Mineral magnetic properties of surface soils from the broknes and Grovnes Peninsula, Larsemann Hills, East Antarctica

G.S. Joju, Anish Kumar Warrier, Marcos A.E. Chaparro, B.S. Mahesh, Freddy Abraham Matthew, S. Anusree, Rahul Mohan

PII: S1873-9652(23)00066-X

DOI: https://doi.org/10.1016/j.polar.2023.100968

Reference: POLAR 100968

To appear in: Polar Science

Received Date: 15 March 2023 Revised Date: 12 May 2023 Accepted Date: 23 June 2023

Please cite this article as: Joju, G.S., Warrier, A.K., Chaparro, M.A.E., Mahesh, B.S., Matthew, F.A., Anusree, S., Mohan, R., Mineral magnetic properties of surface soils from the broknes and Grovnes Peninsula, Larsemann Hills, East Antarctica, *Polar Science* (2023), doi: https://doi.org/10.1016/j.polar.2023.100968.

This is a PDF file of an article that has undergone enhancements after acceptance, such as the addition of a cover page and metadata, and formatting for readability, but it is not yet the definitive version of record. This version will undergo additional copyediting, typesetting and review before it is published in its final form, but we are providing this version to give early visibility of the article. Please note that, during the production process, errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

© 2023 Published by Elsevier B.V.

1	Mineral magnetic properties of surface soils from the Broknes and Grovnes Pening		
2	Larsemann Hills, East Antarctica		
3	Joju, G.S. ¹ , Anish Kumar Warrier ^{1,*} , Marcos A.E. Chaparro ^{2,3} , Mahesh, B.S. ⁴ , Freddy		
4	Abraham Matthew ¹ , Anusree S ¹ , Rahul Mohan ⁴		
5	¹ Centre for Climate Studies, Department of Civil Engineering, Manipal Institute of		
6	Technology, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India.		
7	² Centro de Investigaciones en Física e Ingeniería del Centro de la Provincia de Buenos Aires		
8	(CIFICEN), UNCPBA-CICPBA-CONICET, Pinto 399, 7000 Tandil, Argentina.		
9	³ Universidad Nacional del Centro de la Provincia de Buenos Aires (UNCPBA), Facultad de		
10	Ciencias Exactas, IFAS, Tandil, Buenos Aires, Argentina.		
11	⁴ Antarctic Science Division, National Centre for Polar and Ocean Research, Headland Sada,		
12	Vasco-da-Gama 403804, Goa, India.		
13	*Corresponding author email id: anish.warrier@manipal.edu		
14			

Δ	hei	tra	cí

This study presents soils' mineral magnetic, particle size, and organic content data from
Larsemann Hills, East Antarctica. The analysis of isothermal remanent magnetization and the
high specific magnetic susceptibility values –mean (\pm S.D.) values of 117.7 (\pm 175.0) $\times 10^{-5}$
$^8\text{m}^3\text{kg}^{\text{-1}}$ for Broknes Peninsula and of 330.9 (± 217.4) $\times 10^{\text{-8}}\text{m}^3\text{kg}^{\text{-1}}$ for Grovnes Peninsula—
indicate high concentrations of low-coercivity magnetic minerals. The magnetic minerals are
coarse-grained in the multidomain and pseudo-single domain range, and the significant
correlation between some magnetic parameters suggests the dominant control of multidomain
grains. The remanent acquisition coercivity $H_{1/2}$ shows mean (\pm S.D.) values of 38.2 (\pm 4.9)
for Broknes and 38.3 (\pm 3.7) mT for Grovnes soils suggesting magnetite dominance. The
soils lie in the sand and loamy sand textural classes, and the concentration of organic matter
is very low. Values of percentage frequency-dependent susceptibility indicate insignificant
proportions of superparamagnetic grains, and therefore no significant evidence for pedogenic
magnetic minerals was observed in these soils. The magnetic signal of Larsemann Hills soils
was primarily terrigenous with no contributions from bacterial magnetite, authigenic greigite
and anthropogenic magnetic minerals.

Keywords: soils; weathering; environmental magnetism; pedogenesis; particle size.

1. Introduction

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

Soil studies in Antarctica started in the early 20th century. Since then, several workers have studied and classified the Antarctic soils and pedogenic processes (Campbell and Claridge, 1987; Bockheim and Ugolini, 1990; McLeod et al., 2008; Navas et al., 2008; Bockheim 2015a, 2015b). The pristine soils of Antarctica are of particular interest from a climatological point of view since they are practically undisturbed and sensitive to changing climatic conditions. Antarctica has a tiny portion of ice-free regions, only about 0.44% of its total area (Roudier et al., 2022). Antarctica possesses the coldest climate in the world and receives very little precipitation. The soils of Antarctica are poorly developed because of the extreme climatic conditions (Campbell and Claridge, 1987; Bockheim, 2015a). The soil formation, even though slow, has been progressing steadily. The dominant factor in the Antarctic soil formation is physical weathering, with weak chemical weathering playing a role in the coastal regions (Jordanova, 2017). Even in such harsh conditions, the soils of Antarctica are known to play natural hosts to different forms of life, such as nematodes, tardigrades, rotifers, and soil microbes (Convey et al., 2014). Iron oxides such as magnetite/titanomagnetite are ubiquitous in soils and primary carriers of soil magnetism. Environmental magnetism techniques allow the measurement of the magnetic properties, such as the magnetic mineral concentration and the magnetic grain size, of these Fe-bearing minerals that vary under different environmental regimes. Magnetism techniques are fast, sensitive, non-destructive, and easy to carry out. Magnetic techniques have been extensively used to investigate the pedogenic processes in tropical (Amrutha et al., 2021; Sandeep et al., 2012) and temperate (Blundell et al., 2009; Chaparro et al., 2020) soils. They allow us to constrain the processes of soil formation and the climatic and environmental conditions existing during pedogenesis. In Antarctica, mineral magnetic techniques have been utilized, and limited studies have been made. Limited number of

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

studies on the soils of Antarctic soil are available (Chaparro et al., 2007; Gargiulo et al., 2021; Jordanova, 2017; Warrier et al., 2014b). In the studies by Chaparro et al. (2007) and Gargiulo et al. (2021), the authors investigated anthropogenic pollution in the soils of Marambio Station (Antarctic Peninsula) using environmental magnetic methods. Although the authors studied the magnetic properties of unpolluted soils in the station's surroundings, they did not conduct detailed investigations on the soil's pedogenic processes in the region. Jordanova (2017) studied the magnetic properties of the soils of the Antarctic Peninsula (AP). However, the study is limited to the AP. Warrier et al. (2014b) investigated the magnetism of the catchment soils in Schirmacher Oasis, East Antarctica. Such study was limited to only seven samples from Sandy Lake's catchment in the region. Larsemann Hills (LH) is one of the major ice-free regions in East Antarctica, encompassing an area of approximately 50 km². The region is marked with several lakes, and the soil materials are mainly sandy with negligible amounts of silt and clay (Wang et al., 2022). Previously, researchers have studied LH soils to detect the presence of contaminants. The presence of these contaminants in the soils of Larsemann Hills was found to result from anthropogenic activities. For example, Shi et al. (2018) reported the presence of heavy metals in LH soils, primarily resulting from the weathering of the parent rocks. However, elevated levels of Pb were found in the soils inside the station areas, resulting from anthropogenic activities. More recently, Wang et al. (2022) analyzed the LH soils for the presence of a distribution of persistent organic pollutants (POPs). Contaminants were found to be concentrated near the station areas, suggesting an anthropogenic source. Bhakta et al. (2022) analyzed the trace elements from the soil samples and their risks to the local biota; the source of contamination was found to be natural. Wang et al. (2023) measured the mercury content

of LH soils and found a close relationship with the soil's organic carbon content. Applying

environmental magnetic techniques could also help identify soils contaminated by

anthropogenic minerals. Anthropogenic magnetic grains fall into the multidomain and pseudo-single-domain grain size ranges (Lu and Bai, 2008; Yunginger et al., 2018). These grains could be attributed to industrial activity or vehicular and fuel generator exhaust emissions (Warrier et al., 2014a). To the best of our knowledge, no attempts have been made to investigate the mineral magnetic properties of the LH soils and determine the intensity of the pedogenic processes. In the present study, we examine soil samples from the Grovnes and Broknes Peninsulas in Larsemann Hills, East Antarctica, to gain knowledge concerning the mineral magnetic characteristics of the soils and processes influencing pedogenesis. This study represents one of the first attempts towards establishing a comprehensive environmental magnetism record of the soils of Larsemann Hills.

