to be a

complex sub-manifold, whose volume form is given by 1/2 J2|Σ4 .

For more general solutions (with an SU(3)×SU(3) structure and/or world-volume

fluxes), the (algebraic part of the) calibration condition for a supersymmetric space-filling

Dp-brane in a type II vacuum can be written in the GCG language as the algebraic

condition12

e4A−φ√det [(g +B)|Σ + F ]dξ1 ∧ . . . dξp−3 = e4A−φRe Ψ1|Σ ∧ eF |p−3 (3.1)

where ξ are the world-volume coordinates. It can be seen [39, 41] that the differential condi-

tion leading to the volume minimization of the cycle is nothing else but the supersymmetry

equation (2.6c). Interestingly, the rest of the conditions (2.6) can also be interpreted in

a similar way. Indeed, e3A−φΨ2 and e2A−φIm Ψ1 constitute the calibration forms corre-

sponding to domain walls and string-like objects, respectively.

11For a review and a more complete set of references, see [25].
12An analogous statement can be derived for Euclidean branes wrapping Σ, see appendix D of [23] or [24].

– 8 –



J
H
E
P
1
0
(
2
0
1
9
)
2
0
0

Going back to the condensate, we need to calculate how its presence affects the geom-

etry and the fluxes. In particular, it is crucial to understand the modifications it induces

on the supersymmetry conditions (2.6). Here we follow an instructive argument presented

in [34]. We are looking for the modification of the 10D supersymmetry equations associ-

ated to the NP contribution (1.1) in the superpotential.13 As described above, this term

depends on the gauge coupling that in the 10D picture is given by the volume of the 4-cycle

Σ, hence the dependence of (1.1) on the imaginary part of the Kähler modulus T . The F2

part of the DBI action for the Dp-branes is

SDp|F2 = − 1

8π

∫
Σ
e−φRe Ψ1

∫
d4x
√
−gTrF2 , (3.2)

from where we one can read off the effective SYM coupling constant. Furthermore, we

can easily guess the holomorphic completion of this coupling: e−φRe Ψ1 will be replaced

by the (untwisted) variable T defined in (2.14). Indeed, the effective SYM θ term comes

from the Wess-Zumino term in SDp, where the world-volume fluxes are coupled to the RR

potentials. Finally, note that if we define δ9−p[Σ] as the (9− p)-form Poincaré dual to the

(p− 3)-cycle Σ wrapped by the Dp-brane, such that∫
M6

ω ∧ δ9−p[Σ] =

∫
Σ
ω|Σ (3.3)

for any (p− 3)-form ω, we can write the 4D holomorphic coupling as

τ =

∫
Σ

(C + ie−φRe Ψ1)|Σ =

∫
M6

T ∧ δ9−p[Σ] =

∫
M6

〈T, δ9−p
α [Σ]〉, (3.4)

with δ9−p
α [Σ] ≡ α(δ9−p[Σ]) and α defined in (2.5). We are now ready to present how the

non-perturbative effects modify the first supersymmetry equation (2.6a) which, we recall,

is equivalent to the F-flatness condition for the modulus T . Taking the covariant variation

of the full superpotential (namely the sum of the non-perturbative piece (1.1) and the

perturbative one (2.13)) with respect to the 10D holomorphic variable T one concludes

that (2.6a) gets an additional non-perturbative term. The exponential dependence of the

NP term on T makes this new 10D contribution proportional to the 4D vev. Moreover,

since the gauge kinetic function (3.4) is localized, this new term is localized. Hence, the

quantum corrected version of (2.6a) is

dH

(
e3A−φΨ2

)
= 2iµe2A−φIm Ψ1 + 2i〈S〉δ9−p

α [Σ], (3.5)

where S is the usual superfield associated with the gaugino condensate with expectation

value

〈S〉 =
1

16π2
〈λλ〉. (3.6)

Finally, µ is still related to the on-shell value of the superpotential, which is also modified

in order to include the NP term: W10D →W10D +WNP.

