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Abstract: Aliphatic chlorinated hydrocarbons, notably tetrachloroethylene (also known as perchloroethylene [PCE]), are per-
sistent, mobile, and toxic (PMT) and/or very persistent, mobile, and toxic (vPMT) groundwater pollutants, often exceeding safe
drinking water thresholds. The present study delves into the groundwater risk assessment of PCE with a novel focus on the
sensitivity of stygobitic species—organisms uniquely adapted to groundwater environments. Through a comparative analysis of
the subchronic effects of PCE on the locomotion behavior of two copepod species, the stygobitic Moraria sp. and the
nonstygobitic Bryocamptus zschokkei, we highlighted the inadequacy of the current European predicted‐no‐effect concen-
tration of PCE for groundwater ecosystems. Our findings indicate significant behavioral impairments in both species at a
concentration (32 ng/L PCE) well below the threshold deemed safe, suggesting that the current European guidelines for
groundwater risk assessment may not adequately protect the unique biodiversity of groundwater habitats. Importantly,
B. zschokkei demonstrated sensitivity to PCE comparable to or greater than that of the target stygobitic species, suggesting its
utility as a substitute species in groundwater risk assessment. The present study adds to the limited research on the ecotox-
icological sensitivity of groundwater species to PMT/vPMT chemicals and highlights the need for refined groundwater risk‐
assessment methodologies that consider the susceptibilities of stygobitic species. Environ Toxicol Chem 2024;43:2515–2527.
© 2024 The Author(s). Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.
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INTRODUCTION
Aliphatic chlorinated hydrocarbons, such as tetrachloro-

ethylene (also known as perchloroethylene [PCE]), are
persistent, mobile, and toxic (PMT) and/or very persistent,
mobile, and toxic (vPMT) groundwater pollutants (Azzellino
et al., 2019; Huang et al., 2023). These substances exhibit
prolonged environmental persistence, a natural tendency
to contaminate drinking water sources, and are often
challenging to eliminate through standard water‐treatment
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processes (Huang et al., 2023). Perchloroethylene is com-
monly used as an industrial solvent for chemical synthesis,
metal degreasing, electronics cleaning, and textile dry cleaning
and poses potential carcinogenic and mutagenic risks to humans
(Cichocki et al., 2016). Due to its high density, PCE tends to
migrate to and accumulate at the bottom of the aquifer by
traveling through fractures (Walaszek et al., 2021). Natural at-
tenuation of PCE in groundwater occurs under both reducing
and oxidizing conditions and typically results in the formation of
less chlorinated transformation products (Clement et al., 2000).
However, previous studies have highlighted that, in ground-
water, PCE concentrations may remain steady and consistent
over time due to ample source availability at the surface and
limited degradation in the aquifers (Walaszek et al., 2021). As a
result, concentrations of aliphatic chlorinated hydrocarbons in
groundwater, including trichloroethylene (TCE), frequently ex-
ceed the European water guideline for drinking water ([PCE]+
[TCE] <10 μg/L; European Commission [EC], 2021), thereby re-
stricting its suitability for drinking‐water purposes (European
Environment Agency [EEA], 2020).

Groundwater is not merely the largest reservoir of drinking
water on our planet; it also constitutes a keystone ecosystem
teeming with life (Saccò et al., 2024). Despite the absence of
light and photosynthetic producers, as well as the limited
quantity of organic matter—predominantly allochthonous,
though an uncertain percentage appears to be generated on‐
site by chemolithotrophic bacteria (Overholt et al., 2022)—
marine and freshwater groundwaters harbor >25,000 metazoan
species (Martinez et al., 2018) along with countless microbes.
Crustaceans dominate groundwater habitats, where stygobitic
species (i.e., species that cannot complete their entire life cycle
outside groundwater; Culver et al., 2023) exhibit morphological
and physiological adaptations to these energy‐limited yet en-
vironmentally stable ecosystems (Di Lorenzo, Avramov, et al.,
2023). Stygobitic species are characterized by depigmentation,
eyelessness (or nonfunctional eyes), and elongation of sensory
organs (Fišer et al., 2023). Physiologically, they display a re-
duced range of trait modalities compared to their surface‐water
counterparts, also exhibiting lower fertility and metabolic rates
and higher longevity (Hose et al., 2022). Stygobitic metazoan
species represent a significant portion of global biodiversity at
risk because of the rarity of many species and their restricted
geographic distribution, which frequently extends no further
than spot endemicity (Mammola et al., 2024). The role of
groundwater microorganisms in degrading pollutants is well
known (see Herzyk et al., 2017). Stygobitic metazoans also
provide key ecosystem services, including stimulating microbial
activities through grazing and the deposition of fecal pellets,
sediment remixing through movement, preventing sediment
clogging, and removing viruses and pathogens (Mermillod‐
Blondin et al., 2023). The efficiency of stygobitic metazoans in
stimulating microbial activities is directly proportional to their
abundance and functional fitness (Mermillod‐Blondin
et al., 2023). This implies that, to maintain their functional
efficiency, metazoans should not perish nor should their
activities (such as feeding and locomotion) be affected under
chemical stress.

The risk posed by PCE to groundwater ecosystems can be
assessed through environmental risk assessment (ERA), which
involves computing the risk as the ratio (R) of the measured
environmental concentrations (MECs) of PEC to the severity
of adverse effects on groundwater species based on the
predicted‐no‐effect concentration (PNEC). An R>1 indicates a
potential risk to the groundwater ecosystem (EC, 2014). The
PNEC is computed based on the no‐observed‐effect concen-
tration (NOEC). In the absence of NOEC data for stygobitic
species, the European guidelines (see European Medicines
Agency [EMA], 2018) recommend using surface‐water species as
substitutes. Some guidelines also recommend applying a cor-
rection factor of 10 to account for the unique traits of ground-
water communities (such as their low abundance, restricted
distribution, etc.) that potentially make them more sensitive to
toxicants compared to epigean communities (EMA, 2018).

