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Abstract
We advance on the conversion of bipartite quantum states via local operations and classical
communication (LOCC) for infinite-dimensional systems. We introduce δ-LOCC convertibility
based on the observation that any pure state can be approximated by a state with finite-support
Schmidt coefficients. We show that δ-LOCC convertibility of bipartite states is fully characterized
by a majorization relation between the sequences of squared Schmidt coefficients, providing a novel
extension of Nielsen’s theorem for infinite-dimensional systems. Hence, our definition is equivalent
to the one of ϵ-LOCC convertibility (Owari et al 2008 Quantum Inf. Comput. 8 0030), but deals
with states having finitely supported sequences of Schmidt coefficients. Additionally, we discuss the
notions of optimal common resource and optimal common product in this scenario. The optimal
common product always exists, whereas the optimal common resource depends on the existence of
a common resource. This highlights a distinction between the resource-theoretic aspects of finite
versus infinite-dimensional systems. Our results rely on the order-theoretic properties of
majorization for infinite sequences, applicable beyond the LOCC convertibility problem.

1. Introduction

The purpose of this article is to explore the complexities that may arise for the infinite-dimensional quantum
systems when dealing with the convertibility of entangled states by local operations and classical
communication (LOCC) [1]. For example, it may be the case that a state cannot be converted by LOCC to a
target state but can be converted to another state arbitrarily close to the former. To avoid such discontinuity,
the notion of ϵ-convertibility under LOCC (ϵ-LOCC) was introduced [2]. Roughly speaking, |ψ⟩ is ϵ-LOCC
convertible to |ϕ⟩ if, for any neighborhood of |ϕ⟩, there exists a LOCC operation that takes |ψ⟩ to a state in
that neighborhood of |ϕ⟩. Furthermore, ϵ-LOCC convertibility is completely characterized in terms of a
majorization relation between the sequences formed by the squared Schmidt coefficients [2, 3], which can be
viewed as an extension of Nielsen’s theorem [4] to the infinite-dimensional case. Additionally, a
generalization of this result applies to quantum systems represented by commuting semi-finite von
Neumann algebras [5].

The study of infinite-dimensional scenarios is essential both from a purely theoretical perspective and
from practical applications to real systems. The qubits currently being used in various quantum computing
platforms are ultimately embedded in infinite-dimensional systems, whether trapped ions or
superconducting qubits. Also, many other applications of interest involve continuous-variable systems,
meaning they are inherently of infinite dimension. A more comprehensive discussion on this point can be
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found, for example, in a recent work where the authors extend a known result on entanglement cost to the
infinite-dimensional case [6].

Studying LOCC convertibility offers the advantage of operationally comparing entangled resources
without initially specifying an entanglement measure. Specifically, if one state can be converted to another
under any of the discussed LOCC transformations, the former state contains at least as much entanglement
as the latter. While this method has some limitations, as state convertibility does not typically establish a total
order, it still provides valuable insights.

Our contribution involves the introduction and discussion of a new definition of approximate LOCC
convertibility for infinite-dimensional systems, which we refer to as δ-LOCC convertibility. This concept
relies on the observation that, for any bipartite pure state, there exists a state that is arbitrarily close to it (in
terms of the trace distance) and whose Schmidt coefficients have finite support. We will demonstrate that
this approach turns out to be equivalent to ϵ-LOCC convertibility, while offering the added advantage of
dealing with states whose sequences of Schmidt coefficients have finite support.

Additionally, we consider the following problem: suppose that two separated parties have to perform a
series of quantum information tasks that require different entangled states. Rather than sharing multiple
states, they aim to use a single entangled state, manipulating it to suit each task. Thus, the question arises: for
any given set of target states, is there a minimal entangled state that can be locally transformed into any other
target state using LOCC? This state, if exists, is known as an optimal common resource of the set [7]. Similarly,
we also explore the existence of a maximal entangled state that can be obtained from any state of the original
set by LOCC. This state, if exists, is referred to as an optimal common product of the set [8]. Understanding
these problems is crucial for quantum resource theories and entanglement [9]. Exploring these issues in an
infinite-dimensional setting provides insights into the fundamental properties of entanglement and its role
as a resource in quantum information [10].

We recall that, in the case of pure bipartite finite-dimensional systems, the existence of an optimal
common resource and an optimal common product has been established using the link between LOCC
convertibility and majorization, as shown by Nielsen’s theorem [4], and the fact that majorization forms a
complete lattice [11, 12].

Here, we exploit the characterization of δ-LOCC (or, equivalently ϵ-LOCC) in terms of majorization in
order to describe the optimal common resource and optimal common product for infinite-dimensional
systems. Unlike the finite-dimensional case, we obtain that the existence of the optimal common resource is
conditioned to the existence of a common resource of the set state under consideration, which does not
always exist. In particular, we provide two families of states, created by applying a two-mode squeezer to the
product of a Fock state and the vacuum [13], for which the optimal common resource does not exist. This
poses a novel distinction in the entanglement resource theories of finite versus infinite-dimensional quantum
systems. On the other hand, we show that the optimal common product always exists. These results stem
from our characterization of the majorization lattice fan or infinite-dimensional setting, which is a result of
mathematical interest in itself and can be applied beyond the scope of the LOCC convertibility problem
addressed here.