13This contribution can be computed explicitly in Heterotic theory, where the four-fermion terms in the

10D action are known. Intriguingly, it was found in [42] that there is no fermion bilinear contribution to

the 4d superpotential. Here we follow KKLT and assume that such a contribution does exist. It would be

interesting to understand the relation between the Heterotic and the Type II results.
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Interpretation. Now that we know how (2.6a) is modified, we would like to understand

its implications, focusing on some examples. We are interested in the local features of the

geometry driven by the new term in (3.5), so we will leave aside extra constraints arising in

compactifications, such as tadpole cancellation, and make our conclusions based on results

obtained in non-compact geometries.

For µ = 0, equation (3.5) implies that dHZ ∼ 〈S〉δ9−p[Σ]. This has a very simple

geometrical interpretation [43, 44]: it tells us that δ9−p[Σ] is trivial in the cohomological

sense.14 Stokes’ theorem then implies that integrating any closed (p − 3)−form on Σ will

give zero. In other words, the cycle itself shrinks and becomes trivial in homology. This is

familiar in the context of geometric transitions. For example, for D5 branes wrapping the

holomorphic 2-cycle of at the tip of a resolved conifold, (3.5) implies that dΩ3 ∼ 〈S〉δ4[Σ2].

The strong-coupling dynamics make Σ2 shrink, while the 3-cycle blows up and becomes

topologically non-trivial, regularizing the geometry into a deformed conifold. The D5-

branes disappear and the final solution has no localized sources. Furthermore, it can still

be described as a manifold with SU(3)-structure. By using the AdS/CFT correspondence,

this transition admits a very nice interpretation from the CFT point of view: it encodes

the chiral symmetry breaking that takes place in the IR of the theory. Of course, a mirror

picture works for D6 branes, where one has15 dJ ∼ 〈S〉δ3[Σ3]. This was first studied in [45]

(see also [46]).

Now, as emphasized in [34], the situation with D7-branes is very different from the

previous examples. First, a gauge theory dual for D7-branes wrapping holomorphic 4-cycles

is difficult to find. In particular one cannot take ND7 large. Concerning the supergravity

solution we are analyzing, there are two fundamental differences for D7-branes:

• For p = 7 the cycle Σ4 is a holomorphic 4-cycle and the localized delta function is

a 2-form. Thus, eq. (3.5) has a term d
(
e3A−φΨ2

)
∼ 〈S〉δ2[Σ] and so Ψ2 necessarily

contains a 1-form. As a consequence, it is impossible to satisfy the supersymmetry

condition while staying within the realm of ordinary complex geometry [34]. We are

forced to consider manifolds with more general structure groups than SU(3). The

generic structure group is the so-called dynamical SU(2) structure.

• Moreover, something very interesting happens if we consider an AdS4 compactifica-

tion. For p = 7 and µ 6= 0 eq. (3.5) takes the form

dH

(
e3A−φΨ2

)
= 2iµe2A−φIm Ψ1 − 2i〈S〉δ2[Σ4]. (3.7)

The first observation we make is that, since µ is nonzero, δ2[Σ4] is not exact anymore.

Following the logic in the above arguments, this means that the cycle wrapped by

the D7-branes is not trivialized anymore! The situation is different from the usual

14Note that the differential operator is the twisted exterior derivative, and thus the dual cycles are trivial

in twisted cohomology. However, for D7-branes the right hand side is a two-form, and therefore the twisting

by H3 plays no role and the dual four-cycle would be trivial in ordinary cohomology.
15Here Σ3 needs to be a special Lagrangian cycle for the D6-branes to be calibrated. Moreover, the H3

twist on the exterior derivative is irrelevant for us in this class of Type IIA solutions because Re Ψ2 has a

2-form component but no 0-form component.
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geometric transitions. Moreover, it is consistent with the interpretation we would

like to give to this configuration in the context of the KKLT scenario. Indeed, the

stabilization of the volume modulus can be understood from (3.7) in terms of Σ4

staying at a definite, finite size16 and the presence of a negative cosmological constant

in four dimensions constitutes a necessary condition. To the best of our knowledge,

this interpretation has not been given in the literature before.