The lack of data concerning the effects of chlorinated
aliphatic hydrocarbons on groundwater species aligns with the
scarcity of ecotoxicological studies conducted with ground-
water taxa. According to STYGOTOX, the database of toxicity
data on groundwater organisms (Groote‐Woortmann
et al., 2024), only 43 chemicals were tested on groundwater
organisms from 1976 to 2023. This paucity is remarkable
compared with data from other existing ecotoxicological da-
tabases for epigean species (such as ECOTOX; Olker
et al., 2022) that contain >10,000 chemicals and >6300 spe-
cies. Numerous impediments contribute to the low number of
chemicals tested on stygobitic species, including the extreme
longevity of these species (often spanning years compared to
weeks or months typical of standard test species such as
Daphnia), low fertility (with many stygobitic species not re-
producing in laboratory conditions), and the absence of
standard food because most stygobitic species feed on mi-
crobes attached to sediment in their natural habitats (Di Lor-
enzo, Di Marzio, et al., 2019). Among standard test species,
Daphnia magna exhibits the highest sensitivity to PCE in
chronic toxicity assays, with a 28‐day NOEC of 0.51mg/L
(Richter et al., 1983). Utilizing this finding and employing the
correction factor of 10 (correction factor to the lowest endpoint
of standard test species), the PNEC for aquatic ecosystems
(PNECw) in Europe is determined to be 51 μg/L PCE (European
Chemical Bureau, 2005). This PNECw may not be suitable for
groundwater ecosystems due to the traits (high level of en-
demism, longevity, slow growth, and low reproduction rates;
Hose et al., 2022) of stygobitic taxa that determine the limited
tolerance of groundwater communities to chronic pressure
from chemical stressors (Di Lorenzo, Avramov, et al., 2023).
Groundwater communities may possess a reduced ability to
recover from chemical stress, with any recovery potentially
taking place over an extended time frame, spanning multiple
seasons or even decades (Hose et al., 2022). Consequently, a
higher correction factor should be recommended to ex-
trapolate the PNEC for groundwater (PNECgw) from the
PNECw. This approach parallels previous methodologies
employed for deriving environmental quality standards in ma-
rine ecosystems (EC, 2011) and PNECgw for pharmaceutical
compounds (EMA, 2018).
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The present study aimed to fine‐tune the groundwater risk
assessment of PCE by assessing a PNECgw that better repre-
sents the sensitivity of groundwater species. To this end, we
applied a correction factor of 1000 to the current PNECw and
examined the subchronic effects of the resulting 50 ng/L PCE
on the locomotion behavior of two copepod species with the
intention of establishing it as the PNECgw. We aimed for a
nominal concentration of 50 ng/L PCE. However, the measured
concentration was 32 ng/L PCE. We designed an experiment to
evaluate the subchronic effects of this concentration on the
behavior of two freshwater copepod species: the stygobitic
Moraria sp. and the nonstygobitic Bryocamptus zschokkei.
Moraria sp. represents a species uniquely adapted to ground-
water environments. Bryocamptus zschokkei belongs to
the same family as Moraria sp. (Campthocamptidae) and
may serve as a potential substitute in the risk assessment.
To provide context for the computation of the environmental
risk, we conducted a comprehensive screening of the MECs of
PCE in European groundwaters using data sourced from the
European database WATERBASE.

MATERIALS AND METHODS
Test organisms

Moraria sp. is endemic to the Apuan Alps (Italy), occurring in
just two karst caves (Galmarini et al., 2023). This species is a
detritus feeder (eating on microbial biofilm) and has low met-
abolic rates, scarce acclimation ability to temperature stress,
low development (the development from Nauplius V to the
adult takes >7 weeks at 8 °C), and low fertility (one or two large
eggs per year at 8 °C; Di Lorenzo, Galassi, et al., 2023). In the
laboratory, Moraria sp. lives for more than 2 years (Di Lorenzo,
Galassi, et al., 2023). Bryocamptus zschokkei is a prevalent
member of meiofaunal stream communities, showing a wide-
spread distribution (Brown et al., 2003). The species is also
commonly found in groundwater habitats, often transported
from infiltrating surface waters. Its life cycle is relatively brief
(6 weeks at 20 °C), whereas the life span is 5 to 11 months
(Dole‐Olivier et al., 2000). It easily breeds in the laboratory, with
adult females typically producing 8 to 24 eggs and three
broods within 6 weeks at 20 °C (O'Doherty, 1985). This non-
stygobitic species primarily feeds on biofilm and has previously
demonstrated sensitivity to contaminant exposure (Burton
et al., 2002). Because of these characteristics, B. zschokkei has
been recognized as an ecologically relevant test species for
lotic freshwater environments (Burton et al., 2002).

In November 2022, we collected individuals of Moraria sp.
from two drips in the Stalactites Gallery of the Antro del
Corchia (44°01′31.98″N, 10°17′59.64″E), a karst cave in the
Apuan Alps (Tuscany, Italy), utilizing the methods outlined in
Pipan (2005) and Pipan and Culver (2005). In December 2022,
we collected specimens of B. zschokkei from Sorgente del
Tinello (44°01′42.5″N, 10°21′16.6″ E), a karst spring in the
Apuan Alps. We disturbed the springbed sediments by foot
and collected the dislodged fauna using a 60‐μm mesh hand
net, adhering to standard procedures for sampling spring fauna
(Malard et al., 2002). Both samples were transferred into

glass bottles, stored in a cooler box, and transported to the
laboratory within 2 h.