2. Materials and Methods

2.1 Study area

The Larsemann Hills is an ice-free oasis located along the Ingrid Christensen Coast of Princess Elizabeth Land (Fig. 1). It lies along 69° 23′ S and 76° 53′ E. The area comprises two large peninsulas, Stornes and Broknes, and a smaller peninsula, Mirror Peninsula, along with several dispersed offshore islands (Gasparon et al., 2002). It occupies about 50 km² and has more than 150 lakes. The region is also marked by well-established meltwater streams and second-order drainage networks (Gillieson, 1990). The Larsemann Hills are distinguished by slightly undulant topography, consisting of low rounded hills interlayered by lakes of variable sizes and U-shaped glaciated valleys (Asthana et al., 2013). Morainic deposits are rarely seen in the LH, but erractic blocks can be seen. The most significant geomorphic process going on in the LH is aeolian and salt weathering (Gillieson, 1990). Precipitation in the LH occurs in snow and reaches a maximum of up to 250 mm water equivalent. Average monthly temperatures during summer remain slightly above 0°C and between -15°C and -18°C during winter months (ANARE, 2000; Hodgson et al., 2001). Three scientific research

bases are located within the Larsemann Hills viz., Progress Station (Russia), Zhongshan Station (China), and Law Base (Australian summer base) located in the Broknes Peninsula while the Bharati Station (India), is in the Grovnes Island.

The Larsemann Hills is principally dominated by upper amphibolite to granulite grade paragneisses interloped frequently by pegmatitic and granitic bodies. The region is a metasedimentary sequence section stretching to the Bolingen Islands to the south and the western Rauer Group to the north (Carson et al., 1995). The major lithological units of the region are predominantly low-pressure granulite facies, metasedimentary gneisses, and partial melt bodies. The area is dominated by metapelitic cordierite and Fe-Ti oxide-rich gneisses (Stüwe et al., 1989).

The soils in Antarctica are developed in a permafrost zone and could be classified as cryosols (Kukharchyk et al., 2022). The soils in the wet valleys of Larsemann Hills are neutral to slightly acidic and devoid of carbonates (Mergelov, 2014). The principal soil development processes in the Larsemann Hills are physical disintegration and biochemical weathering (Bockheim, 2015b). The unconsolidated remnants of the bedrock weathering are predominantly sandy with minimal concentrations of silt and clay. The thickness of the active layer ranges between 20 and 90 cm (Mergelov, 2014). There is no permanent snow cover in the region. The snow that is received is redistributed by the wind and piles up as snowfields (Kukharchyk et al., 2022). The well-drained soils show rich colours, resulting from iron liberation due to chemical weathering. The predominant soil types in the region are lithic haplothels, followed by typic haplothels and typic haploturbels (Bockheim, 2015b).

2.2 Sample collection

Sixty-five surface soil samples were collected from the Broknes Peninsula (n = 46) and Grovnes Peninsula (n = 19), Larsemann Hills, during the 33^{rd} Indian Scientific Expedition to Antarctica. Before collecting the soil samples, the top layer of the coarser rock

- particles was gently removed by using a plastic spatula. The soil samples were collected in HDPE bags and stored at 4° C before being shipped to National Centre for Polar and Ocean Research (NCPOR), Goa (India), for further analysis.
- **2.3 Methodology**

2.3.1. Environmental magnetic measurements

The magnetic measurement of the soil samples was performed at the Environmental Magnetism Laboratory at Mangalore University (India). The mass-specific magnetic susceptibility ($\chi_{\rm lf}$) measurements were carried out with a Bartington dual-frequency magnetic susceptibility meter. The susceptibility was measured at a low frequency ($\chi_{\rm lf}$) (0.465 kHz, $\chi_{0.465}$) and a high frequency ($\chi_{\rm hf}$) (4.65 kHz, $\chi_{4.65}$). The percentage frequency-dependent susceptibility ($\chi_{\rm ld}$ %) was calculated from the difference between the low-frequency and high-frequency measurements, i.e. $\chi_{\rm ld}$ % = [($\chi_{0.465}$ - $\chi_{4.65}$)/ $\chi_{0.465}$] × 100. Anhysteretic remanent magnetization (ARM) was applied to the samples with a Molspin AF demagnetizer. The peak field was 100 mT with a DC bias field of 0.04 mT. The ARM was determined with a Molspin fluxgate magnetometer. The anhysteretic susceptibility ($\chi_{\rm ARM}$) was determined as well. Isothermal remanent magnetization (IRM) was applied to the samples with a Molspin pulse magnetizer. The IRM was acquired at increasing fields from 20 – 1000 mT. The IRM at 1000 mT was considered the saturation isothermal remanent magnetization (SIRM). The remanence obtained at each acquisition was also determined with a Molspin fluxgate magnetometer.

2.3.2. Particle size analysis

The particle size analysis and the organic content estimation of the twenty-seven soil samples representing the Broknes (n = 19) and Grovnes (n = 8) Peninsulas were performed at the environmental engineering research laboratory at the Manipal Institute of Technology (India). Approximately five grams of samples were first transferred to pre-weighed beakers,

treated with 30% hydrogen peroxide (H₂O₂), and kept overnight to calculate the soil's organic matter. The samples were weighed after treatment with H₂O₂, and this weight was subtracted from the initial weight to estimate the amount of organic matter present in them. The samples were treated with acetic acid and kept overnight to remove the inorganic carbon content. The weights of the samples were noted down after each step. After removing organic carbon and carbonates, Calgon solution was added to the samples to deflocculate the clay particles adhering to the sand grains. The samples were then sieved through a +63 μm sieve, and the sieved fractions were transferred to pre-weighed beakers. The beakers were oven dried and weighed, and the percentage sand content was calculated. The remaining fraction after sieving was transferred to 1-litre measuring cylinders and then pipetted out. The pipetted-out fractions were oven dried and weighed, and the silt and clay content percentages were calculated following the Folk's classification (Folk, 1954).