The rest of the paper is organized as follows. In section 2, we present some important definition and
results on majorization theory for infinite sequences. Also, we introduce the notion of majorization for
infinite sequences based on finitely supported approximations. In section 3, we recall the definition of
ϵ-convertibility and introduce the concept of δ-convertibility. Also, we state an extension of Nielsen’s
theorem based on our definition, and prove the equivalence between the two notions. In section 4, we show
some applications of these ideas. Finally, in section 4, we provide some concluding remarks.

2. Majorization for infinite sequences

In this section, we present two results regarding the concept of majorization for infinite sequences, which will
be useful to discuss the notion of LOCC convertibility. At the same time, they hold mathematical interest in
their own right. For references regarding the finite-dimensional case, we recommend consulting the
following sources [11, 12, 14].

To ensure clarity in our discussion, we introduce some notations. We consider the space ℓ1 ([0,1])≡ ℓ1 of
sequences whose series is absolutely convergent, ℓ1([0,1]) =

{
(xn)n∈N ∈ [0,1]N :

∑
n∈N xn <∞

}
.

Additionally, we define the space ℓ1 (ℓ with one as sub-index) as the set of sequences (xn)n∈N ∈ ℓ1([0,1]) that
can be rearranged into non-increasing sequences. Accordingly, we define x↓ as a sequence whose components
are rearranged in non-increasing order, i.e. xn ⩾ xn+1 for all n ∈ N, and ℓ↓1 as the set of correspondingly
rearranged sequences.

We also introduce the space∆∞ as the set of sequences on ℓ1 that satisfy the normalization condition∑∞
n=1 xn = 1. This is nothing else that the set of denumerable probability vectors. We use∆↓

∞ to denote the
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set denumerable probability vectors whose components are sorted in non-increasing order. In addition, we
consider the subset of denumerable probability vectors with finite support, denoted as∆ ′

∞.
We recall the notion of weak submajorization, which is defined as follows [15].

Definition 1. Let x,y ∈ ℓ1. Then, x is said to be weakly submajorized by y, denoted as x⪯w y, if

k∑
n=1

x↓n ⩽
k∑

n=1

y↓n , ∀k ∈ N. (1)

In addition to weak submajorization, we are interested in the notion of majorization in infinite
dimensions [16]. More precisely, if x and y are sequences on∆∞ such that x⪯w y then x is said to be
majorized by y, and denoted as x⪯ y.

2.1. Majorization lattice for infinite sequences
We now present our first result.

Proposition 2. The poset ⟨ℓ↓1 ,⪯w,0⟩ is a lattice with bottom element 0= (0,0, . . .). Moreover, it is
∧
-complete

and conditionally
∨
-complete.

Proof. First, notice that the binary operation ⪯w gives to ℓ↓1 a structure of a partially ordered set (poset).
Indeed,⪯w is reflexive and transitive and by an inductive argument, it follows that⪯w is anti-symmetric.

Now, let us prove the lattice structure of ℓ↓1 . Let S be a non-empty subset and let M be a fixed positive
integer. Consider the infimum of theM-partial sums of the elements in S,

sM = inf{sM (x) : x ∈ S} .

The sequence of partial sums {sM}M∈N is increasing and, given that we are dealing with non-increasing ordered
sequences, it satisfies [11]

2sM ⩾ sM−1 + sM+1.

Also for any x ∈ S, limM→∞ sM ⩽ limM→∞ sM(x)<∞. Hence, the sequence {mM}M∈N, where mM = sM−
sM−1, is in ℓ

↓
1 and clearly is the infimum of S, that is,

∧
S= {mM}M∈N. In particular,

∧
ℓ↓1 = 0 ∈ ℓ

↓
1 .

Let S ′ ⊆ ℓ↓1 be another non-empty, upper-bounded subset, and consider the setUp(S ′) of all upper bounds
of S′. The result follows by recalling that the supremum of S′ equals the infimum of Up(S ′), that is,

∨
S ′ =∧

Up(S ′). Thus, the lattice is conditionally
∨
-complete.

We present the following observation of the order-structure of the set∆↓
∞, which arise as a peculiarity in

the infinite-dimensional context.

Observation 3. The set∆↓
∞ is not bounded from below.

In other words, there is no analog to the uniform probability vector for infinite-dimensional systems. An
instance of this situation is presented in the example 7. On the other side, it can be proved that any finite
subset of∆∞ is bounded from below.

Lemma 4. Let us consider the poset
〈
∆↓

∞,⪯,1
〉
, where 1= (1,0,0, . . .). Then, for each non-empty finite subset

S of∆↓
∞, S admits a lower bound, that is, there exists z ∈∆∞ such that z⪯ x for all x ∈ S .

Proof. Without loss of generality, we can assume S = {x,y}. Let sM =min{sM(x), sM(y)} be the minimum of
theM-partial sums. The sequence {sM}M∈N is increasing and satisfies

2sM ⩾ sM−1 + sM+1.

It remains to check that limM→∞ sM = 1, but this is direct since limM→∞ sM(x) = 1 and limM→∞
sM(y) = 1.

Lemma 5. Let S be a non-empty subset of∆↓
∞ and assume that z ∈∆↓

∞ is a lower bound. Then, there exists the
infimum of S .