Culturing conditions
In the laboratory, we promptly sorted the specimens of both

species under a Leica M80 stereomicroscope at ×16 magnifica-
tion. We then placed 58 individuals ofMoraria sp. (54 adults and
four nauplii) and five individuals of B. zschokkei (four ovigerous
females and one nauplius) into two separate 100‐mL glass vials,
containing the dripping groundwater from the cave and the
groundwater from the spring, respectively. The chemical char-
acteristics of the cave water are reported in Supporting In-
formation, Table S1. The animals were allowed to acclimate for
7 months at 7.8± 0.5 °C, which corresponds to the mean annual
temperature of the cave (Di Lorenzo, Galassi, et al., 2023), in
permanent darkness. This temperature regimen was set for both
species based on the pronounced stenothermy observed for
Moraria sp. (Di Lorenzo, Galassi, et al., 2023), contrasting with the
clear eurythermy displayed by B. zschokkei (O'Doherty, 1985).
Throughout the acclimation period, we changed 10% of the
water volume in the rearing vessels every month. Under these
conditions, the B. zschokkei cohort showed substantial growth,
resulting in an increase in the number of individuals, which, by
the end of the acclimation period, exceeded 150. In contrast, the
cohort of Moraria sp. did not increase substantially in number
as anticipated, likely because of the species' adaptations to
groundwater habitats (Di Lorenzo, Galassi, et al., 2023). Although
ovigerous females were frequently observed in the cohort of
B. zschokkei, females ofMoraria sp. carrying egg sacs were never
observed during the culturing period.

PCE exposure and locomotion traits'
measurements

Between September and October 2023, we randomly se-
lected 20 adult females without any visible signs of impairment
from both cohorts. Each female was then placed individually in a
glass vial containing 10mL of the cave water used for rearing
the stygobitic species. The process of transferring B. zschokkei
females into cave water mimics the natural process by which
specimens of B. zschokkei are transported by infiltrating
water and ultimately reach groundwater habitats. We allowed
these females to acclimate in the new vials (and medium, for
B. zschokkei) for an additional 30 days without changing the
water (the vials were sealed), in permanent darkness and at
7.8± 0.5 °C. At the end of the acclimation period, we tracked the
individual movements of each female as a control (see below,
Trajectory digitalization and analysis). Following the initial
tracking phase (Figure 1), each female was individually trans-
ferred into a 10‐mL glass vial filled with a PCE solution. We
prepared the solution by targeting a nominal concentration of
50 ng/L PCE by dissolving PCE (Chemical Abstracts Service no.
127‐18‐4; analytical standard purity 99%; Sigma‐Aldrich) in ethyl
alcohol (0.000678% ethanol v/v). Subsequently, we diluted this
solution with cave water to achieve the desired nominal con-
centration of 50 ng/L PCE. After measuring (see below, PCE
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solution and chemical analysis), we obtained a measured PCE
concentration of 32 ng/L.

The females were kept in the test solution for 30 days under
the same conditions as those during the control assessment. This
duration cutoff was intended as subchronic exposure. The ra-
tionale was to observe potential toxic effects that may arise over
a significant portion of the two species' life span without reaching
the duration required for chronic exposure studies. Due to the
low metabolic rates of stygobitic species, many researchers have
concluded that acute exposure for these species is better rep-
resented by 21 days of exposure rather than the standard du-
ration of 4 days (see Di Lorenzo, Di Marzio, et al., 2019). We did
not aim for a longer exposure which could have resulted in sig-
nificant PCE volatilization, potentially skewing the results. After
the 30‐day period elapsed, we tracked the individual movements
of the females to evaluate their behavior under stress conditions

(Treatment; Figure 1), as outlined below (see Trajectory digital-
ization and analysis). On completion of the second tracking
phase, we assessed the effects of PCE clearance (i.e., PCE re-
moval from the body of the organisms) and recovery (return to
normal locomotory conditions after the chemical has been
cleared). This involved returning the females to the 10‐mL vials
under normal control conditions (cave water, permanent dark-
ness, 7.8 °C) for a 7‐day period before conducting the final
movement tracking assessment (Recovery; Figure 1). We con-
sidered a 7‐day period enough for the clearance of PCE and to
test the potential recovery of the individuals. We did not aim for
longer recovery phases because B. zschokkei is known to not live
as long as Moraria sp. (see above, Test organisms), and deaths
occurring after the 7‐day recovery phase could have been influ-
enced by the natural senescence of the individuals of this spe-
cies. At the conclusion of the third tracking phase, we

FIGURE 1: Experimental design for the assessment of Bryocamptus zschokkei and Moraria sp. behavior under control, treatment, and recovery
conditions. Adult females were acclimated in cave water at 7.8 °C for 30 days (Control), followed by exposure to 32 ng/L perchloroethylene (PCE)
solution under identical conditions for an additional 30 days (Treatment). Subsequent recovery was monitored for 7 days in cave water (Recovery),
after which the specimens were anesthetized with CO2 for morphometric analysis using ImageJ software (2024). Movement tracking was conducted
at each phase to evaluate the behavioral response to PCE exposure and recovery.
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anesthetized the animals using CO2 and captured photographs
of each specimen with a camera integrated into the stereo-
microscope. Subsequently, we employed ImageJ software
(Schneider et al., 2012) to assess the dimensions of each in-
dividual, namely the length (from the tip of the cephalic shield to
the end of the caudal rami) and width (measured at the largest
somite‐bearing legs). The recorded body dimensions, in milli-
meters, were then converted to dry weight using an assumed
dry‐to‐wet weight ratio of 0.25 (Reiss & Schmid‐Araya, 2008). Wet
weight was determined by dividing biovolume (BV) by 1.1 (Feller
& Warwick, 1988). Biovolume was calculated using Equation (1)
(Feller & Warwick, 1988):

= × ×BV a b CF2 (1)

In Equation (1), a represents the length in millimeters, b is the
width in millimeters, and CF is a correction factor set to 560
(Feller & Warwick, 1988; Reiss & Schmid‐Araya, 2008).