177 3. Results and discussion

3.1. Magnetic properties of the surface soils

3.1.1. Concentration

The parameters χ_{If} , χ_{ARM} , and SIRM reflect the concentration of the magnetic minerals. χ_{If} accounts for all magnetic minerals present in a sample (Evans and Heller, 2003; Thompson and Oldfield, 1986). χ_{If} values range between $14.6\times10^{-8} \text{m}^3 \text{kg}^{-1}$ and $971.3\times10^{-8} \text{m}^3 \text{kg}^{-1}$ for Broknes Peninsula with an average (\pm S.D.) value of 117.7 (\pm 175.0) $\times10^{-8} \text{m}^3 \text{kg}^{-1}$ (Fig. 2). The values for Grovnes Peninsula vary between $49.8\times10^{-8} \text{m}^3 \text{kg}^{-1}$ and $844.5\times10^{-8} \text{m}^3 \text{kg}^{-1}$ with an average (\pm S.D.) value of 330.9 (\pm 217.4) $\times10^{-8} \text{m}^3 \text{kg}^{-1}$. Almost all the samples show high magnetic susceptibility values, revealing the predominance of magnetically strong minerals in the soils of Larsemann Hills. χ_{ARM} indicates the proportion of stable single-domain (SSD) grains (Maher, 1988). The samples from Broknes Peninsula show an average (\pm S.D.) value of 0.10 (\pm 0.15) $\times10^{-5}$ m $^3 \text{kg}^{-1}$ with a maximum value of 0.65×10^{-5}

 3 kg⁻¹, while the samples from Grovnes show an average (± S.D.) value 0.16 (± 0.10) ×10⁻⁵m³kg⁻¹ with a 0.36 as the maximum value (Fig. 2). χ_{ARM} has a statistically significant correlation with χ_{If} (Supplementary Tables S1 and S2) for the soils from both Broknes (R = 0.96, p < 0.05, n = 19) and Grovnes (R = 0.93, p < 0.05, n = 8) peninsulas suggesting the influence of SSD grains on the magnetic signal of the soils from these regions. SIRM reflects the overall proportion of the remanence carrying magnetic grains (Oldfield, 1991), that is, ferromagnetic minerals. The SIRM ranges from 39.2×10⁻⁵ Am²kg⁻¹ to 4935.1×10⁻⁵ Am²kg⁻¹ for the Broknes samples (Fig. 2). The samples from Grovnes have SIRM values between 195.48×10⁻⁵ Am²kg⁻¹ and 3013.99×10⁻⁵ Am²kg⁻¹. The concentration-dependent parameters show comparatively high values for most of the samples, with the samples from Grovnes Peninsula showing slightly higher values on average than those from Broknes Peninsula. The statistically significant correlations observed between χ_{If} and SIRM for both Broknes (R = 0.95, p < 0.05, n = 19, Supplementary Table S1) and Grovnes (R = 0.98, p < 0.05, n = 8, Supplementary Table S2) peninsulas suggest the dominance of magnetically strong ferrimagnetic grains in the samples.

3.1.2. Mineralogy

Magnetic mineralogy can be inferred from the parameter S-ratio (= IRM-300mT/SIRM). S-ratio indicates the relative proportions of the low coercivity minerals (e.g., magnetite) and the high coercivity minerals (e.g., hematite) present in the samples (Evans and Heller, 2003). Since magnetite saturates under low fields, typically < 300 mT, high S-ratio values indicate the higher concentrations of low coercivity minerals in the samples. S-ratio values vary from 0.90 to 0.99, reflecting the predominance of magnetically soft ferrimagnetic minerals. The IRM acquisition curves show that most of the samples from both peninsulas saturate at fields below 300 mT (Fig. 3a), reinforcing the predominance of low-coercivity minerals such as magnetite and titanomagnetite. The parameter H_{1/2} can be used to determine magnetic

mineralogy, where the $H_{1/2}$ values between 10 and 77 mT correspond to the magnetite range (Chaparro and Sinito, 2004; Peters and Dekkers, 2003). The $H_{1/2}$ values for the Broknes samples show mean (\pm S.D.) values of 38.2 (\pm 4.9) mT, while that of the Grovnes of 38.3 (\pm 3.7) mT (Fig. 2), suggesting that the magnetic carrier is magnetite. The statistically significant correlation between χ_{lf} and SIRM (Fig. 3b) and χ_{lf} and χ_{ARM} (Fig. 5a) for all the samples indicates substantial concentrations of magnetically strong ferrimagnets such as magnetite/ titanomagnetite in our samples.

3.1.3. Magnetic Grain Size

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

The ratio $\gamma_{ARM}/SIRM$ documents the magnetic granulometry. High values in this ratio suggest finer magnetic grain sizes, and lower values indicate coarser grain sizes (Oldfield, 1991; Walden et al., 1999). The Broknes samples show an average (± S.D.) γ_{ARM}/SIRM value of $10.24~(\pm~5.59)~\times10^{-5}~\text{mA}^{-1}$ with a maximum value of $34.80\times10^{-5}~\text{mA}^{-1}$, while the Grovnes samples show an average (\pm S.D.) value of 12.86 (\pm 2.12) $\times 10^{-5}$ mA⁻¹ and a maximum of 16.28×10⁻⁵ mA⁻¹ (Fig. 2). Values exceeding 200×10⁻⁵ mA⁻¹ are suggestive of the occurrence of bacterial magnetite (Foster et al., 2008). The values remain consistently low for the Broknes and Grovnes Peninsulas samples, suggesting coarser magnetic grain sizes. The ratio S₂₀ (= IRM_{20mT}/SIRM) is discriminative of the MD-sized ferrimagnetic grains. Higher S₂₀ values indicate a more significant concentration of MD grains. The S₂₀ values are high for all the samples suggesting significant MD grain content. The parameter $\chi_{\rm fd}$ (= $\chi_{0.465}$ - $\chi_{4.65}$) reflects the intensity of pedogenesis, and χ_{fd} % denotes semi-quantitatively the concentration of ultrafine superparamagnetic (SP) grains in the samples (Oldfield, 1991; Walden et al., 1999). χ_{fd} is sensitive to magnetic grains in the superparamagnetic (SP) size range with a diameter of 0 to 0.3 µm. This grain size range is unlikely to include primary magnetic minerals (Dearing et al., 1996a). Therefore, γ_{fd} is considered sensitive to the SP grains formed due to pedogenic processes. Furthermore, the samples with high concentrations

of coarse-grained MD ferrimagnets will have high χ_{If} and zero χ_{fd} . Samples with higher proportions of SP grains will have $\chi_{fd}\% > 6\%$. SP grains dominate the assemblage in samples with $\chi_{fd}\% > 10\%$ (Dearing et al., 1996a). $\chi_{fd}\%$ values less than 2% imply the lack of superparamagnetic grains (Fig. 2). Values between 2 and 10% suggest an admixture of superparamagnetic and coarser grains, and $\chi_{fd}\%$ values > 10% suggest the dominance of superparamagnetic grains (Dearing et al., 1997). The $\chi_{fd}\%$ values of LH soils remain lower than 2% for most samples, and only two samples show values > 2% suggesting negligible concentrations of SP particles (Fig. 2). The plot of $\chi_{fd}\%$ vs $\chi_{ARM}/SIRM$ (Fig. 4) indicates that the soil samples from Broknes and Grovnes peninsulas are dominated by an envelope of MD and PSD-sized ferrimagnetic grains. The samples also plot in the zone of no SP grains with $\chi_{fd}\%$ values less than 2%. Only two samples have values > 2% implying insignificant proportions of superparamagnetic grains in the magnetic minerals of the LH samples.

3.2. Origin of iron oxide minerals in the soils

Magnetite and maghemite, along with titanomagnetite, are the two most seen iron oxide minerals in soils. They are primarily derived from lithogenic sources and pedogenic processes. The magnetic minerals in the soils may also be influenced by the transformation of iron oxides under high temperatures associated with harvest burning or fires (Maher, 1986; Dearing et al., 1996b), authigenic formation of greigite (Fassbinder and Stanjek, 1994; Roberts, 1995), the formation of bacterial magnetite (Fassbinder et al., 1990) and contributions from anthropogenic sources (Maher, 1986; Blundell et al., 2009; Gargiulo et al., 2021). The contributions from magnetotactic bacteria can be constrained by the interparametric ratios $\chi_{ARM}/SIRM$ and χ_{ARM}/χ_{If} . Values exceeding 200×10^{-5} mA⁻¹ for $\chi_{ARM}/SIRM$ (Foster et al., 2008) and > 40 for χ_{ARM}/χ_{If} (Oldfield, 1994) reflect the occurrence of bacterial magnetite. Magnetotactic bacteria produce the bacterial magnetite. These bacteria produce SD magnetite crystals, which assist them in steering along the geomagnetic field lines in

