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Abstract—In the geological context, the analysis of multidi-
mensional data is a very common task and requires visualization
techniques for exploration. General Line Coordinates (GLC)
is a technique especially intended for lossless representation
among the various techniques available for the visualization of
multidimensional data. In this study, the application of GLC for
pattern analysis and identification in mineral datasets is inves-
tigated. Furthermore, we develop a web-based tool to explore
the possibility of employing GLC to leverage these approaches to
derive visual discovery rules for pattern recognition.

Index Terms—General Line Coordinates, Multidimensional
Data, Geochemical Data

I. INTRODUCTION

In recent years, the use of visualization techniques to facil-

itate pattern discovery in heterogeneous datasets has emerged

as an alternative to traditional methods. The iterative process

of visualization-based solutions allows refinement of employed

methods and addressing different problem domains from vari-

ous perspectives. Particularly in the field of geology, the use of

visualization has been a significant advancement, condensing

and simplifying a large amount of data mostly stored in tab-

ular structures (e.g., spreadsheets) into more straightforward

graphical representations.

Regarding data visualization techniques focused on min-

erals, various alternatives have emerged aiming to exploit

these types of data with lossless and lossy approaches. The

first approach has been extensively explored in the works of

Ganuza et al [1] and Antonini et al. [2], offering visual rep-

resentations based on geometric constructions such as prisms

and their facet views to analyze data according to different

combinations of elements. These visualizations not only serve

as static representations but also provide suitable interactions

to engage with and obtain more precise analyses according to

domain experts’ requirements.

The lossy approach is oriented towards employing current

dimensionality reduction methods to handle datasets where the

number of instances and dimensions are considerably larger

that can be handled by traditional methods. [3]. While these

techniques allow considering all the information, for some

scenarios, it becomes confusing for experts because the ref-

erence to real dimensions is lost. Therefore, current solutions

aim to combine dimensionality reduction representations with

auxiliary views using techniques that employ raw dimensions.

Recently, a new family of lossless visualization techniques

aiming to represent large datasets has emerged, called General-

ized Line Coordinates (GLC). These techniques have different

derivations listed in Antonini et al. [4] and Kovalerchuck [5],

which can be employed in various contexts according to the

data characteristics and expert requirements. One of the most

important aspects to discern in this technique is whether it

utilizes Non-Paired versions (where each dimension has its

own geometric representation in space) or Paired versions

(where dimensions are taken in consecutive disjoint pairs, each

having its own representation in space).

This paper addresses the use of Paired GLCs, specifically

the case of Shifted Paired Coordinates (SPC), for three main

reasons:

• Its spatial representation is familiar to experts, as it

involves scatterplots connected by polylines generated by

points from different dimension pairs for each data item.

• They provide an alternative to the issues of occlusion and

visual scalability faced by parallel coordinates, which are

one of the traditional techniques employed by experts.

• It is a lossless information technique that maintains

the context of all dimensions without performing any

aggregation or transformation operations on them.

Our work presents a novel tool 1 for exploring mineral data

with GLC and classifying unknown points with this technique.

We also present an approach based on anchor or scope rules

1https://icic.uns.edu.ar/sandboxviz/
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to enhance the understanding of the classification proposed by

our tool.

The paper is structured as follows: Section II introduces

the mathematical formalism of GLC and the identified visual

mappings. Sections III, IV, and V explain how the tool was

designed and the interactions it supports. Sections VI and

VII outline the workflow for conducting the analysis and

real-world usage scenarios. Finally, we discuss the findings,

limitations, and future work.

II. DEFINITIONS AND RATIONAL DESIGN

In this section, the basic mathematical concepts for the

development of GLC techniques are introduced, along with

how the corresponding visual mapping will be created in the

tool. To understand how Shifted Paired Coordinates (SPC)

work, it’s necessary to introduce the basic algorithm of the

techniques from which they derive:

• Normalization of Dimensions: Normalize the dimensions

to a range defined by the expert, typically [0, 1], for

simplification purposes.