Trajectory digitalization and analysis
Each female was recorded, at ×8 magnification, for 1 mi-

nute, at 30 fps, in a 0.8‐cm diameter circular arena using a Leica
M80 stereomicroscope equipped with a built‐in camera (MC
170; Leica Microsystems). Video acquisition was done while
maintaining a constant temperature of 7.8± 0.5 °C through a
thermal bath. The length of the video was determined ac-
cording to the protocol established by Di Cicco et al. (2022).
Each video was analyzed in TrAQ (Di Censo et al., 2021), an
open‐source software developed in MATLAB (MathWorks) to
obtain the two‐dimensional, frame‐by‐frame coordinates of the
animals' centroids. The positional data comprising 1800 coor-
dinate pairs for each animal were saved in a .csv file. These .csv
files were subsequently analyzed in RStudio (Ver 4.2.3; 2003)
through the trajr package (McLean & Skowron Volponi, 2018).
Initially, possible tracking errors due to incorrect animal iden-
tification were corrected manually by applying a moving
average. Subsequently, trajectory smoothing was performed
using the TrajSmoothSG function, which employs the Savitzky‐
Golay filter to remove noise from trajectories (Savitzky &
Golay, 1964). This type of filter is particularly effective at pre-
serving the trajectory's line shape and simultaneously removing
high‐frequency noise. This step is crucial when studying the
trajectories of small animals such as copepods because the
centroid identification, inferred through background sub-
traction algorithms, tends to produce noisy trajectories attrib-
utable to slight shifts in the animal cluster's shape caused by
minor movements of their appendages (e.g., antennules). After
smoothing, we proceeded to evaluate five parameters for each
trajectory: Path length (PL, millimeters) calculated as follows:

= ( − ) + ( − )
=

=

+ +
x x y yPL

t

t

t t t t
1

1800
2 2

1 1∑ (2)

In Equation (2), xt and yt are the spatial coordinates of the
animal centroid at the frame t; xt+1 and yt+1 are the spatial
coordinates of the animal centroid at the frame t+ 1.

Average crawling speed (AS, millimeters per second) cal-
culated as follows:

=
=

=

t
AS

1
1800

PL

t

t
t

1

1800

∑
∆

(3)

In Equation (3),PLt is the path length of the t‐th couple of timely
adjacent centroid coordinates, and Δt is the time interval
between the two abovementioned coordinates (frame time
length). Basically, the AS is computed as the mean of the
instantaneous speeds of the trajectory.

Percentage of activity (PA) calculated as follows:

= af
n

PA (4)

In Equation (4), af is the sum of the frames of animal activity, and
n is the total number of pairs of frames. The animal was con-
sidered active when its instantaneous speed in the i‐th frame was
≥0.15mm/second. This value was chosen after a preliminary
assessment of the minimum speed below which the sole move-
ment of the cephalic or swimming appendages of an inactive
copepod individual is read by the software as active movement
(Di Cicco et al., 2021; Di Lorenzo, Di Cicco, et al., 2019).

Trajectory convex hull (CH, mm2) was calculated using the
library sp in RStudio. A CH of a planar set was the minimum area
of the convex polygon containing the planar set. The CH is a
parameter that can be used as a proxy to establish the habitat
exploration potential of the recorded individuals (Di Cicco
et al., 2022). The chull command was used to find the vertex of
the CH, and the command Polygon was applied to calculate
the area.

Intensity use (IU, dimensionless) was used as a proxy to es-
timate path tortuosity and habitat exploitation (Almeida
et al., 2010; Loretto & Vieira, 2005). It was calculated as follows:

=IU
PL
CH

(5)

Statistical differences for each behavioral parameter were inves-
tigated through a two‐way permutational analysis of variance
(PERMANOVA; permutations= 9,999, α= 0.05, input dis-
tances= Euclidean, covariate= dry wt). The experimental design
for the PERMANOVA was structured as follows: Factor 1—
ecology (two levels), stygobite and nonstygobite; Factor 2—
exposure (three levels), control, treatment, and recovery. We
used Type III sum of squares to account for the variability of all
factors and the interactions between them. When required, post
hoc pairwise comparisons between all possible combinations of
levels within Factor 2 and eventual interactions with the levels of
Factor 1 were performed using permutational t tests at α= 0.05
because permutational tests do not require α correction
(Anderson, 2001).

PCE solution and chemical analysis
We measured the concentration at the end of the second

tracking phase by headspace solid‐phase microextraction–gas
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chromatography–mass spectrometry (HS‐SPME‐GC‐MS) in
duplicate. A 0.20‐mL volume of the PCE solution was trans-
ferred into a 10‐mL SPME glass vial containing 1.8mL distilled
water PCE‐free and 0.5 g of NaCl. Headspace sampling was
performed using a 75‐µm Carboxen/polydimethylsiloxane fiber
(Supelco, Sigma‐Aldrich), which was conditioned at 300 °C for
30minutes prior to use. For HS sampling, the fiber was ex-
posed into the vial HS for 30minutes at 50 °C under stirring.
We used an Agilent Technologies GC‐MS system, composed
of an HP 6890 gas chromatograph coupled to a single‐
quadrupole HP 5973 Mass Selective Detector (Agilent Tech-
nologies, Cernusco sul Naviglio, Italy). The GC‐MS was
equipped with an RXI‐5Sil MS with an integra‐guard column
(30m × 0.25 µm inner diameter, film thickness 0.25 µm; Restek,
Cernusco sul Naviglio, Italy). The oven temperature program
was as follows: initial temperature 35 °C maintained for 4mi-
nutes, then to 135 °C at 10 °C/minute, and to 300 °C at 20 °C/
minute. The analyte was desorbed at 280 °C for 5 minutes into
the GC injection port, equipped with a 0.75‐mm inlet liner;
injection was performed in splitless mode (3.5‐minute valve
off). Helium was used as the carrier gas at a constant flow rate
of 1mL/min. Transfer line temperature was 280 °C. Data were
recorded in full scan mode from 90 to 300m/z, and the mass
spectrometer was operating in positive ion mode; electron
ionization at 70 eV was used. Data acquisition and processing
were performed using HP ChemStation software (Ver. D.02.00;
2008). Perchloroethylene standard solutions in ethanol were
used to build a calibration curve in PCE‐free distilled water,
used for external calibration. The four PCE standard solutions
were freshly prepared at 4.0, 8.0, 16.0, and 32.0 ng/mL. Water
samples for calibration were prepared adding 1 μL of each PCE
standard solution to 1999 μL distilled water. The calibration
points were analyzed as described for the solution in cave
water: The area of the m/z 166 peak in the total ion chroma-
tograms of PCE from the cave water sample and from the
calibration curve points was measured. A linear calibration was
obtained (R2= 0.98), and the concentration of PCE in the cave
water sample was calculated, equal to 32 (±2.0) pg/mL (=32 ng/
L). The instrumental limit of quantification was 0.5 ng/L.