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

search of anaerobic conditions (Bazylinski and Williams, 2007). In LH soils, the maximum values were 34.8×10^{-5} mA⁻¹ for $\gamma_{ARM}/SIRM$ (Fig. 2) and 2.68 for γ_{ARM}/γ_{lf} , signifying the absence of any bacterial magnetite in these samples. Greigite is a ferrimagnetic iron sulfide forming under anaerobic, reducing environments (Berner, 1984; Roberts, 1995). SIRM/γ_{1f} values $> 30 \times 10^3$ Am⁻¹ is reflective greighte formation (Snowball, 1991). Samples show maximum SIRM/ γ_{lf} values of 12.9×10³ Am⁻¹ (Fig. 2), indicating the absence of any greigite in the samples. The high-temperature thermal transformation of iron oxide minerals due to harvest burning/occurrence of natural fires is improbable due to the climatic conditions of the study area. Antarctica records extremely cold temperatures and has scarce vegetation for any fires. Industrial activities and emissions from vehicles mainly supply anthropogenic magnetic minerals (Warrier et al., 2014a). In urban soils, the anthropogenic magnetic minerals fall in the MD and PSD grain size range, and χ_{lf} negatively correlates with χ_{fd} (Lu and Bai, 2008). Contributions from vehicular emissions and electric power generators are minimal in the study area. Previous studies indicate no significant contributions from anthropogenic activities in the soils of Larsemann Hills, and the metal concentrations are regulated by natural processes (Gasparon and Matschullat, 2006a; 2006b). However, Shi et al., (2018) reported elevated concentrations of Pb within a research base. Enrichment of other metals were accounted for by natural variability. From the above observations, there are no substantial contributions from bacterial magnetite, authigenic greigite and anthropogenic magnetic grains in the magnetic signal of the soils from Larsemann Hills. Moreover, the principal rock types in the study area are orthogneisses, paragneisses, and metapelites consisting of minerals such as biotite, sillimanite, spinel, and magnetite (Carson and Grew, 2007). Hence, it can be established that the magnetic grains present along the soils of Larsemann Hills are principally lithogenic.

4. Particle size distribution and organic content of the soils

The sand distribution in the samples from the Broknes Peninsula ranges from 81.5 to
96.82% with an average (± S.D.) of 93.08 (± 4.28) %. The silt content ranges from 0 $-$
13.65% with an average (\pm S.D.) of 3.04 (\pm 3.75) %, while the clay content varies from 0.60
- 6.81% with an average (± S.D.) of 3.88 (± 1.78) %. It is evident from these results that the
Broknes samples are predominantly sandy with minor fractions of silt and clay. The organic
content of the soils from the Broknes peninsula is very low, ranging from 0.10 to 0.87% with
an average (\pm S.D.) of 0.39 (\pm 0.21) %. No significant correlation between the magnetic data,
particle size data and the organic matter is observed for the soils from the Broknes Peninsula
(Supplementary Table S1).

In the samples from the Grovnes Peninsula, the sand percentage varies from 77.73 - 96.32% with an average (\pm S.D.) of 90.64 (\pm 6.54) %. The silt content ranges from 0.70 to 16.24% with an average (\pm S.D.) of 5.76 (\pm 5.99) %, and the clay content ranges from 0.20 - 6.23% with an average (\pm S.D.) of 3.60 (\pm 1.78) %. The organic matter content varies between 0.18 and 0.80% with an average (\pm S.D.) of 0.49 (\pm 0.22) %. Like the Broknes soils, the soils from the Grovnes Peninsula also have very little organic content. Except for three magnetic parameters and particle size variables (Supplementary Table S2), no significant correlations were found between magnetic parameters, particle size and the organic matter data.

In the soil textural diagram, the Broknes and Grovnes Peninsula samples occupy the sand and loamy sand textural classes (Supplementary Figure S1). The soils of Larsemann Hills were previously studied by Bockheim, (2015b), who reported low concentrations of silt and clay in the soils. The high sand percentage indicates a glaciofluvial environment erosion by glaciers, and glacial meltwater is the dominant mode of weathering. The dominant force behind the formation of soils in Larsemann Hills is the physical action on the rocks leading to their disintegration by the erosive nature of glaciers. The scarcity of precipitation and low

temperatures result in low degrees of chemical weathering. Mergelov (2014) reported an average SiO₂/Al₂O₃ ratio of 5.8 in the soils of Larsemann Hills, indicating a low degree of chemical weathering. The principal soil development process in the Larsemann Hills is physical disintegration, and the soils were texturally classified as sand to loamy sand (Bockheim, 2015b).

5. Comparison with soils from other Antarctic regions

Geographic location has a significant role in the weathering process leading to soil formation. For example, soil formation in tropical regions is primarily controlled by chemical weathering (Sandeep et al., 2012), while physical weathering dominates in polar regions (Bockheim, 2015a, 2015b; Lin et al., 2021; Navas et al., 2008; Ugolini and Bockheim, 2008; Zvěřina et al., 2012). Soils formed by the mechanical disintegration of the parent material generally have a coarser grain size (Bockheim, 2015a). Coastal Antarctica records milder climatic conditions than the interior portion of the Antarctic continent; as a result, chemical weathering also plays a role in pedogenesis in this region (Simas et al., 2008; Haus et al., 2016). The soils of the ice-free territories of coastal Antarctica are also affected by a large population of seabirds. Vast amounts of seabird manure result in the phosphatization of soil, giving rise to ornithogenic soils (Bockheim, 2015b). They are primarily seen in coastal regions with active penguin rookeries. Previous studies on the soils of Larsemann Hills show low degrees of chemical weathering (Shi et al., 2018), indicating the dominance of physical weathering processes on soil formation.

Rock magnetic techniques allow us to differentiate the magnetic minerals formed under differing climatic regimes and pedogenic processes based on their grain sizes. The scatter plot of χ_{ARM} vs χ_{lf} (King et al., 1982) (Fig. 5a) indicates the magnetic particle size. The soils from Larsemann Hills have been compared with soils from Schirmacher Oasis (Warrier et al., 2014b) and Antarctic Peninsula (Chaparro et al., 2007). The soil samples from

Broknes and Grovnes peninsulas show higher magnetic concentration values on average compared to the soils from Antarctic Peninsula and comparable values with the Schirmacher Oasis soils. Also, the soil samples from Broknes and Grovnes Penninsula show coarser magnetic sizes than the soils from Antarctic Peninsula. Magnetic grain sizes range from 1 μ m to > 20 μ m for Broknes samples (MD+PSD) and > 20 μ m (MD) for Grovnes soil samples, indicating significant proportions of MD grains. This is also observed by the magnetic particle size plot of the anhysteretic ratio χ_{ARM}/χ_{If} (Fig. 5b). The soft component of IRM, IRM20mT is especially responsive to the ferrimagnetic grains in the MD size range. A highly significant correlation is noticed for χ_{If} and IRM20mT for Broknes (R = 0.97, p < 0.05, n = 19) and Grovnes (R = 0.96, p < 0.05, n = 8), implying that the majority of the remanence is carried by magnetically soft MD-sized ferrimagnetic grains.