Proof. Let s ∈ ℓ↓1 be the infimum of S . Let us check that s is in fact in ∆↓
∞. Given that z⪯ s we have for all

k ∈ N,

k∑
n=1

zn ⩽
k∑

n=1

sn ⩽ 1.
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Taking k→∞, we get s ∈∆↓
∞.

We are now able to state the main result of this section, in which we demonstrate the lattice structure of
the poset

〈
∆↓

∞,⪯,1
〉
, and its completeness properties.

Proposition 6. The poset
〈
∆↓

∞,⪯,1
〉
is a lattice with top element 1= (1,0,0, . . .). Moreover, it is

∨
-complete

and conditionally
∧
-complete.

Proof. It is straightforward to observe that lemma 4 guarantees that ∆↓
∞ is a lattice. Moreover, by lemma 5

the lattice is conditionally
∧
-complete. Let us prove now that ∆↓

∞ is indeed
∨
-complete. Let S ′ be another

non-empty subset and let Up(S ′) be the non-empty set of upper bounds. Notice that any element of S ′ is a
lower bound ofUp(S ′). Hence, from the previous lemma,Up(S ′) has an infimum in∆↓

∞. In other words, the
supremum of S′ is in∆↓

∞.

Let us explore two illustrative examples that shed light on these results (later on, we will discuss the
physical relevance of these examples). In the first case, we present two different families of sequences which
infima do not exist, while in the second example, the infimum is clearly defined.

Example 7. Consider the families of sequences {x(k)(λ)}k∈N0 and {x(k)(λ)}λ∈(0,1), where

x(k)n (λ) =

(
n+ k

k

)(
1−λ2

)k+1
λ2n, n= 0,1, . . . . (2)

Let us show that the infima
∧
{x(k)(λ)}k∈N0 and

∧
{x(k)(λ)}λ∈(0,1) do not exist, whereas the suprema are given

by
∨
{x(k)(λ)}k∈N0 = x(0)(λ) and

∨
{x(k)(λ)}λ∈(0,1) = (1,0, . . . ,0). First, we prove that each component of

x(k)(λ) tends to zero by proving that some of its factors tends to zero and the others remain bounded. Let
r> n be such that δ := (1−λ2)(n/r+ 1)< 1 and let k→∞, then

(
1−λ2

)k(n+ k

k

)
=
(
1−λ2

)k n+ k

k

n+ k− 1

k− 1
. . .

n+ 1

1

=
(
1−λ2

)k(n
k
+ 1
)( n

k− 1
+ 1

)
. . .
(n
1
+ 1
)

⩽
(
1−λ2

)k(n
r
+ 1
)k−r(n

1
+ 1
)r

=
((

1−λ2
)(n

r
+ 1
))k−r((

1−λ2
)(n

1
+ 1
))r

< δk−r (n+ 1)r→ 0.

Then x(k)n (λ)→ 0 when k→∞. It is easy to check that x(k)n (λ)→ 0 when λ→ 1. Then, it follows the non-
existence of the infima for both sets.

The formof the suprema follows from the fact that x(k+1)(λ)⪯ x(k)(λ) and x(k)(λ)⪯ x(k)(λ ′)withλ ′ ⩽ λ,
see [13].

The following example is a family of incomparable sequences that admits an infimum.

Example 8. Consider the family of sequences {x(k)}k∈N⩾3
defined as

x(k) =

1− 1

logk
,

k︷ ︸︸ ︷
1

k logk
, . . . ,

1

k logk
,0, . . . ,0

 . (3)

First, we can prove that the infimum
∧
{x(k)}k∈N⩾3

exists. TheM-partial sum of the sequence x(k) with k⩾ 3
is given by

sM
(
x(k)
)
=

{
1− 1

logk +(M− 1) 1
k logk if 1⩽M⩽ k+ 1,

1 ifM⩾ k+ 1.

In order to compute infk⩾3 sM(x(k)) we are going to use some techniques from calculus. For a fixedM,
consider the function s(ω),

s(ω) = 1− 1

logω
+(M− 1)

1

ω logω
, ω ⩾ 3.

4
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ForM= 1,2, we have s ′(ω)> 0, so the minimum is attained for ω= 3. ForM⩾ 3, taking derivatives and
equating to 0, it follows that s(ω) has only one minimum at ω0, where ω0 satisfies

ω0

1+ logω0
=M− 1.

Given that s(ω) has only one critical point, the number k such that sM(x(k)) is minimum happens at k= ⌊ω0⌋
or at k= ⌈ω0⌉. In other words, givenM⩾ 3, there exists k0 such that

inf
k⩾3

sM
(
x(k)
)
= sM

(
x(k0)

)
.

It can be shown directly forM= 1,2,3 that

inf
k⩾3

s1
(
x(k)
)
= 1− 1

log3
, inf

k⩾3
s2
(
x(k)
)
= 1− 2

3 log3
, inf

k⩾3
s3
(
x(k)
)
= 1− 3

5 log5
.

The value ω0 can be computed (if necessary) with a fixed-point iteration,

r0 = 1, ri+1 = (M− 1)(1+ log ri) , i⩾ 1.

Notice that r1 =M− 1 and if ri ⩾ 1, the value of ri+1 is always greater thanM− 1. This implies that the
function (M− 1)(1+ logx) is a contraction implying the convergence of the method to ω0.