Risk assessment
We sourced MECs of PCE in European groundwaters from

WATERBASE (last updated in July 2023). WATERBASE is the

comprehensive repository of the EEA, which stores information
about the chemical conditions of European rivers, lakes,
groundwater bodies, transitional zones, coastal areas, and
marine waters. The database also includes data on the quantity
of water resources in Europe and records emissions into waters
from both point and diffuse sources of contamination. Specif-
ically, we extracted our data set from WATERBASE–Water
Quality ICM (EEA, 2023), which archives information on
chemical compounds found in European water bodies, span-
ning the temporal range from 2000 to 2022. From 2000 to
date, PCE has been monitored by member states on a facul-
tative basis, in accordance with the provisions outlined in the
Water Framework Directive (EC, 2000). We computed the risk
of PCE in groundwater by using the ratio of MECs extracted
from the WATERBASE database and a PNECgw of 32 ng/L. For
comparative purposes, we also calculated the risk using the
ratio of MECs to 51 μg/L, which is the current PNECw for
European aquatic ecosystems according to the European
guidelines for risk assessment (EC, 2014).

RESULTS
Locomotion traits

The females of the species B. zschokkei were 22% larger
(average dry wt= 0.94± 0.58 μg) than the females of Moraria sp.
(average dry wt= 0.73± 0.19 μg). All females from both species
survived during the control phase. A substantial portion of
the mortality occurred during the treatment with PCE and, for
B. zschokkei, in the recovery phase (Table 1). Throughout the
duration of the experiment (67 days), no female of B. zschokkei
became ovigerous. In contrast, four females of Moraria sp. be-
came ovigerous, each carrying two large eggs. Of these, two
females became ovigerous during the treatment phase, while the
other two did so during the recovery phase.

In total, we analyzed 97 trajectory recordings (174,600
frames). Both ecology and exposure factors had a significant
effect on PL (Factor 1 × Factor 2: pseudo‐F(2,80)= 5.84;
p= 0.005). In detail, the PL of B. zschokkei in the control group
was significantly longer (33%) than that of Moraria sp. (Tables 1
and 2 and Figure 2). However, during the treatment and re-
covery phases, no significant difference was observed between
the two species or between the two phases (Tables 1 and 2 and
Figure 2). The PL of B. zschokkei was significantly shorter in the
treatment (92%) and recovery (87%) phases compared with the

TABLE 1: Average values and standard deviations of path length, average speed, percentage of activity, convex hull, and intensity of use
(dimensionless)

Ecology Exposure (M%) PL (mm) AS (mm/s) PA (%) CH (mm2) IU

BRY C (0) 11.8± 5.32A 0.2± 0.09A 44.93± 22.04A 7.59± 8.56A 5.51± 2.04A
BRY T (50) 0.94± 1.9B 0.02± 0.03B* 3.83± 8.33B 0.26± 0.61B 1.23± 2.02B
BRY R (30) 1.57± 3.72B 0.03± 0.06B 5.26± 13.87B 0.76± 1.97B 1.05± 1.84B
MOR C (0) 7.86± 3.5C 0.13± 0.06C 34.19± 22.85A 6.73± 8.81A 4.16± 1.32C
MOR T (25) 2.43± 3.48B 0.04± 0.06B 10.31± 17.48B 1.72± 4.24B 2.02± 2.99B
MOR R (0) 4.11± 4.28B 0.07± 0.07B* 14.45± 22.14B 1.89± 4.03B 4.45± 4.14ACB

Different letters and the asterisk indicate significant differences in the pairwise t tests.
M%= percentage of mortality (in parentheses); PL= path length; AS= average speed; PA= percentage of activity; CH= convex hull; IU= intensity of use; BRY=
Bryocamptus zschokkei (nonstygobitic); C= control; T= treatment; R= recovery; MOR=Moraria sp. (stygobitic).

2520 Environmental Toxicology and Chemistry, 2024;43:2515–2527—Di Cicco et al.
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control. Similarly, the PLs of Moraria sp. in the treatment (70%)
and recovery (48%) phases were significantly shorter than
the controls (Tables 1 and 2 and Figure 2). The two factors also
had a significant effect on AS (Factor 1 × Factor 2: pseudo‐
F(2,80)= 6.56; p= 0.006). The AS of B. zschokkei was sig-
nificantly faster (35%) than that of Moraria sp. in the control
group. However, no substantial differences were observed
during the treatment and recovery phases within each species
or between species, except for the AS of B. zschokkei during
the treatment phase, which was significantly slower (72%) than
that of Moraria sp. in the recovery phase (Tables 1 and 2 and
Figure 2). The AS of B. zschokkei was significantly lower in the
treatment (90%) and recovery (85%) phases compared with the
control. Similarly, the AS of Moraria sp. was significantly lower
in the treatment (70%) and recovery (47%) phases compared
with the control. The PA was significantly affected by the ex-
posure factor (Factor 2: pseudo‐F(2,80)= 23.6142; p= 0.001),