The Kruskal-Wallis test (Conover, 1999), a non-parametric one-way evaluation of variance, was performed to evaluate medians of variables between the Broknes and Grovnes Peninsula soils. Supplementary Table S3 shows that parameters χ_{If}, χ_{fd}, χ_{ARM}, SIRM, χ_{ARM}/SIRM, SIRM/χ_{If} and S₂₀ are significantly different at the 0.05 level for the two peninsulas. The parameters χ_{If}, χ_{fd}, χ_{ARM}, and SIRM represent the magnetic concentration, while χ_{ARM}/SIRM, SIRM/χ_{If} and S₂₀ depend on the magnetic grain size. The magnetic parameters and inter-parametric ratios show that the magnetic concentration is slightly higher on average for the soil samples from the Grovnes Peninsula compared to those from the Broknes Peninsula. Moreover, differences can also be observed in the magnetic parameter distributions of the two regions (Fig. 6). This is because samples from Broknes Peninsula show two distinct magnetic grain size assemblages and magnetic mineral concentrations. One set of samples shows higher magnetic susceptibility values with coarser magnetic grain sizes, while the other set has comparatively finer magnetic grains with lower susceptibility values. This fact could be due to the differences in lithology. The area with the coarser magnetic

grains (Fig. 6b) and higher magnetic concentrations (Fig. 6a) in the Broknes Peninsula is dominated by Lake Ferris metapelites, which consist of dark garnet, sillimanite, biotite metapelite with spinel and magnetite (Carson and Grew, 2007). While the area having finer magnetic grains and lower magnetic concentrations is dominated by Broknes paragneiss consisting of garnet-bearing quartz feldspathic paragneiss with variable sillimanite, spinel and magnetite (Carson and Grew, 2007).

The plots of χ_{ARM} vs χ_{If} and χ_{ARM}/χ_{If} (Figs. 5a, 5b) and S₂₀ vs $\chi_{ARM}/SIRM$ (Fig. 7) allow to differentiate soils of different regions based on magnetic grain size. Soil data from Broknes and Grovnes peninsulas are plotted in Figure 7 alongside synthetic magnetites (Dankers, 1978; Maher, 1988) and soil data from Schirmacher Oasis (Warrier et al., 2014b). The soil samples from Larsemann Hills plot along the envelope of synthetic magnetite (Dankers, 1978) having coarser magnetic grain sizes and significant proportions of MD grains. The Schirmacher Oasis soils also show coarse magnetic grain sizes. In these polar regions, physical weathering dominates, producing magnetic minerals with coarser grain sizes (Warrier et al., 2021a; 2021b; 2021c).

Warm and wet conditions are required for the pedogenic formation of magnetic minerals and prolonged surface exposure to sunlight. Such conditions are not observed in the study area, where the conditions are cold and dry, and the surface remains under ice cover for a significant part of the year. Previous studies from Schirmacher Oasis (Warrier et al., 2021a; 2021b; 2021c) reported that even though pedogenesis activity occurs in the region, its intensity is insufficient to form SP-sized magnetic grains. Moreover, the pedogenic magnetic grains are generally fine-grained in the SP or SSD size range. The soil samples from Broknes and Grovnes peninsulas are coarse-grained, falling in the MD and PSD size range with little or no inputs from SP grains. The $\chi_{\rm fd}$ values also stay low, indicating no significant pedogenic activity in the soils of Larsemann Hills. The results imply that the magnetic properties of LH

390	soils are primarily generated by lithogenic input with no significant contributions from the
391	pedogenic formation of magnetic minerals.
392	
393	6. Conclusions
394	The present study provides insight into the magnetic properties and particle size distribution
395	of Larsemann Hills, East Antarctica soils. From the analyses, it is observed that:
396	• The magnetic minerals in the soils of Larsemann Hills are principally lithogenic with
397	no significant inputs from bacterial magnetite, authigenic greigite and anthropogeni
398	magnetic minerals.
399	• The magnetic minerals of the soils of Larsemann Hills are coarse-grained, falling in
400	the MD size range.
401	• S-ratio values for all the samples remain > 0.90, reflecting the predominance of
402	ferrimagnetic minerals. The parameter $H_{1/2}$ shows average values of 38.2 and 38.3 m
403	for Broknes and Grovnes samples, respectively, which are in the range for magnetite
404	These observations suggest that magnetically soft ferrimagnetic grains such a
405	magnetite generate the magnetic signal of the soils of Larsemann Hills.
406	• The soils are predominantly sandy, with an average sand content of 93.08% is
407	Broknes soils and 96.32% in Grovnes soils with low concentrations of organic matter
408	No significant correlation has been observed between the magnetic properties and
409	organic content.
410	• No evidence for any significant pedogenic activity has been observed for soils of the
411	Broknes and Grovnes peninsulas.

412

Acknowledgements

The authors are grateful to the Director, National Centre for Polar and Ocean Research, Goa, for his support and encouragement. AKW thanks Dr. R. Shankar for providing access to the magnetic instruments used for this study, which were procured through a research project to RS (DOD Sanction no.: DOD/11-MRDF/1/48/P/94-ODII/12-10-96). We are thankful to the Antarctic Logistics Division, NCPOR and members of the 33rd Indian Scientific Expedition to Antarctica for their assistance during sampling work. AKW acknowledges the financial support provided by the ESSO-National Centre for Polar and Ocean Research, Ministry of Earth Sciences, in the form of a research project (Sanction: NCPOR/2019/PACER-POP/ES-02 dated 05/07/2019) under the PACER Outreach Programme (POP) initiative, to undertake this research. We thank the editor-in-chief and two anonymous reviewers whose comments helped improve the manuscript's quality.

426 **References**

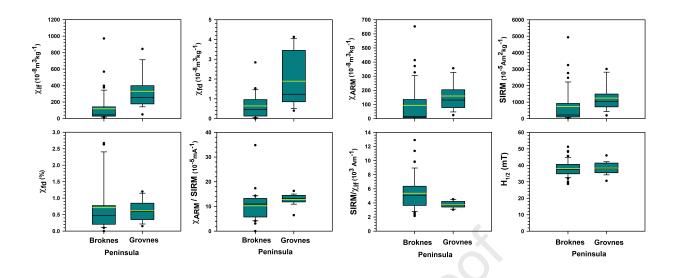
- 427 Amrutha, K., Warrier, A.K., Sandeep, K., Jyothinath, A., Ananthapadmanabha, A.L.,
- Shankar, R., 2021. Environmental Magnetic Properties of Lateritic Soils from
- Southwestern India. Eurasian Soil Sci. 54, 238–248.
- 430 https://doi.org/10.1134/S1064229321020022
- 431 ANARE (2000). Visitor's guide to the Larsemann Hills. http://www.antdiv.gov.au
- 432 Asthana, R., Shrivastava, P.K., Beg, M.J., Swain, A.K., Dharwadkar, A., Roy, S.K.,
- Srivastava, H.B., 2013. Sedimentary processes in two different polar periglacial
- environments: Examples from Schirmacher Oasis and Larsemann Hills, East Antarctica.
- 435 Geol. Soc. Spec. Publ. 381, 411–427. https://doi.org/10.1144/SP381.22
- 436 Bazylinski, D.A., Williams, T.J., 2006. Ecophysiology of Magnetotactic Bacteria, in:
- Magnetoreception and Magnetosomes in Bacteria. Springer Berlin Heidelberg, pp. 37–
- 438 75. https://doi.org/10.1007/7171_038
- Berner, R.A., 1984. Sedimentary pyrite formation: An update. Geochim. Cosmochim. Acta
- 48, 605–615. https://doi.org/10.1016/0016-7037(84)90089-9
- Bhakta, S., Rout, T.K., Karmakar, D., Pawar, C., Padhy, P.K., 2022. Trace elements and their
- potential risk assessment on polar ecosystem of Larsemann Hills, East Antarctica. Polar
- 443 Sci. 31, 100788. https://doi.org/10.1016/j.polar.2022.100788
- Blundell, A., Hannam, J.A., Dearing, J.A., Boyle, J.F., 2009. Detecting atmospheric pollution
- in surface soils using magnetic measurements: A reappraisal using an England and
- 446 Wales database. Environ. Pollut. 157, 2878–2890.
- https://doi.org/10.1016/j.envpol.2009.02.031
- Bockheim, J.G., 2015a. Cryopedology, 1st ed. Springer.
- Bockheim, J.G., 2015b. The soils of Antarctica, 1st ed. Springer.
- Bockheim, J.G., Ugolini, F.C., 1990. A review of pedogenic zonation in well-drained soils of