Finally, it is easy to observe that the supremum of this family is
∨
{x(k)}k∈N⩾3

= (1,0, . . .).

2.2. Approximate majorization in terms of finite support probability vectors
We will now proceed to define a notion of majorization in the infinite-dimensional case, based on
approximations of the original sequences by sequences with finite support. With that purpose in mind, we
first prove lemma 9 that provides an upper bound for the trace distance between two sequences in∆↓

∞
coinciding in the first N components.

Lemma 9. Let x,x ′ ∈∆↓
∞ such that xn = x ′n for all n⩽ N and

∑N
n=1 xn = sN. Then,

dtr (x,x
′)⩽

√
2(1− sN), (4)

where dtr(x,y) =
√

1−
(√

x · √y
)2

with
√
x= (

√
xn)n∈N and

√
y= (

√
yn)n∈N.

Proof. By direct calculation of the trace distance between x and its finite support counterpart, x′, we have

dtr (x,x
′)
2
= 1−

(√
x ·
√
x ′
)2

=
(
1+
√
x ·
√
x ′
)(

1−
√
x ·
√
x ′
)

⩽ 2
(
1−
√
x ·
√
x ′
)

= 2

(
1−

N∑
n=1

xn−
∞∑

n=N+1

√
xn
√

x ′n

)

⩽ 2

(
1−

N∑
n=1

xn

)
.

Building on the previous lemma, we can now demonstrate that any sequence x ∈∆↓
∞ can be

approximated by another finite-support sequence x ′ ∈∆ ′↓
∞, which is arbitrarily close to x and majorizes the

latter.

Proposition 10. Let x ∈∆↓
∞. For any δ ∈ (0,1) and any K ∈ N, there exists x ′ ∈∆ ′↓

∞ such that

x ′n = xn for 1⩽ n⩽ K, x⪯ x ′ and dtr (x,x
′)⩽ δ. (5)

Proof. In order to prove this result, we are going to construct one such x′ that fulfills the requirements. Given
x ∈∆↓

∞, δ ∈ (0,1) and K ∈ N, there exist N,M⩾ K and x ′ = (x ′n)n∈N ∈∆ ′↓
∞ where

5



New J. Phys. 26 (2024) 063016 C Massri et al

(i) N is such that sN ⩾ 1− δ2

2 with sN =
∑N

n=1 xn,

(ii) M is such thatM=
⌊
1−sN
xN

⌋
+N,

(iii) x ′n = xn for 1⩽ n⩽ N,
(iv) x ′n = xN for N+ 1⩽ n⩽M,
(v) x ′n = 1− sN− (M−N)xN for n=M+ 1
(vi) x ′n = 0 for n>M+ 1,

First, let us observe that x ′ ∈∆ ′↓
∞. By construction,

∑∞
n=1 x

′
n = 1. Thus, all that remains is to demonstrate

that xN ⩾ x ′M+1, which is also directly satisfied by construction, sinceM+ 1⩾ 1−sN
xN

+N. Then, it follows that
sk(x) = sk(x ′) for 1⩽ k⩽ N, sk(x)⩽ sk(x ′) for k⩾ N+ 1. Therefore, x⪯ x ′. Finally, by lemma 9, one has that
dtr(x,x ′)⩽ δ.

It is also interesting to note that, as we demonstrate in the following proposition, the newly introduced
approximation scheme preserves the majorization order (see figure 1(a)).

Proposition 11. Let x,y ∈∆↓
∞ be such that x⪯ y and let δ > 0. Then there exist x ′,y ′ ∈∆ ′↓

∞ such that
dtr(x,x ′)⩽ δ and dtr(y,y ′)⩽ δ, and x ′ ⪯ y ′.

Proof. Given δ > 0, there exists y′ such that y⪯ y ′ and dtr(y,y ′)⩽ δ, by proposition 10. Let K ∈ N be such
that y ′n = 0 for all n⩾ K. For this K and for the given δ > 0, there exists x′ such that x⪯ x ′ and dtr(x,x ′)⩽ δ,
by proposition 10. Let us see that x ′ ⪯ y ′. By construction, we have sk(x ′)⩽ sk(y ′) for 1⩽ k⩽ K. For all k⩾ K,
sk(x ′)⩾ 1= sk(y ′).

In addition, we have the converse result.

Proposition 12. Let x,y ∈∆↓
∞. If for all δ > 0, there exists x ′,y ′ with finite support such that dtr(x,x ′)< δ,

dtr(y,y ′)< δ and x ′ ⪯ y ′. Then, x⪯ y.

Proof. By hypothesis we can construct sequences {x ′m}∞m=1 and {y ′m}∞m=1 such that dtr(x,x ′m)< 1/m and
dtr(y,y ′m)< 1/m for all m ∈ N. Notice that the first k coordinates of x ′m (resp. y ′m) converge to the first k
coordinates of x (resp. y). Indeed, let x= (x1, . . . ,xk) and x ′m = (x ′m1, . . . ,x

′
mk). Then,

∥
√
x−
√

x ′m∥22 =
k∑

n=1

(√
xn−

√
x ′mn

)2
⩽

∞∑
n=1

(√
xn−

√
x ′mn

)2
= 2− 2

∞∑
n=1

√
xn
√

x ′mn

= 2− 2(x · x ′m)

⩽ 2− 2(x · x ′m)
2

= 2dtr (x,x
′
m)

2

<
2

m2
.