• Pairing Attributes: Group the attributes into consecutive

disjoint pairs, such as (x1, x2), (x3, x4), ..., (xn−1, xn).
• Plotting: Plot each pair in its corresponding normalized

Cartesian system.

• Directed Graph Generation: Generate a directed graph

between the generated pairs, for example, (x1, x2) →
(x3, x4) →, ..., (xn−1, xn).

For the specific case of SPC, each pair of values is plotted

in its corresponding orthogonal system with its respective

displacement. This shift is achieved by adding a scalar to the

value pairs, creating different configurations for constructing

directed graphs.

Regarding the development of the tool, the following visual

mappings were taken into account:

Axes Layout: In this work, we introduce a layout based on

Shifted Paired Coordinates, where dimensions are arranged

in consecutive disjoint pairs, each represented by a Cartesian

system. Dimensions are previously normalized to enable vi-

sual comparisons. Additionally, the positions of the different

Cartesian systems can be freely chosen, but for convenience,

they are arranged side by side.

Data Items: The items corresponding to each data point

are represented by a polyline that connects positions in each

Cartesian system.

Slope Change: Given that each segment of a polyline

indicates the relationship between pairs of dimensions, its

slope serves as a reference and can be employed to enhance

visibility in the graph. In this case, we map the slope value to

the alpha channel of a visual mark to make the zones where

there is no correlation between consecutive pairs more visible.

Dimensional Reordering: A dataset can have multiple di-

mensions, it is important to identify which ones are most

relevant for analysis. Therefore, reordering to optimize the

search for visual patterns becomes a necessary task to enhance

the quality of representation. For each pair of dimensions,

we computed the Spearman rank-order correlation coefficient

Fig. 1. Correlation Matrix among dimensions.

to evaluate the monotonic relationships, capturing both linear

and non-linear associations. These coefficients were organized

into a correlation matrix, where each cell (i, j) represents the

correlation between the ith and jth dimensions(see Figure 1).

In this way, the goal is to optimize coordinate systems that

provide the most information to the user.

III. TOOL

The system was built using D3.js [6], a modified version

of npGLC [7], and offline processing methods for computing

clusters and rendering tasks.

The tool developed for this work consists of three main

views: Setting View, VKD View, and GLC View (see Figure 2).

The Filter View allows the user to perform configuration

activities before analyzing the data, such as:

• Selecting which validation data will be plotted in the GLC

View.

• Choosing which classes of the dataset to visualize.

• Setting the threshold value for HDBSCAN required to

eliminate samples not belonging to one of the calculated

clusters. These clusters are calculated offline on the

server-side using the HDBSCAN [8] library to improve

the performance of the tool. By default, the method’s

base parameters are sufficient for handling the dataset

employed.

• Options for downloading and/or saving results obtained

after the analysis.

The VKD View displays relevant information regarding the

VKD rules generated when the user interacts with the GLC

View, including the degree of purity of this rule set. The purity

degree in this case is calculated as the accuracy value of the

selected data by the VKD rules to belong to each class.

The GLC View is based on SPC representation over a set of

predefined features that are of interest to domain experts. In

this view, the user can interactively select regions of the data

space using the rectangular brushing tool, which are potential

candidates to be part of a VKD rule for data classification.

The selections made are loaded and displayed in the VKD

View, providing the user with continuous feedback on the

construction of the rule set used to characterize a class or

relevant data subset.
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Fig. 2. Overview of our tool. (A) Filter View: Settings and auxiliary options, (B) VKD View: Contains the decision rules generated by the expert and the
accuracy value for each class according to the selection, and (C) GLC View: Top row shows the GLC view based on SPC, where in addition to the polylines
connecting each Cartesian system, points are represented for each pair of dimensions (black points). Bottom row displays the scatterplot representation of
each Cartesian system of the SPC as an auxiliary view to display the data selected in the view above.

IV. INTERACTIONS

The developed tool features a set of brushing-based inter-

actions that allow users to manipulate the SPC graph. Users

can select regions in each of the defined orthogonal systems

to highlight the attribute regions of interest.