Because we were interested in local features, we decided to leave aside global constrains.

Nevertheless, note that in a global compactification, (3.5) provides a relation between the

amplitudes of all NP effects and the 4D CC in the form of a tadpole-cancellation condition.

We would also like to point out that a connection between the non-perturbatively

modified supersymmetry equation (3.7) and a would-be ten-dimensional description of the

supersymmetric AdS4 solution of [1] was attempted in [23, 24]. However, this was done

by using smeared instatons, that is, roughly speaking, by replacing the NP current δ2[Σ4]

in (3.4) by a suitably normalized two-form proportional to Im Ψ1 ∼ J , allowing the authors

to keep the original SU(3) structure. In the rest of the paper, we will pursue the same goal

without relying on any smearing process (and thus going beyond SU(3) structure).

Equation (3.5) also has intriguing implications for the geometric transition of D5 branes

in supersymmetric AdS compactifications. This equation implies that the product of µ and

the imaginary part of the zero-form component of Ψ1 is zero. For D5-brane-type Killing

spinors, this rules out AdS solutions, except for rigid SU(2) structure [47]. Our results

imply that this happens even in the presence of non-perturbative effects. In particular,

this rules out the possibility of constructing supersymmetric AdS solutions whose internal

space contains a Maldacena-Núñez throat [36, 37], or other throats with D5-brane-type

Killing spinors such as the baryonic branch [38].

Moreover, for throats with D3-type supersymmetry and NP effects on D5-branes wrap-

ping a collapsed 2-cycle, such as [48], supersymmetry requires to keep the cycle at zero size.

For AdS compactifications, the four-form component of (3.5) implies that the only way of

keeping the 2-cycle trivial is to have an H3 flux and an SU(2) structure. The resulting

geometry would not have an SU(3) structure, so it would be different from the one in [48].

4 KKLT and dynamic SU(2) structure

In the most common N = 1 compactifications of type II string theory, the structure group

of the internal manifold is taken to be SU(3). Then there exists a single globally defined

spinor, and the geometry is characterized by J and Ω. However, according to the discussion

of the previous section, this is too restrictive when NP contributions coming from D7-branes

gaugino condensation are included.

As briefly discussed in section 2, the most general solution has a so-called dynamic

SU(2) structure determined by two chiral spinors η1,2, whose relative orientation is char-

16Note that in order for the gauge coupling to still be large such that the gauginos get a vev it is necessary

that the cycle is stabilized at a small size.
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acterized by a position-dependent angle ϕ such that17

η2 †
+ η1

+ = i cosϕ , η2 †
− γmη

1
+ = i sinϕΘm . (4.1)

The geometry is then characterized as a mixture between the two SU(3) structures asso-

ciated to each of the spinors.18 The invariant forms are the 1-form Θ and a real and a

complex 2-form J2 and Ω2 satisfying

J2 ∧ Ω2 = Ω2 ∧ Ω2 = 0 , J2 ∧ J2 =
1

2
Ω2 ∧ Ω2 , ıΘΩ2 = ıΘJ2 = 0. (4.2)

Schematically, we can think about this in the following way: the 2-forms play the role of

the Kähler and holomorphic forms on four-dimensional subspaces, while Θ points holomor-

phically in the normal direction. This appears to be perfectly suited for our goal, as we will

identify the sub-manifold corresponding to this four-dimensional subspace (at a particular

point in the normal direction) with the 4-cycle Σ4 wrapped by the D7-branes. The pure

spinors are given by19

Ψ+ = e−iJ1 ∧
[
cosϕ

(
1− 1

2
J2

2

)
+ sinϕ Im Ω2 − iJ2

]
, (4.3)

Ψ− = Θ ∧
[
sinϕ

(
1− 1

2
J2

2

)
− cosϕ Im Ω2 + iRe Ω2

]
, (4.4)

with J1 ≡ i
2Θ ∧Θ. In our conventions the 1-form is normalized such that h−1(Θ, Θ̄) = 2.

We immediately see that the four-form component of Re Ψ+ has the right form to be the

calibration for Σ4.