while no substantial differences were observed between the
two species (Factor 1: pseudo‐F(1,80)= 1.16; p= 0.270). The
interaction of the two factors was also not significant (Factor
1 × Factor 2: pseudo‐F(2,80)= 2.2710; p= 0.109). Post hoc tests
revealed that the PA of both species was lower during the
treatment (92% for B. zschokkei and 70% for Moraria sp.) and
recovery (88% for B. zschokkei and 58% for Moraria sp.) phases
compared with their respective control group (Tables 1 and 2
and Figure 2). However, no significant differences were ob-
served between the treatment and recovery phases (Tables 1
and 2 and Figure 2). Similarly, the ecology factor did not have a
significant effect on the trajectory CH (Factor 1: pseudo‐
F(1,80)= 0.10; p= 0.753), whereas the exposure factor sig-
nificantly influenced this variable (Factor 2: pseudo‐
F(2,80)= 8.67; p= 0.001). The interaction of the two factors was
not significant (Factor 1 × Factor 2: pseudo‐F(2,80)= 0.30;
p= 0.728). The trajectory CH values were significantly smaller
in the treatment (97% for B. zschokkei and 75% for Moraria sp.)
and recovery (90% for B. zschokkei and 72% for Moraria sp.)
phases compared with the respective control, consistent with
the observations for PA. However, no significant differences in
the trajectory CH were detected between the treatment and
recovery phases for both species (Tables 1 and 2 and Figure 2).
Finally, both the ecology and exposure factors had a significant
effect on IU (Factor 1× Factor 2: pseudo‐F(2,80)= 5.38; p= 0.005).
In detail, the IU of B. zschokkei in the control group was sig-
nificantly higher (25%) than that of Moraria sp. (Tables 1 and 2
and Figure 2). In the treatment group, no significant difference
was observed between the two species (Tables 1 and 2 and
Figure 2). However, the IU of Moraria sp. in the recovery group
was significantly higher than that of B. zschokkei in the recovery

TABLE 2: The percentage decrease (rounded to the nearest integer)
relative to the control within the ecology levels of each behavioral
parameter

Ecology Exposure (M%) PL AS PA CH IU

BRY C (0) – – – – –
BRY T (50) 92% 90% 91% 97% 78%
BRY R (30) 87% 85% 88% 90% 81%
MOR C (0) – – – – –
MOR T (25) 69% 69% 70% 74% 51%
MOR R (0) 48% 46% 58% 72% 7%

M%= percentage of mortality (in parentheses); PL= path length; AS= average
speed; PA= percentage of activity; CH= convex hull; IU= intensity of use;
BRY= Bryocamptus zschokkei (nonstygobitic); C= control; T= treatment;
R= recovery; MOR=Moraria sp. (stygobitic).

FIGURE 2: Comparative boxplots for five behavioral parameters and dry weight of Moraria sp. (stygobite, in blue) and Bryocamptus zschokkei
(nonstygobite, in red). Each boxplot displays the median (central line), interquartile range (box boundaries), and outliers (individual points) for the
levels of the exposure factor. C= control; T= treatment; R= recovery.
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phase (77%; Tables 1 and 2 and Figure 2). The IU of B. zschokkei
was significantly lower in the treatment (78%) and recovery (81%)
phases compared to the control. The IU of Moraria sp. was lower
in the treatment (52%) compared with the control; however, we
highlighted no significant difference in the IU in the control phase
with respect to the recovery phase for this species (Tables 1
and 2 and Figure 2).

Risk ratios
We extracted 116,832 MEC values of PCE from WATER-

BASE. The data were from 2007 to 2020 for five countries
(Austria, Germany, Spain, Italy, Romania), involving 19,471
samples (Supporting Information, Table S2). Austria and Spain
showed substantial and consistent PCE monitoring activity
across the whole period, while Germany showed a late uptick.
In contrast, Italy and Romania showed minimal monitoring ac-
tivity, while the remaining member states seem not to have yet
commenced the monitoring of this PMT/vPMT substance in
their groundwaters. Based on the data extracted from the da-
tabase, PCE was identified at concentrations exceeding the
instrumental limit (0.3 ng/L) in all five countries (Supporting In-
formation, Table S2). Perchloroethylene concentrations varied
widely, ranging from 0.0003 (Austria in 2009) to 414 μg/L
(Austria in 2015). The majority of the samples (>90%) showed a
risk ratio <1 when using the PNECw (51 μg/L PCE), indicating
no risk (Supporting Information, Table S2; Figure 3). However,
when the PNECgw (32 ng/L PCE) was applied, >80% of the
samples exhibited a risk ratio >1, highlighting a widespread risk
to groundwater ecosystems (Supporting Information, Table S2;
Figure 3). In addition, a small percentage of samples showed
risk ratios exceeding 100 and 1,000 when the PNECw was
used, while the risk ratios exceeded 10,000 and even 100,000
when the PNECgw was applied (Figure 3).

DISCUSSION
When drafting the present study, we found a lack of previous

studies focusing on the behavioral effects of subchronic exposure
to PCE on freshwater invertebrates. This research gap was also
highlighted by Sárkány‐Kiss et al. (2012), who noted the limited
availability of literature on the impact of chlorinated hydro-
carbons on aquatic ecosystems. While the environmental and
public health consequences of widespread PCE contamination
have been extensively studied because of its association with
human health risks and the impairment of groundwater suitability
for drinking purposes (Chiu et al., 2013), the effects on stygobitic
species have been predicted (Di Lorenzo, Borgoni, et al., 2015)
but had remained unexplored until now.