Given that all norms are equivalent inRk, we get that x ′m converges to x and in particular, being sk a continuous
function, sk(x ′m) converges to sk(x). But we have the equalities sk(x ′m) = sk(x ′m) and sk(x) = sk(x) (same for
sk(y ′m) and sk(y)). Then, taking limit inm to the relation sk(x ′m)⩽ sk(y ′m) it follows that sk(x)⩽ sk(y).

Finally, from proposition 11 and appealing to the properties of the lattice, the following observation
about the infimum and supremum elements for infinite sequences and their finite-support counterparts
follows (see figures 1(b) and (c)).

Observation 13. Consider x,y ∈∆↓
∞ with x′ and y′ representing their respective approximated finite-support

sequences. Then, one has x∧ y⪯ x ′ ∧ y ′. Similarly, for the supremum, one can establish x∨ y⪯ x ′ ∨ y ′.

3. LOCC convertibility for infinite-dimensional systems

In this section, we present a new definition of LOCC convertibility for infinite-dimensional systems. Later
on, we will prove that our definition coincides with the one already defined by Owari et al [2], which is
known as ϵ-LOCC convertibility.

6
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Figure 1. Hasse diagrams showing the majorization relations proved in: (a) proposition 11; (b) and (c) observation 13.

In what follows, we consider composite systems that consist of two parties, A and B, such that the Hilbert
space of the joint system isH=HA⊗HB, with dimHA =∞ and dimHB =∞.

3.1. ϵ-LOCC convertibility
First, let us recall the Schmidt decomposition of bipartite pure states in the infinite-dimensional case [2].

Theorem 14 ([2, theorem 4]). For any |ψ⟩ ∈ HA⊗HB, there exist orthonormal sets (but not necessarily basis
sets) {|an⟩}n∈N and {|bn⟩}n∈N ofHA, andHB, respectively, such that

|ψ⟩=
∞∑
n=1

√
ψn|an⟩|bn⟩, (6)

where ψ = (ψi)i∈N ∈∆↓
∞.

Second, we review the notion of ϵ-LOCC convertibility introduced in [2], defined in terms of the trace
distance ∥|ψ⟩⟨ψ| − |ϕ⟩⟨ϕ|∥tr =

√
1− |⟨ψ|ϕ⟩|2 between pure states.

Definition 15 ([2, definition 1]). |ψ⟩ is ϵ-convertible to |ϕ⟩ by LOCC, denoted as |ψ⟩ −→
ϵ−LOCC

|ϕ⟩, if for any
ϵ> 0, there exists a LOCC operation Λϵ such that ∥Λϵ(|ψ⟩⟨ψ|)− |ϕ⟩⟨ϕ|∥tr < ϵ.

Finally, we recall the following theorem stating the equivalence between ϵ-LOCC and majorization of the
squared Schmidt coefficients, which can be viewed as the infinite-dimensional version of Nielsen’s
theorem [4].

Theorem 16 ([2, theorem 1]). Let |ψ⟩ and |ϕ⟩ bipartite pure states belonging toHA⊗HB. Then,
|ψ⟩ −→

ϵ−LOCC
|ϕ⟩ if and only if ψ ⪯ ϕ, where ψ and ϕ are the sequences formed by the squared Schmidt coefficients

of |ψ⟩ and |ϕ⟩, respectively.

It is worth mentioning that in the work [2], the authors not only give an infinite-dimensional extension
of the deterministic conversion protocol via LOCC, but they also study the probabilistic case via
stochastic-LOCC. Here, we focus on the deterministic scenario and leave the probabilistic case for future
work.

3.2. δ-LOCC convertibility
The following two observations inspire our definition of LOCC convertibility:

• The trace distance between any two bipartite pure states belonging to an infinite-dimensional Hilbert space
is always minimized when they share the same Schmidt orthonormal sets.
• For any bipartite pure state |ψ⟩ belonging to HA⊗HB, there exists another pure state |ψ ′⟩ with same
orthonormal Schmidt sets than |ψ⟩ and finite support, such that ∥|ψ⟩⟨ψ| − |ψ ′⟩⟨ψ ′|∥tr = dtr(ψ,ψ ′).

The latter is a direct consequence of proposition 10. Indeed, for any δ ∈ (0,1), proposition 10 tell us how to
choose the Schmidt coefficients of |ψ ′⟩ in order to have ∥|ψ⟩⟨ψ| − |ψ ′⟩⟨ψ ′|∥tr = dtr(ψ,ψ ′)< δ.

Regarding the first observation, we can prove the following proposition that resembles the
finite-dimensional case (see [17, lemma 1]).

7
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Proposition 17. Let |ψ⟩ and |ϕ⟩ bipartite pure states belonging toHA⊗HB with the same Schmidt
orthonormal sets. Then,

∥|ψ⟩⟨ψ| − |ϕ⟩⟨ϕ|∥tr ⩽ ∥|ψUV⟩⟨ψUV| − |ϕ⟩⟨ϕ|∥tr, (7)

where |ψUV⟩= U⊗V|ψ⟩, with U and V being isometries. In particular, we have ∥|ψ⟩⟨ψ| − |ϕ⟩⟨ϕ|∥tr
= dtr(ψ,ϕ), where ψ and ϕ denotes the corresponding sequences formed by the squared Schmidt coefficients of
the states.