The P2 example. An interesting solution with this structure group was found in [35].

The solution describes a configuration of D7-branes on top of O7-planes such that the D7

charge cancels locally. All of them wrap the P2 on the resolution of C3/Z3. Here we provide

the elements of their calculations relevant for our purposes, and refer the reader interested

in further details to the original paper. The orbifold action is given by the identification

zi ∼ e2πi/3zi , (4.5)

so this (non-compact) manifold can be described locally in terms of Z3-invariant coordinates

z and u1,2, where

u1,2 =
z1,2

z3
, z =

1

3
(z3)2 . (4.6)

The squared radius is given by

ρ2 = (3|z|)2/3
(
1 + |u1|2 + |u2|2

)
. (4.7)

17In principle there could be an extra phase in (4.1) distinguishing between D3/D7 type supersymmetry

or D5 type but, as already argued, an AdS4 vacuum rules out the latter option.
18Note that if there are points where sinϕ = 0, the two SU(3) structures coincide at those points, and

thus one cannot define a global SU(2) structure on the tangent bundle. In that sense, the terminology

“dynamic SU(2)” structure is not the most accurate, but we stick to it as it is more intuitive than the

precise terminology: SU(3)× SU(3) ⊂ O(6, 6) structure.
19There is a choice involved in righting down these expressions related to an SO(3) rotation in the space

of the real 2-forms {J2,Re Ω2, Im Ω2} [49].

– 12 –



J
H
E
P
1
0
(
2
0
1
9
)
2
0
0

In the resolved phase, the holomorphic 4-cycle at the tip of the cone is defined by the

equation z = 0.

An Ansatz for the “would-be Kähler form” is

J ≡ J1 + J2 ≡ e−4L1(ρ)j1 + e2L2(ρ)j2 , j1 =
iρ2

2
∂ρ2 ∧ ∂ρ2 , j2 =

i

2ρ2

(
∂∂ρ2 − ∂ρ2 ∧ ∂ρ2

ρ2

)
.

(4.8)

Here, j2 and j1 are respectively parallel and normal to the four-dimensional base. In the

warped-CY limit, the Einstein frame versions of the functions L1,2 satisfy e2LE1 ∼ e2LE2 ∼
(r2 +r2

0)1/3, where r = ρ3/3 and r0 is the resolution scale, but this does not need to happen

on the final geometry that contains all the desired ingredients.

We are particularly interested in two components of the supersymmetry equations, the

3-form component of (2.6b) and the 2-form component of (3.7):20

d
[
e3A−φ sinϕΘ

]
= 2iµe2A−φ (cosϕJ1 + J2)− 2i〈S〉δ2[z = 0], (4.9)

d
[
e2A−φ (cosϕJ1 + J2)

]
= 0. (4.10)

Note that the localized term was omitted in [35] and therefore the solution was valid in

regions away from where the NP dynamics take place. We now massage the two equations

above for later use; the expression we are interested in is

d[e2A−φ(J1+J2)] = e3A−φ sinϕ d

(
1−cosϕ

eA sinϕ

)
∧J1−2eA−φ

1−cosϕ

sinϕ
J2∧Re(µΘ̄) (4.11)

The coordinate choice introduced above is particularly useful in describing the region

near the four-cycle at z = 0, which can be approached by scaling z and u1,2 with a small

factor of ε and keeping the terms which are first-order in ε. Thus, in this region one has

r =
1

3
ρ3 ≈ |z| , j1 =

i

2
dz ∧ dz , j2 =

i

2
dua ∧ dua , Θ = e−2L1(r)+iθ(r) r

dz

z
, (4.12)

with a = 1, 2. Crucially, all functions depend only on r, which parametrizes the distance to

Σ4, and the approximation is valid for r � r0. Now, in this region d(f(r)j1) = 0, so (4.10)

implies d(e2A−φJ2) = 0, or equivalently 2A − φ + 2L2 ≡ 2l2 is constant. Implementing

this in (4.11) we find that µ ≈ 0 in the vicinity of Σ4. This means that in this region the

cosmological constant is only relevant at higher order. Thus, eq. (4.9) (which contains the

NP contribution) is satisfied in this regime if and only if21

e3A(r)−φ(r)−2L1(r)+iθ(r) sinϕ r = constant = − 1

π
〈S〉, (4.13)

where we have used the fact that δ2[z = 0] = π−1∂∂ Re log(z).