When a region is selected in any of the coordinate sys-

tems displaying the polylines related to the training dataset

and validation data, an auxiliary scatterplot representation is

created with the zoomed-in selected points for interaction. In

this linked view, users can remove points from the reference

dataset to eliminate outliers that do not contribute to the purity

of the classes, mostly due to measurement errors or invalid

data according to their feature values (see Figure 3).

V. PIPELINE AND MATERIALS

In this section, the working methodology and the datasets

used for the usage scenarios are introduced. It details how

the developed tool allows the analysis of this data through

classification techniques and outlier detection.

We utilized the dataset provided by Barnes and Roeder [9],

which defined various tectonic settings based on multiple

mineral features such as oxides (SiO2, TiO2, etc), cations

(Si, Ti, etc), and end members (MgAl2O4, FeFe2O4, etc

). Because an end member is a mineral that represents the

extreme end of a mineral series in terms of purity, it is more

suitable for analyzing this spinel dataset It is well-known that

this dataset serves as a benchmark for the development of new

Fig. 3. Through multiple brush interactions, the expert removes instances
from the auxiliary view in an attempt to determine which class the purple-
colored validation points belong to.

techniques for mineral data analysis, making it particularly

useful for the development and validation of new visual

tools. This dataset has multiple classes that are relevant for

most experts, such as BASALT, OPHIOLITE, XENOLITH,

LAYERED INTRUSION, among others.

The validation data used consists of rock mineral datasets

from the Northwest and South of Argentina. To maintain con-

sistency with the B&R [9] dataset and to ensure comparability,

the validation data went through the same preprocessing steps,

which included the removal of samples with measurement
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errors or for domain-specific reasons, as well as feature

scaling.

The method employed in this work focuses on ad-

dressing two significant problems: detecting outliers and

noisy instances and generating rules to characterize each

class dataset [10]. Regarding the first problem, one of the

major challenges in geological data is how to deal with sam-

ples that generate noise and do not belong to a defined group,

and therefore are outliers. One of the reference techniques for

this is HDBSCAN [11], [12], which uses density analysis to

identify clusters without the need for user intervention. This

method may be used to filter the dataset and provide better

visual patterns by calculating the probability value of each

sample’s membership in a cluster.

To characterize the different classes and determine which

ones the validation data belongs to, we employ an approach

based on rules such as Scope Rules or Anchors [13]. Using

this technique, decision rules based on the values that sample

features should have in order to fall into a certain class may be

extracted. These rules are extracted using interpretable models

such as Decision Rules [14]. Another approach that can be

used is the Box Classification Algorithm [15], which seeks

to generate these rules by exploring different combinations

of variable ranges that maximize sample membership in a

class. Decision Trees may be used to guide the search for

optimum rules, hence reducing the computation time required

to determine optimal boxes.

VI. USAGE SCENARIOS

This section presents two different usage scenarios based on

two datasets provided by domain experts. To better understand

the nature of the data we perform a preliminary analysis of

the correlation, the importance of the features, and which of

them are more relevant for the domain experts. After that,

the chosen subset of features was only end-members. These

features are continuous values that represent a percentage

of the total composition of a rock. The pre-processing step

involves normalization and removing null values to have a

consistent dataset.

Norhtwest Dataset
The first usage scenario focuses on a set of mineral data

from Northwest Argentina, divided into two sub-datasets. In

this case, the threshold value is defined as 0.7 to remove data

that do not contribute to the analysis. After this step, it can

be observed that the structural behavior of each class is more

compact while still preserving some outliers.

When visualizing the validation data corresponding to each

sub-dataset, some particular behaviors can be observed:

Sub-dataset 1: When the user selects a box covering the

validation data in each Cartesian system (see Figure 4), it

is evident that they may belong to two possible classes:

BASALTS (Figure 5-left) and OPHIOLITES (Figure 5-right).

If the user relaxes the box boundaries and leaves out some

validation points that visually appear to behave differently, the

purity degree improves for one class over the other.