Proof. We will extend the second proof in [17, lemma 1] to the infinite-dimensional case. Let us prove

|⟨ψ|U⊗V|ϕ⟩|2 ⩽ |⟨ψ|ϕ⟩|2.

Let σϕ and σψ be diagonal matrices of infinite dimensions constructed from the ordered Schmidt coefficients
of |ϕ⟩ and |ψ⟩.

Then, it follows that

|⟨ψ|U⊗V|ϕ⟩|2 = | tr
(
σϕVσψUt

)
|2

= | tr
(√

σϕV
√
σψ
√
σψUt

√
σϕ
)
|2

⩽ | tr
(
σψV†σϕV

)
|| tr
(
σϕUσψUt

)
|.

Since σψ is diagonal, tr(σψC) = tr(σψdiag(C)). Also, given that C= V†σϕV is congruent to σϕ, it follows
from [15, corollary 6.1 S(iii’is)] that c, the diagonal of C, is majorized by ϕ, where ϕ is the diagonal of σϕ,

c⪯ ϕ.

Furthermore, from (the proof of) [18, theorem 4.2] it follows that for every ϵ> 0, there exists a con-
vex combination of permutations such that ∥c−

∑s
i=1 p

ϵ
i P
ϵ
i ϕ∥1 < ϵ. In particular, there exists a sequence

{
∑sn

i=1 p
n
i P

n
i ϕ}n⩾0 such that

lim
n→∞

sn∑
i=1

pni P
n
i ϕ = c.

Then, by the continuity of the map µψ : ℓ1→ R given by µψ(x) =
∑

iψixi it follows

tr
(
σψC

)
= µψ (c)

= lim
n→∞

µψ

(
sn∑

i=1

pni P
n
i ϕ

)

= lim
n→∞

sn∑
i=1

pni µψ (P
n
i ϕ)

= lim
n→∞

sn∑
i=1

pni tr
(
σψPni σ

ϕPn†i

)
.

Now, from lemma 27, tr(σψPσϕP†)⩽ tr(σψσϕ) and then, for n⩾ 0,

sn∑
i=1

pni tr
(
σψPni σ

ϕPn†i

)
⩽
∑
i

pni tr
(
σψσϕ

)
= tr

(
σψσϕ

)
.

Taking limit, tr(σψC)⩽ tr(σψσϕ), that is,

tr
(
σψV†σϕV

)
⩽ tr

(
σψσϕ

)
.

Similarly, it is possible to prove the result,

tr
(
σϕUσψUt

)
⩽ tr

(
σψσϕ

)
.

Therefore,

|⟨ψ|U⊗V|ϕ⟩|2 ⩽ | tr
(
σψV†σϕV

)
|| tr
(
σϕUσψUt

)
|⩽ | tr

(
σψσϕ

)
|2 = |⟨ψ|ϕ⟩|2. (8)

Building on the previous results, we can now provide our definition of δ-convertibility.

8
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Definition 18. |ψ⟩ is δ-convertible to |ϕ⟩ by LOCC, denoted as |ψ⟩ −→
δ−LOCC

|ϕ⟩, if for any δ > 0, there exist

states |ψδ⟩ and |ϕδ⟩, both with sequences of Schmidt coefficients with finite support, such that ∥|ψ⟩⟨ψ| −
|ψδ⟩⟨ψδ|∥tr < δ, ∥|ϕ⟩⟨ϕ| − |ϕδ⟩⟨ϕδ|∥tr < δ and there exists a LOCC operation Λδ such that |ϕδ⟩⟨ϕδ|=
Λδ(|ψδ⟩⟨ψδ|).

From this definition, we can state the following version of Nielsen’s theorem in the context of
infinite-dimensional systems.

Proposition 19. Let |ψ⟩ and |ϕ⟩ be bipartite pure states belonging toHA⊗HB. Then, |ψ⟩ −→
δ−LOCC

|ϕ⟩ if and
only if ψ ⪯ ϕ, where ψ and ϕ are the sequences formed by the squared Schmidt coefficients of |ψ⟩ and |ϕ⟩,
respectively.

Proof. (=⇒)
Based on the hypothesis that |ψ⟩ −→

δ−LOCC
|ϕ⟩, for any δ > 0, there exist states |ψδ⟩ and |ϕδ⟩ with sequences of

Schmidt coefficients of finite support, such that ∥|ψ⟩⟨ψ| − |ψδ⟩⟨ψδ|∥tr < δ and ∥|ϕ⟩⟨ϕ| − |ϕδ⟩⟨ϕδ|∥tr < δ and
there exists a LOCC operation Λδ such that |ϕδ⟩⟨ϕδ|= Λδ(|ψδ⟩⟨ψδ|).

Furthermore, there exist states |ψ ′
δ⟩ and |ϕ ′

δ⟩ that share the same Schmidt coefficients as |ψδ⟩ and |ϕδ⟩,
respectively, but have the same Schmidt orthonormal basis as |ψ⟩ and |ϕ⟩, respectively.