20We do not expect this equation to get modified by the gaugino condensate, as it does not contain any

contribution related to the cosmological constant term or to the fluxes. This is consistent with the analysis

of [34].
21This clarifies the relation between [35], where this constant was named c1, and [34] (see also section 6.2

of [23, 24]). Indeed, c1 is seen as the on-shell value for WNP, in other words, the gaugino condensate.
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The way to extend the definition of the 1-form Θ outside this region is [35]

Θ = e−2L1(r)+iθ(r) r
dz

z
→ e−2L1(r)+iθ(r)∂r

2

r
, (4.14)

with r = ρ3/3 depending now on z as well as on ua by (4.7). Away from the D7-branes we

can ignore the δ term and the 1-form satisfies

d
[
e3A−φ sinϕΘ

]
= 2iµe2A−φ (cosϕJ1 + J2) . (4.15)

Using (4.8), together with the orthogonality of j1 and j2 one finds

e3A(r)−φ(r)−2L1(r)+iθ(r) sinϕ r =
µ

3
e2A(r)−φ(r)+2L2(r). (4.16)

If we want this solution to match the near-brane behavior, where the r.h.s. is constant

and (4.13) should be satisfied, we should have

− 1

π
〈S〉 =

µ

3
e2l2 . (4.17)

Note that this implies that the phase of 〈S〉 is the same as that of µ, which confirms that

in equation (3.7) the cycle wrapped by the D7 branes cannot be trivialized.

The KKLT AdS vacuum from 10D solution matching. The matching condi-

tion (4.17) is a crucial relation that encodes the stabilization of moduli from the 10D

perspective. Let us consider its implications carefully.

First, recall that the volume of the wrapped cycle Σ4 is given by the (imaginary part

of the) Kähler modulus σ

Vol(Σ4) = σ. (4.18)

On one hand, µ is, by definition, related to the on-shell value of the full superpotential by

µ = eK/2WKKLT =
W0 +WNP

(2σ)3/2
(4.19)

where we have used the expression for the Kähler potential K = −3 log(2σ) and, as ex-

plained before, W0 is the flux contribution to the superpotential, given by the GCG gener-

alization of the GVW superpotential which depends on the complex structure and axion-

dilaton moduli, evaluated at the minimum. Moreover, the non-perturbative superpotential

is proportional to the condensate:

WNP = Nc〈S〉 =
2π

a
〈S〉, (4.20)

where a is defined in (1.1). This expression is valid for a pure-glue gauge theory, otherwise

the overall constant would be different.

On the other hand, e2l2 is not just any integration constant: it is related to the volume

of the base of the resolved cone (the four-cycle Σ4). More precisely, it is easy to see that
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π2

2 e
4l2 measures the volume of the resolved P2, and is thus directly related to σ. For our

purposes, it is sufficient to note that their relation is

e2l2 =

√
2σ

k
, (4.21)

for some proportionality constant k that depends on the details of the IR solution.22 Com-

bining all this, we find that the matching condition (4.17) written in terms of σ is

− 3ka

π2
WNP =

W0 +WNP

σ
. (4.23)

This is very similar to the F-flatness condition DW4D = 0 one obtains in the 4D EFT.

Thus, the Kähler modulus is stabilized at a value σ∗ such that

W0 = −Ae−aσ∗
(

1 +
3k

π2
a σ∗

)
(4.24)

This is the ten-dimensional equation that is necessary in order to solve the supersymmetry

condition (4.9). Up to a numerical factor, this equation agrees with the bottom-up EFT

relation that was used in the KKLT construction, (1.2), thus confirming the validity of

the latter.