Fig. 4. VKD rules on Northwest data (Subdataset 1). At the top, it is possible
see the rules generated from the completed sections and the possible classes
to which those items correspond.

The VKD rules extracted after the user interacted with GLC

View were:

IF MgAl2O4 is in [0.3617, 0.3617] AND
FeFe2O4 is in [0.0023, 0.0328] AND
FeAl2O4 is in [0.1085, 0.4106] AND
MgFe2O4 is in [0.0853, 0.2175] AND
MgCr2O4 is in [0.3468, 0.6213] AND
FeCr2O4 is in [0.0514, 0.1480] THEN: class BASALT

Sub-dataset 2: In this situation, we have a scenario similar

to the previous one, but now the user’s established VKD

rules help differentiate between two classes: LAYERED IN-

TRUSIONS and BASALT. Due to the nature of the data,

these classes have many similar distributions in these attributes

leading to confusion in determining the class to which a point

belongs. In this case, the user can use the removing filters

in the auxiliary scatterplot to remove noisy sub-regions from

the main selection over SPC (see Figure 6). When the user

finishes removing points, we can see that the percentage purity

degree improves in comparison with the original state. For

these scenarios where the classes are not well specified due

to outliers or points with strange behavior, experts appreciate

this interaction for mitigating visual occlusion on GLC View.

South Dataset
This second usage scenario is focused on data extracted

from South Argentina, where the domain expert needs to

identify to which classes the data belongs. Initially, the data

are presented as having a high probability of belonging to the

Xenolith class. The expert makes selections in the different

Cartesian systems to delimit the regions of interest in the

multiclass context. In this way, it is found that besides the

Xenoliths class (Figure 8), the Basalts (Figure 9) and Ophio-

lites (Figure 10) classes are also candidates for the validation

data.

Although the analysis diverges from the expected behavior,

it gives rise to a new type of search for the reason behind

this prediction. For this purpose, the VKD View is useful for

understanding how the attributes interact with each possible

class.

The VKD rules extracted after the user interacted with GLC

View were:

IF MgAl2O4 is in [0.4149, 0.9638] AND
FeFe2O4 is in [0.0000, 0.0548] AND
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Fig. 5. Class Basalt on Northwest data (subdataset 1) on the left and class Ophiolite on Northwest data (subdataset 1) on the right.

Fig. 6. Selection and filtering on SPC to improve the purity of the classes of validation data.

FeAl2O4 is in [0.1957, 0.5277] AND
MgFe2O4 is in [0.0023, 0.1548] AND
MgCr2O4 is in [0.1085, 0.4872] AND
FeCr2O4 is in [0.0068, 0.1881] AND
Mg2TiO4 is in [0.0000, 0.0979] AND
Fe2TiO4 is in [0.0000, 0.0277 THEN: class XENOLITH

With the rules obtained through interactions on the GLC
View, the expert can determine the attribute ranges that de-

termine the probability of belonging to a class. Furthermore,

since these are interval rules describing how this visual data

classification mechanism works, they can be compared with

similar analytical models such as Decision Trees, Random

Forests, Linear Regression, etc.

VII. DISCUSSION AND CONCLUSIONS

This paper presents an application of GLC techniques in

geological sciences to facilitate pattern discovery. While most

current geological solutions are based on dimensionality re-

duction, the use of SPC allows for the preservation of original

attributes. This quality is required by domain experts in their

analyses, in addition to the ability to interact with the graph

to enhance data interpretation.

However, one of the major challenges for domain experts

is that utilizing GLC in its various forms (SPC, etc) requires

a deep understanding of them. This is because the best GLC
representation is obtained by testing different combinations of

configurations such as the positioning of Cartesian systems and

dimension ordering. Thanks to the use of noisy point removal

filters, it is possible to refine the VKD rules to achieve a better

interpretation of the predicted classes for the validation data.

As future work, the development of a pipeline for visual

analysis assisted by user feedback is proposed, which would

allow geologists to find the best GLC configuration to solve a

task.
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