Let ψ,ϕ ∈∆↓
∞ be the squared Schmidt coefficients of |ψ⟩ and |ϕ⟩, respectively, and ψ ′,ϕ ′ ∈∆ ′↓

∞ be the
squared Schmidt coefficients of |ψδ⟩ (or |ψ ′

δ⟩) and |ϕδ⟩ (or |ϕ ′
δ⟩), respectively.

Then, by proposition 17, we have that

dtr (ψ,ψ
′)⩽ ∥|ψ⟩⟨ψ| − |ψ⟩⟨ψ|δ∥tr < δ, dtr (ϕ,ϕ

′)⩽ ∥|ϕ⟩⟨ϕ| − |ϕ⟩⟨ϕ|δ∥tr < δ

and, by Nielsen’s Theorem, ψ ′ ⪯ ϕ ′. Finally, by proposition 12, we obtain ψ ⪯ ϕ.
(⇐=) Let |ψ⟩ and |ϕ⟩ such thatψ ⪯ ϕ. Then, from proposition 11, for any δ > 0, we can obtain states |ψ ′⟩

and |ϕ ′⟩ with ψ ′,ϕ ′ ∈∆ ′↓
∞ such that ψ ′ ⪯ ϕ ′ (hence |ψ ′⟩ →

LOCC
|ϕ ′⟩ by Nielsen’s theorem), and ∥|ψ⟩⟨ψ| −

|ψ ′⟩⟨ψ ′|∥tr = dtr(ψ,ψ ′)< δ and ∥|ϕ⟩⟨ϕ| − |ϕ ′⟩⟨ϕ ′|∥tr = dtr(ϕ,ϕ ′)< δ. Therefore, |ψ⟩ −→
δ−LOCC

|ϕ⟩.

As a corollary, we obtain that ϵ-LOCC and δ-LOCC are equivalent notions:

Corollary 20. Given two bipartite pure states |ψ⟩ and |ϕ⟩, belonging toHA⊗HB, the following three statements
are equivalent:

• |ψ⟩ −→
δ−LOCC

|ϕ⟩
• |ψ⟩ −→

ϵ−LOCC
|ϕ⟩

• ψ ⪯ ϕ

where ψ and ϕ are the sequences formed by the squared Schmidt coefficients of |ψ⟩ and |ϕ⟩, respectively.

4. Optimal common resource and optimal common product

We have already studied the convertibility between infinite-dimensional entangled states via LOCC, and we
have seen how this operation is subject to a majorization relationship between the sequences of Schmidt
coefficients. We now introduce the notions of optimal common resource and optimal common product.
Both concepts are related to the completeness of the majorization lattice, i.e. on the ability to define
supremum and infimum elements for any subset of sequences. We will formulate these definitions in terms
of δ-LOCC convertibility, but they can be formulated in an equivalent way in the ϵ-LOCC setting.

4.1. Optimal common resource
First, let us introduce the definitions of common resource and optimal common resource.

Definition 21. Let P be an arbitrary set of bipartite pure states in HA⊗HB. The state |ψcr⟩ is said to be a
common resource of P , if

|ψcr⟩ −→
δ−LOCC

|ϕ⟩ ∀|ϕ⟩ ∈ P. (9)

Moreover, the state |ψocr⟩ is said to be an optimal common resource of P , if |ψocr⟩ is a common resource and
for any other common resource |ψcr⟩, one has

|ψcr⟩ −→
δ−LOCC

|ψocr⟩. (10)

9
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For finite-dimensional P , there always exists an optimal common resource. Unlike the finite-dimensional
case, the existence of an optimal common resource for infinite-dimensional systems is conditioned to the
existence of a common resource. At the same time, this is subject to the completeness of the lattice of
sequences discussed in proposition 6. More precisely,

Proposition 22. Let P be an arbitrary set of bipartite pure states inHA⊗HB. Then, if there exists a common
resource |ψcr⟩ of P , there also exists an optimal common resource |ψocr⟩ of P .

Proof. Let |ψcr⟩ be a common resource for the set P , as in definition 21. In that case, proposition 19 says that
ψcr ⪯ ϕ∀|ϕ⟩ ∈ P , with ψcr,ϕ the corresponding sequences of Schmidt coefficients. Thus, ψcr is a lower bound
for all the considered sequences and, by lemma 5, there exists an infimum. That infimum gives us the sequence
of Schmidt coefficients associated with the optimal common resource |ψocr⟩.

Let us see two examples, where in the first an optimal common resource does not exit whereas in the
second it does. In particular, the next example was introduced in [13] in the context of the Gaussian channel
minimum entropy conjecture. Here, we use this example to illustrate two sets of bipartite pure states that do
not admit an optimal common resource.

Example 23. Let a two-mode squeezer of parameter r, that is, U(r) = exp
[
r(ab− a†b†)

]
where a,b,a† and

b† are the creation and annihilation operator of the inputs modes, respectively. The action of the two-mode

squeezer over the input state |k⟩|0⟩ can be expressed in the Schmidt decomposition as |ψ(k)
λ ⟩= U(r)|k⟩|0⟩=∑∞

n=0

√
x(k)n (λ)|n+ k⟩|n⟩ with x(k)n (λ) given by equation (2) and λ= tanh r [13]. Let consider the sets{

|ψ(k)
λ ⟩
}
k∈N0

and
{
|ψ(k)
λ ⟩
}
λ∈(0,1)

, which have the peculiarities that |ψ(k+1)
λ ⟩ −→

δ−LOCC
|ψ(k)
λ ⟩ and |ψ

(k)
λ ⟩ −→

δ−LOCC

|ψ(k)
λ ′ ⟩ for λ ′ ⩽ λ. The corresponding sets of sequences of Schmidt coefficients were studied in example 7, in

which we showed they do not have infima. Then, optimal common resources for these sets do not exist.