To recap, equation (4.24) arises as a requirement for matching the supergravity solu-

tion in the region very close the D7-branes, where the source term 〈S〉δ2[Σ4] dominates

over the cosmological constant contribution, with the solution in the region away from the

D7 branes, where the latter dominates over the former. The highly non-trivial matching

between the 10D calculation performed here and the EFT F-flatness condition (1.2) pro-

vides support for the validity of the supersymmetric AdS vacuum: on one hand, the EFT

appears indeed to capture the key features of the 10D physics properly and, on the other

hand, an internal manifold with dynamical SU(2) structure appears to have the correct

geometric properties to describe the supersymmetric AdS4 solution induced by fluxes and

non-perturbative contributions coming from gaugino condensates.

Further comments.

• Here we focused only on a subset of the supersymmetry conditions but, of course, all

of them need to be satisfied. In [35], a solution to the full system was obtained only in

the region close to the D7-branes (but for |z| > 0), where the effect of the curvature

term can safely be ignored. The solution involves several integration constants, whose

connection with clear physical boundary conditions is hard to obtain. Furthermore,

it is worth pointing out that some issues arise when analyzing the behavior very close

to the D7-branes.

22The precise expression is

k2 =

∫
Σ4

eφ−4A cosϕ j2
2 = π2 (eφ−4A cosϕ)|Σ4 . (4.22)

In the last equality we have used the fact that, within our Ansatz, all scalar functions are constant along

the cycle.
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• As discussed above, the angle ϕ is a function of the distance to the branes, and

the structure is of the dynamic SU(2) type. However, as one goes away from the

branes, ϕ approaches zero asymptotically. Thus, at large distances the structure

is approximately SU(3), but the presence of a small cosmological constant remains.

This indicates that the description proposed in [23, 24] in terms of smeared instantons

can capture the important physics as seen from a distant observer. Also, the fact

that µ and the deformation parameter ϕ are small far away from the region where

NP effects are large could allow for a perturbative treatment.

• It has been pointed out that the localized gaugino condensate acts as a source for

the IASD components of the 3-form flux G3 [32, 34, 35]. The existence of this flux is

related to the stabilized cycle being kept at finite size, as we now explain: we start by

recalling that in the well known Klebanov-Strassler solution [48] the allowed fluxes

are ISD. This is a consequence of (2.6c), whose 3-form component in a conformal-CY

compactification with µ = 0 is nothing else but the ISD condition

∗6 G3 = iG3 where G3 = F3 + ie−φH3 . (4.25)

In an AdS compactification, µ 6= 0, and the self-duality condition no longer holds;

the solution must contain IASD fluxes whose strength is proportional to the new

contribution in (2.6c). Therefore, both the finiteness of the cycle and the presence of

IASD flux are consequences of having an AdS compactification.

We can also generalize the previous argument to more general solutions. Again, we

start from (2.6c) with µ = 0, which can be recast as an ISD condition for the more

general complex “flux” polyform [50]

∗̃6G = iG , where G = F + ie−4AdH

(
e4A−φRe Ψ1

)
, ∗̃6 ≡ − ∗6 α (4.26)

and α is defined in (2.5). Note that this equation describes the Maldacena-Núñez [36,

37] and baryonic-branch [38] solutions. Turning on a cosmological constant, (2.6c) is

modified to

(1 + i∗̃6)G = 3ie−A−φµ̄Ψ2 . (4.27)

Following the same logic, we see that the finite stabilization of cycles by NP effects will

always come together with generalized IASD fluxes G, whose amplitude is tied to µ.

• Furthermore, note that eq. (2.6a) might not be the only supersymmetry condition

modified by the backreaction of the localized strong-coupling effects. It is known that

RR (and NSNS) background fluxes can generically produce a mass for the gaugino

on the branes. Flipping this argument around, one finds that the gaugino condensate

should also act as a source for the fluxes [32], which would generate a new localized

contribution to (2.6c). So far, the exact form of this new term has only been worked

out for D7-branes in an SU(3)-structure background with a constant warp factor [34].