We observed significant mortality in both Moraria sp. and
B. zschokkei under treatment with 32 ng/L PCE, with the non-
stygobitic species B. zschokkei experiencing particularly high
losses (50% mortality). Previous research has shown that PCE
can cause 50% mortality in Ceriodaphnia dubia and D. magna
at concentrations >0.8mg/L within a maximum of 7 days
(Niederlehner et al., 1998; Richter et al., 1983). The difference
in PCE sensitivity between the daphnids and the copepod
species of the present study is substantial. The reason for this
remarkable difference is not fully understood. However, several
key factors may contribute. Water flea species, such as those
from the genus Daphnia or Ceriodaphnia, exhibit a higher
ecological tolerance than the copepod species we inves-
tigated. They have a nearly worldwide distribution, inhabiting
diverse water bodies ranging from fresh to brackish environ-
ments, including small temporary pools and large lakes
(Ebert, 2022). In addition, studies have revealed the rapid
adaptive evolution of different Daphnia species to various en-
vironmental factors, including the density of predatory fish,
heavy metal pollution, increased density of toxic cyanobacteria,
and temporal dynamics in eutrophication (Brede et al., 2009).

FIGURE 3: Percentage of samples exhibiting varying levels of risk based on ratios of measured environmental concentration to a predicted‐no‐
effect concentration (PNEC) for groundwater of 32 ng/L (present study; blue bars) and a PNEC for aquatic ecosystems of 51 μg/L (orange bars).
PEC= perchloroethylene.

2522 Environmental Toxicology and Chemistry, 2024;43:2515–2527—Di Cicco et al.
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This rapid adaptability might confer a broader range of toler-
ances to contaminants.

The substantial mortality observed in our subchronic trial
underscores the high PCE toxicity for freshwater copepod
species. We found that subchronic exposure to 32 ng/L PCE
also affected the crawling behavior of the two species.
Although the impact of PCE was comparable for both species
in terms of tortuosity (IU) and CH, differences in the species'
ecophysiology appeared to influence PL, AS, and PA. In detail,
PCE substantially reduced the PL, AS, and PA of both species
≥70%. However, although Moraria sp. partially improved
during recovery, B. zschokkei showed a persistent reduction in
the three variables after the clearance phase. Reduced PL, AS,
and PA in many invertebrate species have been linked to de-
creased energy reserves due to impaired foraging, which can
lead to reduced growth and reproductive success (Bertram
et al., 2022). Both species exhibited ≥70% reduction in CH and
a consistent (≥50%) reduction in the tortuosity (IU) during ex-
posure to PCE, with only partial recovery observed for the
stygobitic species after the clearance. A reduction in tortuosity
and CH typically means that the path has become more linear
and that the organism explores a smaller portion of its envi-
ronment (Almeida et al., 2010; Heuschele et al., 2020; Loretto
& Vieira, 2005). This means that (i) the organism is not utilizing
its habitat to its full potential, (ii) it may be less efficient at
avoiding predators (the organism is more predictable and
easier for predators to catch), (iii) it may miss potential food
resources and (iv) sexual mates (Almeida et al., 2010;
Heuschele et al., 2020; Loretto & Vieira, 2005). The reduction in
encounters between mating partners leads to a decrease
in population growth while hindering the ability of both
species to relocate in response to disturbances (Gerritsen &
Strickler, 1977; Mermillod‐Blondin et al., 2023). Impairments in
locomotion traits may indicate lethargy (narcotic effect) or im-
paired mobility (neurotoxicity). Our results suggest that PCE
might have a neurotoxic effect on both species at 32 ng/L, likely
associated with the disruption of neurotransmitters such as
acetylcholine, dopamine, and serotonin (Altmann et al., 1990;
Honma et al., 1980; Perrin et al., 2007). This specific mode of
action is more plausible than nonpolar narcosis at low effect
concentrations, as documented in rats (Honma et al., 1980).
Because of the limited understanding of PCE toxicokinetics in
aquatic invertebrates, we can only cautiously hypothesize that a
similar mechanism may be at play for B. zschokkei and Moraria
sp. On the other hand, a range of toxicants is recognized for its
potential to disrupt neurotransmitter systems in both stygobitic
and nonstygobitic copepods, leading to changes in swimming
behaviors (Di Cicco et al., 2021, 2022). The existing literature
focusing on D. magna demonstrates a clear link between im-
paired swimming capabilities and altered neurotransmission
attributable to sublethal exposure to various toxic substances
(see Bownik & Pawlik‐Skowrońska, 2019; Parolini et al., 2018;
Ren et al., 2017).

The substantial impairment of the crawling activity observed
in both Moraria sp. and B. zschokkei as a result of PCE ex-
posure has significant implications for the ecosystem services
these species provide. Immobility and decreased habitat

exploration diminish the efficiency of sediment remixing, crucial
for preventing sediment clogging (Mermillod‐Blondin
et al., 2023) and porewater displacement (Giere, 2009).
Crawling limitation also likely impairs feeding rates with con-
sequences on carbon recycling (Mermillod‐Blondin et al., 2023).
The reduced PL and CH impede the dispersal of feces, which
serve to boost microbial activity (Mermillod‐Blondin et al., 2023).
Although a reduction in ecosystem services provided by
B. zschokkei may be buffered by the high abundance of this
nonstygobitic species, that of Moraria sp. is likely beyond re-
covery. Stygobitic populations inherently show low abundances,
due to low fertility rates, which makes recovery after disturbance
nearly unattainable (Hose et al., 2022). Consequently, this results
in a permanent depletion of the ecosystem services this species
may offer. Sublethal laboratory‐based toxicity assays, though
effective at isolating and assessing specific pollutant risks, are not
suitable for predicting cascading effects at the population,
community, and ecosystem levels (see Ellison et al., 2016).
Hence, the exact ecological consequences of sublethal PCE
exposure on groundwater communities might be more severe
than expected. Given that many PMT chemicals are ubiquitous in
groundwaters (Huang et al., 2023), there is a substantial risk that
other stygobitic species, which are currently understudied, may
also be threatened. The presence of multiple PMT chemicals in
groundwater could lead to compounded effects, further en-
dangering these delicate ecosystems. Finally, persistent and
widespread groundwater contamination might pose a chronic
risk to groundwater communities (Fleeger et al., 2003).