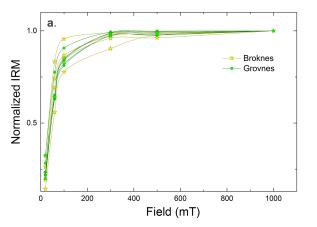
- the Southern Circumpolar Region. Quat. Res. 34, 47–66. https://doi.org/10.1016/0033-
- 452 5894(90)90072-S
- 453 Campbell, I.B., Claridge, G.G.C., 1987. Antarctica: soils, weathering processes and
- environment, 1st ed. Elsevier.
- 455 Carson, C.J., Dirks, P.G.H.M., Hand, M., Sims, J.P., Wilson, C.J.L., 1995. Compressional
- and extensional tectonics in low-medium pressure granulites from the Larsemann Hills,
- East Antarctica. Geol. Mag. 132, 151–170. https://doi.org/10.1017/S0016756800011729
- 458 Carson, C.J., Grew, E.S., 2007. Geology of the Larsemann Hills Region Antarctica (1: 25000
- scale map). Geosci. Aust. Canberra.
- 460 Chaparro, M.A.E., Moralejo, M. del P., Böhnel, H.N., Acebal, S.G., 2020. Iron oxide
- 461 mineralogy in Mollisols, Aridisols and Entisols from southwestern Pampean region
- 462 (Argentina) by environmental magnetism approach. Catena 190, 104534.
- 463 https://doi.org/10.1016/j.catena.2020.104534
- Chaparro, M.A.E., Nuñez, H., Lirio, J.M., Gogorza, C.S.G., Sinito, A.M., 2007. Magnetic
- screening and heavy metal pollution studies in soils from Marambio Station, Antarctica.
- 466 Antarct. Sci. 19, 379–393. https://doi.org/10.1017/S0954102007000454
- Chaparro, M.A.E., Sinito, A.M., 2004. An alternative experimental method to discriminate
- 468 magnetic phases using IRM acquisition curves and magnetic demagnetization by
- alternating field. Rev. Bras. Geofis. 22, 17–32. https://doi.org/10.1590/S0102-
- 470 261X2004000100002
- 471 Conover, W.J., 1999. Practical nonparametric statistics. John Wiley & Sons.
- Convey, P., Chown, S.L., Clarke, A., Barnes, D.K.A., Bokhorst, S., Cummings, V., Ducklow,
- 473 H.W., Frati, F., Green, T.G.A., Gordon, S., Griffiths, H.J., Howard-Williams, C.,
- Huiskes, A.H.L., Laybourn-Parry, J., Lyons, W.B., McMinn, A., Morley, S.A., Peck,
- L.S., Quesada, A., Robinson, S.A., Schiaparelli, S., Wall, D.H., 2014. The spatial

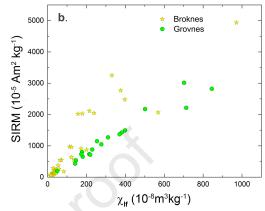
- 476 structure of antarctic biodiversity. Ecol. Monogr. 84, 203–244.
- 477 https://doi.org/10.1890/12-2216.1
- Dankers, P.H.M., 1978. Magnetic properties of dispersed natural iron-oxides of known grain-
- size. Ph. D. Thesis. Rijksuniversiteit te Utrecht.
- Dearing, J.A., Bird, P.M., Dann, R.J.L., Benjamin, S.F., 1997. Secondary ferrimagnetic
- 481 minerals in Welsh soils: A comparison of mineral magnetic detection methods and
- implications for mineral formation. Geophys. J. Int. 130, 727–736.
- 483 https://doi.org/10.1111/j.1365-246X.1997.tb01867.x
- Dearing, J.A., Dann, R.J.L., Hay, K., Lees, J.A., Loveland, P.J., Maher, B.A., O'Grady, K.,
- 485 1996a. Frequency-dependent susceptibility measurements of environmental materials.
- 486 Geophys. J. Int. 124, 228–240. https://doi.org/10.1111/j.1365-246X.1996.tb06366.x
- Dearing, J.A., Hay, K.L., Baban, S.M.J., Huddleston, A.S., Wellington, E.M.H., Loveland,
- 488 P.J., 1996b. Magnetic susceptibility of soil: An evaluation of conflicting theories using a
- national data set. Geophys. J. Int. 127, 728–734. https://doi.org/10.1111/j.1365-
- 490 246X.1996.tb04051.x
- 491 Evans, M., Heller, F., 2003. Environmental Magnetism: Principles and Applications of
- Enviromagnetics, Int. Geophys. Ser. Academic Press, San Diego, USA.
- 493 Fassbinder, J.W.E., Stanjek, H., 1994. Magnetic properties of biogenic soil greigite (Fe3S4).
- 494 Geophys. Res. Lett. 21, 2349–2352. https://doi.org/10.1029/94GL02506
- 495 Fassbinder, J.W.E., Stanjekt, H., Vali, H., 1990. Occurrence of magnetic bacteria in soil.
- 496 Nature 343, 161–163. https://doi.org/10.1038/343161a0
- 497 Foster, I.D.L., Oldfield, F., Flower, R.J., Keatings, K., 2008. Mineral magnetic signatures in a
- long core from Lake Qarun, Middle Egypt. J. Paleolimnol. 40, 835–849.
- 499 Folk, R.L., 1954. The Distinction between Grain Size and Mineral Composition in
- 500 Sedimentary-Rock Nomenclature. J. Geol. 62, 344–359. https://doi.org/10.1086/626171

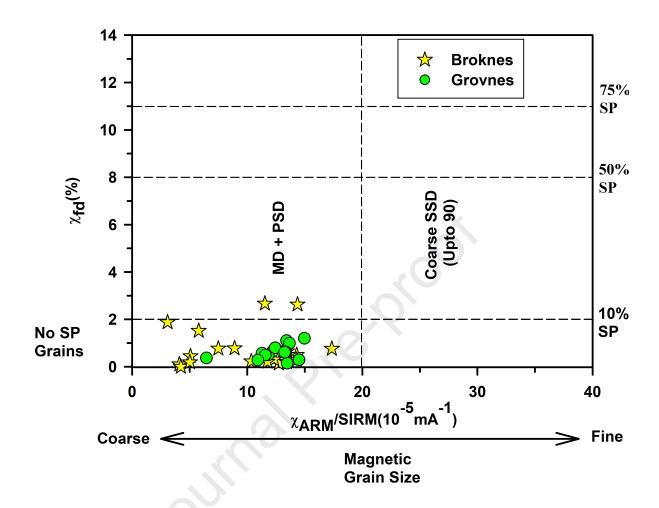
501	Gargiulo, J.D., Chaparro, M.A.E., Marie, D.C., Bohnel, H.N., 2021. Magnetic monitoring of
502	anthropogenic pollution in Antarctic soils (Marambio Station) and the spatial-tempora
503	changes over a decade. CATENA 203, 105289
504	https://doi.org/10.1016/j.catena.2021.105289
505	Gasparon, M., Lanyon, R., Burgess, J.S., Sigurdsson, I.A., 2002. The freshwater lakes of the
506	Larsemann Hills, East Antarctica: chemical characteristics of the water column
507	Australian Antarctic Division, Canberra, ACT, Australia.
508	Gasparon, M., Matschullat, J., 2006a. Geogenic sources and sinks of trace metals in the
509	Larsemann Hills, East Antarctica: Natural processes and human impact. Appl
510	Geochemistry 21, 318–334. https://doi.org/10.1016/j.apgeochem.2005.09.013
511	Gasparon, M., Matschullat, J., 2006b. Trace metals in Antarctic ecosystems: Results from the
512	Larsemann Hills, East Antarctica. Appl. Geochemistry 21, 1593-1612
513	https://doi.org/10.1016/j.apgeochem.2006.05.007
514	Gillieson, D.S., Burgess, J., Spate, A., Cochrane, A., and Australian National Antarctic
515	Research Expeditions et al., 1990. An atlas of the lakes of the Larsemann Hills, Princess
516	Elizabeth Land, Antarctica. Antarctic Division, Dept. of the Arts, Sport, the
517	Environment, Tourism and Territories, Kingston, Tasmania
518	Haus, N.W., Wilhelm, K.R., Bockheim, J.G., Fournelle, J., Miller, M., 2016. A case for
519	chemical weathering in soils of Hurd Peninsula, Livingston Island, South Shetland
520	Islands, Antarctica. Geoderma 263, 185–194
521	https://doi.org/10.1016/j.geoderma.2015.09.019
522	Hodgson, D.A., Noon, P.E., Vyverman, W., Bryant, C.L., Gore, D.B., Appleby, P., Gilmour
523	M., Verleyen, E., Sabbe, K., Jones, V.J., Ellis-Evans, J.C., Wood, P.B., 2001. Were the
524	Larsemann Hills ice-free through the Last Glacial Maximum? Antarct. Sci. 13, 440-454
525	https://doi.org/10.1017/S0954102001000608