This was seen to produce an additional localized ISD piece of type (0,3) in G3. The

general form of this new contribution in the GCG language will be addressed in detail

in a more technical companion paper [51].
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5 Discussion

We have analyzed the backreacted geometry of NP effects, based on the quantum corrected

supersymmetry equation (3.5). We have shown that for supersymmetric AdS4 vacua with

D7-branes undergoing gaugino condensation, this equation implies that the cycle wrapped

by the branes stays at a finite size, in contrast with the usual geometric transition that takes

place in Minkowski space. Our approach should be applicable to any AdS compactification

involving stacks of Dp-branes undergoing gaugino condensation.

This is the ten dimensional description of Kähler moduli stabilization in type IIB string

compactifications à la KKLT. Furthermore, this works at the quantitative level. Indeed, we

have found that the matching of the supergravity solution near the D7-branes (where the

fields sourced by the gaugino condensate, found from equation (3.7), are stronger than the

cosmological constant) with the solution far from these branes produces a relation, (4.24),

between the size of the four-cycle and the cosmological constant. This top-down result

matches the bottom-up relation obtained by an EFT analysis in [1].

All our analysis is based on the supersymmetry equation (3.5). It is worth pointing

out that [34] argued that the third susy equation (2.6c) should be modified as well by the

addition of a localized term. We leave the full set of modified equations, as well as a more

detailed analysis of the background, for a future publication.

Note that in this paper we have only matched certain limits of the full solution de-

scribing D7 branes with gaugino condensation. It would be very interesting to find the full

solution. In particular, it would help to understand whether the naked singularity close to

the D7-branes found in [35] is unavoidable and, if so, how it can be resolved in string theory.

One of our assumptions has been that D7-brane gaugino condensation happens and

that it gives rise to a supersymmetric AdS4 vacuum. It would be very interesting to

obtain a deeper field-theoretical understanding of this process, and establish whether and

under what circumstances this happens when the worldvolume of the D7 branes has an

AdS4 factor.

Our top-down result matches the main features of the KKLT AdS vacuum obtained

from the effective field theory of the Kähler moduli. However, this does not necessar-

ily mean that this effective field theory is the appropriate one, and/or whether there are

missing light modes, as suggested both by swampland arguments [15], and by an explicit

computation of the Laplacian in the warped throat [13]. Furthermore, taking into account

the warp factor in the EFT for the complex structure moduli was shown to lead to a po-

tential with a very different behavior than the constant-warp-factor potential [10]. The

minima of the two potentials are the same, but their behaviors near the origin are com-

pletely different. In particular, the naive constant-warp-factor potential fails to capture

the runaway behavior that is produced by the addition of anti-D3-branes.

Furthermore, as highlighted in [8, 9, 18–22], any attempt to uplift the cosmological

constant via the inclusion of some localized objects (such as anti-D3 branes) is highly

dependent on the details of the gaugino condensation. Now that we understand (albeit by

patches) the features of the 10D solution sourced by D7 branes with a condensate, it would
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be very interesting to construct a more general 10D geometry (and possibly an effective

4D EFT) where one takes into account also the effects of the anti-D3 branes.

We also argued that the AdS4 supersymmetry equations rule out D5-brane-type su-

persymmetry (except for rigid SU(2) structure), even in the presence of non-perturbative

effects. As we have explained, this rules out supersymmetric AdS compactifications with

Maldacena-Núñez or baryonic-branch throats. Throats with D3-brane-type supersymme-

try, instead, can be embedded in AdS compactifications only if the D5-brane developing

a gaugino condensate wraps a collapsed cycle. This can only be achieved if the internal

manifold has SU(2) structure, so solutions such as the Klebanov-Strassler throat would

have to be modified into a manifold with this structure group.

We would also like to stress that the procedure we used to match the near- and far-D7

brane regions and to obtain the 10D version of moduli stabilization appears to be more

general and can also be applied to other D-branes wrapping calibrated cycles. For type

IIB compactifications the only such branes are D5 branes wrapping two-cycles but, as we

have seen above, these are already ruled out in AdS compactifications. However, in type

IIA compactifications our procedure could in principle be used to study the backreaction of

D-branes with gaugino condensation and to obtain similar top-down equations governing

the moduli of supersymmetric AdS vacua.
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