The absence of recovery in the movement variables following
PCE clearance in B. zschokkei is likely attributable to its higher
susceptibility to intoxication compared to the stygobitic Moraria
sp. Previous research has demonstrated that nonstygobitic spe-
cies generally exhibit higher metabolic rates than their epigean
counterparts (Hose et al., 2022). For copepods specifically, the
metabolic rates of nonstygobitic cyclopoids can be up to seven
times higher than those of related stygobitic species within the
same family (Di Lorenzo, Di Marzio, et al., 2015). We lack direct
metabolic rate comparisons between Moraria sp. and B.
zschokkei. However, our results suggest significantly higher
metabolic rates in B. zschokkei and, likely, more elevated PCE
uptake during exposure. Despite potentially higher detoxification
rates, they were evidently insufficient for B. zschokkei to ensure
complete PCE clearance within the 7‐day period. The greater
reduction in all movement variables observed in B. zschokkei
compared to Moraria sp. under PCE exposure further supports
the hypothesis of higher uptake rates.

Our findings did not show significant differences in the path
tortuosity and CH of the two species. Our finding suggests that
the nonstygobitic B. zschokkei shows some behavioral traits
akin to those of Moraria sp., albeit showing higher speed, PL,
and PA. This similarity supports the use of this species as a
surrogate for Moraria sp. In addition, organisms that typically
exhibit more dynamic and varied movements are sensitive in-
dicators of environmental changes because deviations from
their normal behavior are more evident. This further supports
the use of B. zschokkei as a substitute for Moraria sp. in
groundwater ERA.

Effects of tetrachloroethylene on freshwater copepods—Environmental Toxicology and Chemistry, 2024;43:2515–2527 2523
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The observation of egg production during the treatment
and recovery phases of Moraria sp. represents a novel finding.
The time frame between insemination and egg extrusion in
Moraria sp. in natural conditions remains unknown. In the
present study, eggs were extruded from two females during
the treatment with PCE, between 31 and 60 days after the
initial isolation, and during recovery, between 61 and 67 days,
for an additional two females. It is unclear whether this time
frame is typical for this species or if egg extrusion was
stimulated by a hormetic effect of the toxic compound
(Calabrese & Mattson, 2011), which may have persisted
during the recovery period in cave water. Brown et al. (2003)
found that at very low lindane concentrations (3.2 and 10 μg/
L), there was a significant increase in the number of offspring
produced per female of B. zschokkei compared with the
controls. This outcome was interpreted as a hormetic effect.
Bryocamptus zschokkei typically releases eggs shortly after
insemination and can produce multiple broods from a single
insemination. Our results showed that no females produced
egg sacs during either the control or treatment/recovery
phases, indicating that egg extrusion in B. zschokkei is pos-
sibly hindered by 32 ng/L PCE.

The analysis of risk revealed significant insights into the
potential ecological impact of PCE contamination in ground-
water. The comparison between the two PNEC values (32 ng/L
and 51 μg/L) highlighted a stark difference in risk scenarios.
with the majority of groundwater samples deemed unsafe for
stygobitic species. This discrepancy underscores the need for
revising regulatory standards to better protect groundwater
environments. Furthermore, the presence of extreme risk ratios
exceeding 10,000 and even 100,000 when using the PNECgw
value of 32 ng/L highlighted the urgency for targeted re-
mediation efforts in highly contaminated areas. Existing liter-
ature reveals that PCE is a PMT/vPMT groundwater pollutant
globally, impacting thousands of sites across North America
and other industrialized regions, with concentrations reaching
up to milligrams per liter (Carter et al., 2012; Pecoraino
et al., 2008; Svetina et al., 2024). These findings call for poli-
cymakers and environmental regulators to reconsider current
PNECw values and implement more protective measures to
safeguard groundwater ecosystems from the adverse effects of
PCE contamination.

We acknowledge the presence of persisting knowledge
gaps on PMT/vPMT chemicals that require attention. Specifi-
cally, the physiological and molecular mechanisms underlying
the observed effects remain unknown and warrant further ex-
ploration. In addition, quantifying the loss of ecosystem serv-
ices resulting from the reduction in crawling activities is crucial
for a comprehensive understanding of the effective impacts.
Conducting additional comparative dose–response analyses
involving a broader range of groundwater species could offer
more insights into species‐specific vulnerabilities, thereby en-
hancing the efficacy of risk assessments. We emphasize that
future research should explore a broader PCE concentration
range and expand on other PMT/vPMT chemicals to establish
unharmful levels and further refine the risk assessment of these
substances in groundwater.

CONCLUSIONS
The present study has elucidated the subchronic effects of

PCE exposure on two freshwater copepod species, Moraria sp.
(stygobitic) and Bryocamptus zschokkei (nonstygobitic), of-
fering insights into the ecological risks posed by PCE in
groundwater ecosystems. Our findings reveal that PCE, even at
concentrations as low as 32 ng/L, significantly impairs the
crawling behavior and survival of both species, with some no-
table differences in their recovery postexposure. The im-
plications of the present study are twofold. Firstly, the
observed sensitivity of both copepod species to PCE under-
scores the inadequacy of current PNECs for protecting
groundwater ecosystems. Our results advocate for a fine‐tuning
of the European groundwater risk‐assessment guidelines to
encompass the ecological significance and vulnerability of
stygobitic species, which exhibit unique physiological adapta-
tions to groundwater and contribute to maintaining its quality
and functionality. Secondly, the sensitivity of B. zschokkei to
PCE, which is comparable to or greater than that ofMoraria sp.,
indicates its potential as a substitute species in groundwater
risk assessments.

Supporting Information—The Supporting Information is avail-
able on the Wiley Online Library at https://doi.org/10.1002/
etc.5977.
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