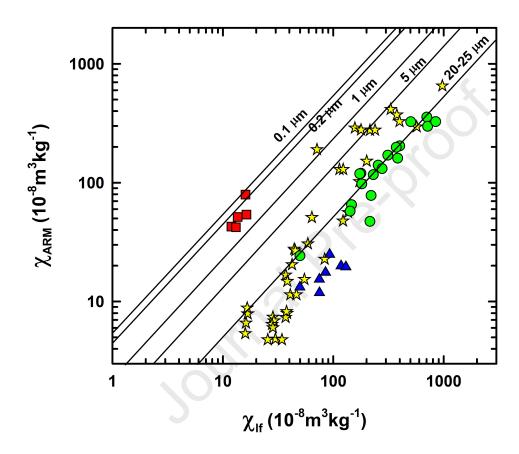
- Jordanova, N., 2017. Magnetism of soils from the Antarctic Peninsula, in: Soil Magnetism.
- 527 Elsevier, pp. 331–347. https://doi.org/10.1016/B978-0-12-809239-2.00007-3
- King, J., Banerjee, S.K., Marvin, J., Özdemir, Ö., 1982. A comparison of different magnetic
- methods for determining the relative grain size of magnetite in natural materials: some
- results from lake sediments. Earth Planet. Sci. Lett. 59, 404–419.
- 531 https://doi.org/10.1016/0012-821X(82)90142-X
- Kukharchyk, T.I., Kakareka, S. V., Giginyak, Y.G., 2022. Soils of the Broknes Peninsula,
- East Antarctica. Eurasian Soil Sci. 55, 1673–1688.
- https://doi.org/10.1134/S1064229322700016
- 535 Lin, J., Rayhan, A.B.M.S., Wang, Y., Wu, Z., Lin, Y., Ke, H., Li, T., Chen, K., Cai, M.,
- 536 2021. Distribution and contamination assessment of heavy metals in soils and sediments
- from the Fildes Peninsula and Ardley Island in King George Island, Antarctica. Polar
- Fig. 40. https://doi.org/10.33265/polar.v40.5270
- Lu, S.G., Bai, S.Q., 2008. Magnetic characterization and magnetic mineralogy of the
- Hangzhou urban soils and its environmental implications. Acta Geophys. Sin. 51, 762–
- 541 769. https://doi.org/10.1002/cjg2.1245
- Maher, B.A., 1988. Magnetic properties of some synthetic sub-micron magnetites. Geophys.
- J. 94, 83–96. https://doi.org/10.1111/j.1365-246X.1988.tb03429.x
- Maher, B.A., 1986. Characterization of soils by mineral magnetic measurements. Phys. Earth
- Planet. Inter. 42, 76–92. https://doi.org/10.1016/S0031-9201(86)80010-3
- McLeod, M., Bockheim, J.G., Balks, M.R., 2008. Glacial geomorphology, soil development
- and permafrost features in central-upper Wright Valley, Antarctica. Geoderma 144, 93–
- 548 103. https://doi.org/10.1016/j.geoderma.2007.10.017
- Mergelov, N.S., 2014. Soils of wet valleys in the Larsemann Hills and Vestfold Hills oases
- 550 (Princess Elizabeth Land, East Antarctica). Eurasian Soil Sci. 47, 845–862.

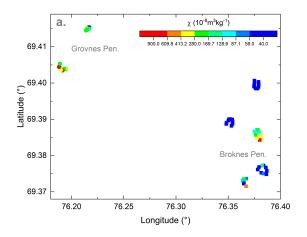

- 551 https://doi.org/10.1134/S1064229314090099
- Navas, A., López-Martínez, J., Casas, J., Machín, J., Durán, J.J., Serrano, E., Cuchi, J.A.,
- Mink, S., 2008. Soil characteristics on varying lithological substrates in the South
- 554 Shetland Islands, maritime Antarctica. Geoderma 144, 123–139.
- https://doi.org/10.1016/j.geoderma.2007.10.011
- 556 Oldfield, F., 1994. Toward the discrimination of fine-grained ferrimagnets by magnetic
- measurements in lake and near-shore marine sediments. J. Geophys. Res. 99, 9045–
- 558 9050. https://doi.org/10.1029/93JB03137
- Oldfield, F., 1991. Environmental magnetism A personal perspective. Quat. Sci. Rev. 10,
- 560 73–85. https://doi.org/10.1016/0277-3791(91)90031-O
- Peters, C., Dekkers, M.J., 2003. Selected room temperature magnetic parameters as a
- function of mineralogy, concentration and grain size. Phys. Chem. Earth 28, 659–667.
- 563 https://doi.org/10.1016/S1474-7065(03)00120-7
- Roberts, A.P., 1995. Magnetic properties of sedimentary greigite (Fe3S4). Earth Planet. Sci.
- Lett. 134, 227–236. https://doi.org/10.1016/0012-821X(95)00131-U
- Roudier, P., O'Neill, T.A., Almond, P., Poirot, C., 2022. Soil priorities for Antarctica.
- Geoderma Reg. 29, e00499. https://doi.org/10.1016/j.geodrs.2022.e00499
- 568 Sandeep, K., Warrier, A.K., Harshavardhana, B.G., Shankar, R., 2012. Rock magnetic
- investigations of surface and sub-surface soil samples from five lake catchments in
- 570 tropical southern India. Int. J. Environ. Res. 6, 1–18.
- 571 https://doi.org/10.22059/ijer.2011.467
- 572 Shi, G., Teng, J., Ma, H., Wang, D., Li, Y., 2018. Metals in topsoil in Larsemann Hills, an
- ice-free area in East Antarctica: Lithological and anthropogenic inputs. Catena 160, 41–
- 49. https://doi.org/10.1016/j.catena.2017.09.001
- 575 Simas, F.N.B., Schaefer, C.E.G.R., Filho, M.R.A., Francelino, M.R., Filho, E.I.F., da Costa,