The following example was introduced in [19] in order to show that the entropy of entanglement for
infinite-dimensional quantum systems is not necessarily continuous in the trace-norm. We use this example
in order to illustrate the case of a set of bipartite pure sates having an optimal common resource.

Example 24. Let consider the set of bipartite pure sates
{
|ψ(k)⟩

}
k∈N⩾3

, where |ψ(k)⟩=
∑k+1

n=1

√
x(k)n |an⟩|bn⟩

with x(k) given by equation (3). In particular, we have that all the states are not LOCC convertible to each other,
that is, |ψ(k)⟩ ���←→

δ−LOCC
|ψ(k ′)⟩ for all k ̸= k ′. However, an optimal common resource of the set

{
|ψ(k)⟩

}
k∈N⩾3

exists and its Schmidt coefficients can be computed algorithmically as shown in example 8.

4.2. Optimal common product
We introduce now the notion of a common product and the optimal common product of a set of states.

Definition25. LetP an arbitrary set of bipartite pure states inHA⊗HB. The state |ψcp⟩ is said to be a common
product of P , if

|ϕ⟩ −→
δ−LOCC

|ψcp⟩ ∀|ϕ⟩ ∈ P. (11)

Moreover, the state |ψocp⟩ is said to be an optimal common product of P , if |ψocp⟩ is a common product and
for any other common product |ψcp⟩, one has

|ψocp⟩ −→
δ−LOCC

|ψcp⟩. (12)

Just as the common resource problem is associated with the existence of lower bounds in the space of
Schmidt sequences, the common product problem is linked to the existence of upper bounds. In that sense,
given that the majorization lattice is

∨
-complete, there always exists an optimal common product.

Proposition 26. Let P an arbitrary set of bipartite pure states inHA⊗HB. Then, there exists an optimal
common product |ψocp⟩ of P .

Proof. It follows directly fromproposition 6, noting that there always exists a supremum for the corresponding
set of sequences of squared Schmidt coefficients.

Reviewing the examples 23 and 24 just discussed, it is evident that in both cases there exist the so-called
optimal common products, whose Schmidt coefficients are determined by the suprema outlined in
examples 7 and 8.

10
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5. Concluding remarks

In conclusion, this article delves into the intricacies of infinite-dimensional systems, specifically focusing on
the convertibility of entangled states through LOCC. In particular, we have introduced a new definition of
LOCC convertibility for infinite-dimensional systems, termed δ-LOCC convertibility, which is fully
characterized by a majorization relation between sequences of squared Schmidt coefficients and proves to be
equivalent to ϵ-LOCC convertibility. Notably, this definition offers the mathematical advantage of dealing
with finitely supported sequences.

Moreover, we have explored the LOCC convertibility problem in practical situations involving two parties
aiming to perform various quantum information tasks using a single entangled state. In these scenarios, the
concepts of optimal common resource and optimal common product for a given set of infinite-dimensional
target states naturally arise. While the existence of an optimal common product is always guaranteed, an
optimal common resource is conditionally dependent to the existence of a common resource, highlighting a
novel difference in the entanglement properties between finite and infinite-dimensional systems.

We have leveraged the majorization lattice characterization for infinite sequences to establish these
results. This not only contributes to the understanding of the LOCC paradigm in the infinite-dimensional
case, but also presents mathematical insights with broader applicability beyond the specific scope of the
addressed problem. Moreover, our results can be applied to other majorization-based resource theories.
Overall, the exploration of these issues for infinite-dimensional systems enhances our comprehension of the
fundamental properties of entanglement and its role as a quantum resource.
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Appendix. Rearrangement inequality

Let us prove an infinite version of the rearrangement inequality (see e.g. [20, 10.2]).

Lemma 27. Let ψ,ϕ ∈∆↓
∞ and let τ : N→ N be a bijection. Then,

∞∑
i=1

ψiϕτ(i) ⩽
∞∑
i=1

ψiϕi. (A.1)

Proof. Let us prove the given inequality for any N > 0 and any bijection τ : N→ N,

N∑
i=1

ψiϕτ(i) ⩽
∞∑
i=1

ψiϕi.

First, we define a bijection τ ′ on the set {0,1, . . . ,N} such that τ ′(i) = τ(i) if τ(i)⩽ N, and otherwise τ ′(i)
takes any unused value from the set. From the finite case [20, 10.2], we have

N∑
i=1

ψiϕτ ′(i) ⩽
N∑

i=1

ψiϕi. (A.2)
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By construction, ϕτ(i) ⩽ ϕτ ′(i) since τ(i)⩾ τ ′(i) and ϕ is a non-increasing sequence.
Therefore, combining both equations gives us

N∑
i=1

ψiϕτ(i) ⩽
N∑

i=1

ψiϕτ ′(i) ⩽
N∑

i=1

ψiϕi ⩽
∞∑
i=1

ψiϕi. (A.3)
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