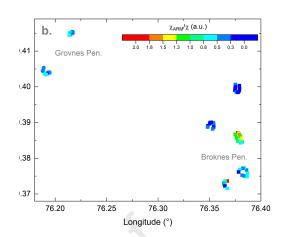

576	L.M., 2008. Genesis, properties and classification of Cryosols from Admiralty Bay,
577	maritime Antarctica. Geoderma 144, 116–122.
578	https://doi.org/10.1016/j.geoderma.2007.10.019
579	Snowball, I.F., 1991. Magnetic hysteresis properties of greigite (Fe3S4) and a new
580	occurrence in Holocene sediments from Swedish Lappland. Phys. Earth Planet. Inter. 68,
581	32-40. https://doi.org/10.1016/0031-9201(91)90004-2
582	Stüwe, K., Braun, H., Peer, H., 1989. Geology and structure of the Larsemann Hills area,
583	Prydz Bay, East Antarctica. Aust. J. Earth Sci. 36, 219-241.
584	https://doi.org/10.1080/08120098908729483
585	Thompson, R., Oldfield, F., 1986. Environmental Magnetism. Springer Netherlands,
586	Dordrecht. https://doi.org/10.1007/978-94-011-8036-8
587	Ugolini, F.C., Bockheim, J.G., 2008. Antarctic soils and soil formation in a changing
588	environment: A review. Geoderma 144, 1–8.
589	https://doi.org/10.1016/j.geoderma.2007.10.005
590	Walden, J., Oldfield, F., Smith, J., 1999. Environmental magnetism: a practical guide.
591	Quaternary Research Association, London.
592	Wang, D., Ma, H., Chen, Z., Shi, G., 2022. Occurrences and possible sources of persistent
593	organic pollutants (POPs) in ice-free area soils in East Antarctica. Catena 212, 106083.
594	https://doi.org/10.1016/j.catena.2022.106083
595	Wang, Y., Shi, G., Wang, Danhe, Zhao, Q., Jiang, S., Li, Y., Wang, Dongqi, Li, C., Chen, Z.,
596	Bargagli, R., 2023. Relationships between concentrations of mercury and organic carbon
597	in soils allow the identification of Antarctic ice-free areas with enhanced deposition of
598	the metal. Catena 220, 106718. https://doi.org/10.1016/j.catena.2022.106718
599	Warrier, A.K., Shankar, R., Manjunatha, B.R. and Harshavardhana, B.G., 2014a. Mineral
600	magnetism of atmospheric dust over southwest coast of India: Impact of anthropogenic

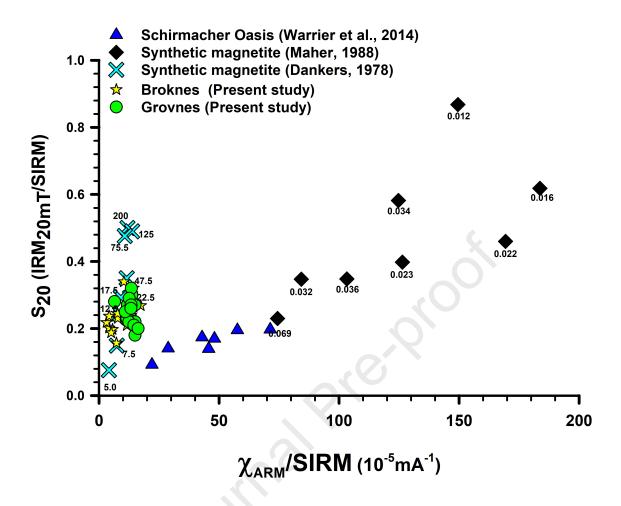

activities and implications to public health. Jourc. Appl. Geophys. 102, 1-9.
https://doi.org/10.1016/j.jappgeo.2013.11.013
Warrier, A.K., Mahesh, B.S., Mohan, R., Shankar, R., Asthana, R., Ravindra, R., 2014b.
Glacial-interglacial climatic variations at the Schirmacher Oasis, East Antarctica: The
first report from environmental magnetism. Palaeogeogr. Palaeoclimatol. Palaeoecol.
412, 249–260. https://doi.org/10.1016/j.palaeo.2014.08.007
Warrier, A.K., Mahesh, B.S., Sebastian, J.G., Mohan, R., 2021a. How strong was
pedogenesis in Schirmacher Oasis during the Late Quaternary? Polar Sci. 30:100636.
https://doi.org/10.1016/j.polar.2021.100636
Warrier, A.K., Sebastian, J.G., Amrutha, K., Yamuna Sali, A.S., Mahesh, B.S., Mohan, R.,
2021b. Magnetic properties of surface sediments in Schirmacher Oasis, East Antarctica:
spatial distribution and controlling factors. J. Soils Sediments 21, 1206-1221.
https://doi.org/10.1007/s11368-020-02824-8
Warrier, A.K., Mahesh, B.S., Mohan, R., Shankar, R., 2021c. A 43-ka mineral magnetic
record of environmental variations from lacustrine sediments of Schirmacher Oasis, East
Antarctica. Catena 212, 105300. https://doi.org/10.1016/j.catena.2021.105300
Yunginger, R., Bijaksana, S., Dahrin, D., Zulaikah, S., Hafidz, A., Kirana, K.H.,
Sudarningsih, S., Mariyanto, M., Fajar, S.J., 2018. Lithogenic and anthropogenic
components in surface sediments from lake limboto as shown by magnetic mineral
characteristics, trace metals, and REE geochemistry. Geosci. 8, 116.
https://doi.org/10.3390/geosciences8040116
Zvěřina, O., Coufalík, P., Vaculovič, T., Kuta, J., Zeman, J., Komárek, J., 2012. Macro- and
microelements in soil profile of the moss-covered area in James Ross Island, Antarctica.
Czech Polar Reports 2, 1–7. https://doi.org/10.5817/cpr2012-1-1


626	Figure Captions
627	Fig.1. Location map of the Larsemann Hills showing the Broknes and Grovnes peninsulas
628	with the map of Antarctica (inset). The sampling sites are marked as red circles on the map.
629	
630	Fig. 2. Box plots (box delineates the interquartile range of 25–75%, horizontal lines indicate
631	the mean (black) and median (yellow), and the minimum and maximum values are shown
632	using whiskers) showing the magnetic parameters and inter-parametric ratios of soils from
633	the Broknes Peninsula and Grovnes Peninsula.
634	
635	Fig. 3. (a) IRM acquisition curves, and (b) biplot of χ_{lf} vs SIRM for the soil samples from
636	Broknes and Grovnes peninsulas.
637	
638	Fig. 4. Semi-quantitative biplot of $\chi_{fd}\%$ vs $\chi_{ARM}/SIRM$ (Dearing et al., 1997) parameters for
639	the Broknes and Grovnes Peninsula soil samples.
640	
641	Fig. 5. (a) χ _{If} vs χ _{ARM} biplot (King et al., 1982), and (b) Box plots (box delineates the
642	interquartile range of 25-75%, horizontal lines indicate the mean (black) and median (red),
643	and the minimum and maximum values are shown using whiskers) of χ_{ARM}/χ_{If} for soil
644	samples from the Broknes Peninsula, Grovnes Peninsula, Schirmacher Oasis (Warrier et al.,
645	2014b), and Marambio Island, Antarctic Peninsula (Chaparro et al., 2007).
646	
647	Fig. 6. Color-mapped graph of magnetic parameters for Broknes and Grovnes Peninsula
648	soils. (a) χ _{If} (magnetic concentration dependent parameter), and (b). χ _{ARM} /χ _{If} (magnetic grain-
649	size dependent parameter).
650	
651	Fig. 7. Biplot of S_{20} vs $\chi_{ARM}/SIRM$ of soils from the Broknes and Grovnes peninsulas. This
652	data is plotted alongside synthetic magnetites (Dankers, 1978; Maher, 1988) and soil data
653	from Schirmacher Oasis (Warrier et al., 2014b). Numbers indicate size in microns.









- **★** Broknes (Larsemann Hills)
- Grovnes (Larsemann Hills)
- Marambio Island (Chaparro et al., 2007)
- **▲** Schirmacher Oasis (Warrier et al., 2014)

Doc	laration	of inte	rocte
1160	iaraiinn	() II) F	212416

oxtimes The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.
\Box The authors declare the following financial interests/personal relationships which may be considered as potential competing interests: