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Abstract – Quantum mechanics establishes a fundamental bound for the minimum evolution
time between two states of a given system. Known as the quantum speed limit (QSL), it is a
useful tool in the context of quantum control, where the speed of some control protocol is usually
intended to be as large as possible. While QSL expressions for time-independent Hamiltonians
have been well studied, the time-dependent regime has remained somewhat unexplored, albeit
being usually the relevant problem to be compared with when studying systems controlled by
external fields. In this paper we explore the relation between optimal times found in quantum
control and the QSL bound, in the (relevant) time-dependent regime, by discussing the ubiquitous
two-level Landau-Zener–type Hamiltonian.

Copyright c© EPLA, 2013

Introduction. – The derivation of optimal times for
the evolution of a quantum system is an essential part of
the design of quantum control protocols and quantum al-
gorithms [1–4]. There, operations have to be performed
in a rapid way to avoid undesirable environmental effects
which can destroy the coherence properties of the sys-
tem under consideration. The basic formulation of the
time–optimal control (time–OC) problem is the following:
given a quantum system and a Hamiltonian H(u), the
goal is to find a control function u(t) such that the sys-
tem, initially prepared in state ψ0, evolves to a target state
ψ(τ) = ψtarget (with probability close to 1) in the mini-
mum possible time τ [5]. Usually, analytical solutions to
this problem are not available, and so numerical estima-
tions have to be drawn for each particular physical setup.

Besides its practical importance, the subject of time–
OC is indeed of fundamental interest, as limits to the
speed of evolution of a quantum system are imposed by the
time-energy uncertainty relation, due originally to Heisen-
berg and later generalized by Mandelstam and Tamm [6].
Along with them, Fleming [7], Bhattacharyya [8] and
later Pfeifer [9] established the formulation of what is
usually referred to as the quantum speed limit (QSL),
which states that for a quantum system subjected to a

(a)E-mail: ppoggi@df.uba.ar

time-independent Hamiltonian H , initially prepared in
some state ψ0, the evolution time τ required to reach ψ(τ)
satisfies the following inequality:

τ ≥ �

ΔE
arccos (|〈ψ0|ψ(τ)〉|) ≡ τQSL, (1)

where ΔE2 is the variance of the Hamiltonian, ΔE2 =
〈(H − 〈H〉)2〉, and the expectation value can be taken ei-
ther over the initial state |ψ0〉 or the evolutioned state
|ψ(τ)〉, as in these conditions energy is a constant of
motion. Equation (1) is usually referred to as the
Mandelstam-Tamm (MT) or Bhatacharyya bound. Ex-
tensions and generalizations of this problem have already
been studied; for example, the QSL for open quantum
systems is addressed in refs. [10–12] using different ap-
proaches; Margolus and Levitin [13] proposed a bound for
passage times (i.e., the special case when |ψ0〉 and |ψτ 〉
are orthogonal) which depends on the mean energy rather
than on the variance of H , and their work was later gen-
eralized for arbitrary initial and final states [14,15].
When assesing quantum control protocols, the devia-

tion of the evolution time from the QSL bound has been
proposed as a natural measure [1,16,17] for the time per-
formance of the protocol, yielding excellent performance if
the QSL bound is attained by the evolution. However, the
MT bound is not suitable for addressing time-dependent

40005-p1



P. M. Poggi et al.

Hamiltonians which are, in general, the generators of the
dynamics in controlled systems. Straightforward exten-
sions of the MT relation have been put forward in the
literature [4,11,12,18]. These relations are based on the
concept of distance in the state space of a quantum system
and concur to a single inequality for the case of unitary
dynamics. For time-dependent systems, this approach has
been proposed to lead to implicit bounds for the evolution
time [19].
In this work we study the different bounds given by

the usual QSL formulation for time-dependent Hamilto-
nians, discuss their interpretation and compare their fea-
tures with the well-known time-independent case. For this
purpose, we analyze a paradigmatic model of a driven two-
level system, for which the time–optimal control problem
has been analytically solved [16]. In our analysis, we com-
pare the optimal evolution times with the QSL bounds
and discuss to what extent those bounds are useful for
assessing the time performance of a control protocol. We
show that, in some cases, no meaningful bound can be ob-
tained even if a precise knowledge of the whole physical
evolution is available.

QSL for time-dependent Hamiltonians and op-
timal quantum control. – In order to explore in what
way the QSL formulation allows us to derive bounds for
evolution times in quantum control problems, we will be-
gin by revisiting the generalization of the MT bound.
Consider a generic quantum system subjected to a time-
dependent Hamiltonian H(t). The original derivation of
the MT bound shows that the following relation is always
satisfied:

2 arccos (|〈ψ0|ψ(τ)〉|) ≤ 2

∫ τ

0

ΔE(t′) dt′. (2)

In the following we will restrict ourselves to unitary dy-
namics and set � = 1. It is straightforward to see that
whenH �= H(t), then ΔE = const and after solving the in-
tegral in expression (2) we recover the MT bound, eq. (1).
As has already been noted in previous works [18,20,21],
the inequality (2) is geometric in nature, as it states the
fact that the distance between two states (l.h.s.), as mea-
sured by the Fubini-Study metric

s(ψ, φ) = 2 arccos (|〈ψ|φ〉|) , (3)

is always smaller than or equal to the length of the ac-
tual path followed by the evolution in state space. This
interpretation is due to Anandan and Aharonov [18] who
showed that the quantity on the l.h.s. of eq. (2) is inde-
pendent of the actual Hamiltonian used to generate the
evolution and is thus a purely geometric quantity. More-
over, they demonstrated that the speed of the system in
state space is given by ds

dt = 2 ΔE(t). Note that ΔE(t)
here has to be calculated over the evolutioned state, as
now energy is not constant during the evolution. This
means that, in general, the complete solution for the evo-
lution operator U(t) has to be known in order to evaluate

the r.h.s. of expression (2). We remark that this relation
can be obtained as a special case of a more general bound
in terms of the quantum Fisher information [11,22].
Note that the equality in eq. (2) holds if and only if the

evolution of the system takes place following the shortest
path between the initial and final states, that is, follow-
ing a geodesic. This solution usually corresponds to the
“Quantum Brachistochrone” problem [23,24], where the
goal is to find the Hamiltonian which connects two dif-
ferent states in the minimum possible time, given a set
of dynamical constraints. We remark the subtle difference
between this problem and time–OC, where constraints are
imposed though specifying the structure of the Hamilto-
nian H(u) and optimization is achieved through the de-
termination of the control field u(t). In this case, if H(u)
is incompatible with the generator of the geodesic path,
then there will be no process for which the equality in
expression (2) holds.
We now turn to the problem of bounding evolution times

in a quantum control scenario. Suppose a specific control
field u(t) is given such that H(t) connects |ψ0〉 and |ψg〉 in
a time T . In order to obtain a QSL time for this process
from relation (2), we can follow the procedure proposed in
ref. [11]. First, we set |ψ(τ)〉 = |ψg〉 in the l.h.s. of eq. (2).
Then, we set TA as the upper bound of the integral in
the r.h.s., and impose the equality. We can then solve the
integral for TA, which is the desired evolution time bound.
Note that, in this case, the QSL time TA is interpreted as
the time required by the process to traverse a distance
equal to s(ψ0, ψg) in state space, regardless of the states
being actually connected in the evolution. An alternative
definition, proposed in ref. [19], is to replace the integral on
the r.h.s. of eq. (2) by the time-averaged energy variance

ΔE(τ) =
1

τ

∫ τ

0

ΔE(t′) dt′, (4)

yielding

τ ≥ arccos (|〈ψ0|ψ(τ)〉|)
ΔE(τ)

. (5)

Evaluating this expression for τ = T , we obtain

T ≥ arccos (|〈ψ0|ψg〉|)
ΔE(τ)

≡ TB, (6)

which gives another version of the QSL time. In this case
the geometrical interpretation is straightforward, as it is
easy to check that TB = s

sp
T ≤ T , where s is the distance

between ψ0 and ψg measured by (3), sp is the length of the
actual path traversed by the system during the evolution
and clearly sp ≥ s.
Finally, we mention that in some cases we could also

obtain a lower bound on the time evolution from the ge-
ometrical relation by again evaluating for τ = T , solving
the integral in the r.h.s. and manipulating the result in
order to reach an inequality of the form

T ≥ TC , (7)
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Fig. 1: Energy spectrum of the Hamiltonian (8) as a function
of λ. Initial and final states for the control problem are shown
with symbols � and ⊕.

that is, TC is the lower bound obtained by analytically
working out the value of T from inequality (2).
The three procedures we mentioned clearly give the

same result for time-independent Hamiltonians, where the
original MT bound is recovered. However, in the gen-
eral time-dependent case they may differ, as we will show
in the next section. Note that a complete knowledge of
the Hamiltonian at all times H(t) is not enough to com-
pute ΔE(t), since also the state of the system |ψ(t)〉 is
necessary.

Discussion: driven two-level system. – We now
show a few examples that illustrate the procedure for
evaluating the QSL. Consider a two-level system with the
Hamiltonian

H(λ) = ωσx + λσz , (8)

where ω is fixed, σi denote the Pauli operators and λ rep-
resents an external driving field. The energy levels of the
system, as a function of λ, describe a spectrum with an
avoided crossing (AC) at λ = 0, as can be seen in fig. 1.
The energy eigenstates are functions of λ as well, and we
denote them {|gλ〉 , |eλ〉} for each λ ∈ R, g and e repre-
senting ground (lower) and excited (higher) states, respec-
tively. We pose the following control problem: consider
the situation where the system is prepared at t = 0 in
|ψ0〉 = |g−γ〉 and reaches the goal state |ψg〉 = |g+γ〉 at
t = τ , where γ > 0. The distance between those states,
measured by the distance defined in eq. (3) is

s(ψ0, ψg) = π − 2θ ≡ s(θ), (9)

where we have defined tan(θ) = ω/γ, see fig. 2(b). If
there are no constraints on the possible values of λ, the
time–optimal control solution originally shown in [1] is the
“composite pulse protocol”, where λ(t) takes the following
form:

λ(t) =

⎧⎨
⎩
λ0, 0 < t < t0,
0, t0 < t < T + t0,
−λ0, T + t0 < t < T + 2t0,

(10)

such that λ0 	 ω and λ0t0 = π/4, in order to generate a
π/2 rotation around the z-axis in the first and final step

Fig. 2: (Color online) (a) Bloch sphere representation of the
two-level system state space. The blue (dark) line shows the
evolution generated by the composite pulse protocol, the gray
line shows the evolution for λ = 0 and the dashed line repre-
sents the geodesic path linking |g−γ〉 and |g+γ〉. We used ω = 1
and γ = 2. (b) Same as (a) but from a different point of view.

of the protocol. The middle step is a rotation around the
x-axis. In fig. 2 we show the overall evolution generated
by this Hamiltonian in the Bloch sphere. All shown tra-
jectories were simulated by solving the Schrödinger equa-
tion numerically (using the usual four-step Runge-Kutta
method) with ω = 1, γ = 2 and λ0 = 10.
Note that t0 can be chosen as close to zero as desired,

so that the total duration of the protocol satisfies τ ≡ T +
2t0 ∼= T . In a recent work [16], it was shown analytically
that

T = T (θ) =
1

ω
arctan

( γ
ω

)
=
s(θ)

2ω
. (11)

In order to obtain the bounds TK (with K = A,B,C)
discussed in the previous section for this process, it is nec-
essary to calculate the integral on the r.h.s. of eq. (2). To
do so, we express the state of the system at time t using
the usual Bloch parametrization

|ψ〉 = cos
(χ
2

)
|0〉+ eiϕ sin

(χ
2

)
|1〉 , (12)

where χ = χ(t) and ϕ = ϕ(t) are the usual polar and az-
imuthal angles used in spherical coordinates. The variance
of Hamiltonian (8) can then be expressed as

ΔE2 = λ2 sin2(χ) + ω2
(
1− sin2(χ) cos2(ϕ)

)
−2λω sin(χ) cos(χ) cos(ϕ). (13)

Due to the piecewise-constant time dependence of λ(t),
i.e. expression (10), this protocol has three steps. In the
first one, t ∈ [0, t0] and the last one t ∈ [T + t0, T + 2t0],
χ = const = θ and ϕ varies from π to 3

2π (or in reverse)
with angular velocity 2λ0. This results in

2

∫ t0

0

ΔE(t′) dt′ = 2

∫ T+2t0

T+t0

ΔE(t′) dt′ =
π

2
sin(θ),

(14)
which, naturally, is the length of the path travelled by
the system in each step. For t ∈ [t0, T + t0], we have
ϕ = 3

2π = const and the polar angle runs from θ to π − θ
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with velocity 2ω, so we get

2

∫ t0+T

t0

ΔE(t′) dt′ = 2

∫ t0+T

t0

ω dt′ = 2ωT. (15)

As was discussed in the previous section, to obtain the
bound TA we have to solve

s(θ) = 2

∫ TA

0

ΔE(t′) dt′, (16)

in which different results are obtained depending on the
values of θ, yielding

TA(θ) =

{
0, if π

2 sin(θ) ≥ s(θ),
s(θ)−π

2 sin(θ)

2ω , if not.
(17)

We remark that, in order to obtain eq. (17), the integral
on the r.h.s. of eq. (16) is computed along the composite
trajectory generated by the field in eq. (10) in the limit
λ0 → ∞. As discussed above, TA is equivalent to the time
required by the process to traverse a distance equal to
s(ψ0, ψg). Since in the first z-rotation the system covers
a distance (π sin θ)/2 with infinite speed, it is easy to see
that, for s(ψ0, ψg) ≤ (π sin θ)/2, we have TA = 0. Other-
wise, the lengths covered in the first and second rotation
both contribute, while the length from the third step of
the procedure does not need to be computed. It can be
seen by comparing expression (17) to eq. (11) that TA < T
for all θ. The bound TB, given by eq. (6), can also be eval-
uated directly and gives

TB(θ) =
s(θ)

spath(θ)
T (θ) =

s(θ)

s(θ) + π sin(θ)
T (θ). (18)

Finally, for this particular process, it is indeed possible
to evaluate the integral and work out an inequality for the
evolution time. This follows directly from replacing the re-
sults in eq. (14) and eq. (15) in the general expression (2):

s(θ) ≤ 2

∫ T+2t0

0

ΔE(t′) dt′ = π sin(θ) + 2ωT, (19)

such that we get

T ≥ s(θ)− π sin(θ)

2ω
≡ TC(θ). (20)

Note that TC can be negative for certain values of θ, for
which we will consider the higher bound TC = 0 as the
physically meaningful one.
In fig. 3 we plot the evolution time T given by eq. (11)

along with the different bounds we have obtained, as a
function of γ for fixed ω. In the inset of the figure, we
show the same as a function of θ. Note that γ determines
the initial and final states of the process, and that when
γ = 0 (θ = π/2), both states coincide since |gγ=0〉 = |↓x〉,
i.e. the eigenstate of σx with eigenvalue equal to −1. In
the limit γ → ∞ (θ → 0), the states tend to the orthogo-
nal set {|↓z〉 , |↑z〉}, i.e., the eigenstates of σz . In the plot,

Fig. 3: (Color online) Optimal evolution time T and bounds
TA, TB, TC obtained from eq. (2) for the composite pulse
protocol (with unconstrained λ) as a function of the param-
eter γ. Inset: same plots as a function of θ = arctan (ω/γ),
the azimuthal angle of the initial state in the Bloch sphere (see
fig. 2).

it can be seen that in both limits the different bounds are
equal and are saturated by the optimal time. This is triv-
ial for γ = 0 (for which s(θ) = 0), and it is also clear
for γ → ∞, since in this limit, the evolution is a rotation
around the x-axis which connects the poles of the sphere
through a geodesic. For finite γ > 0, the evolution time T
is strictly higher than all three bounds, as expected, and
TC is the lower bound. On the other hand, the plots of TA
and TB cross for a certain value of γ, so that we cannot
assert that one expression gives a tighter bound than an-
other. Moreover, TA and TC vanish for a certain range of
γ, meaning that in that regime, they do not give a mean-
ingful limitation for the evolution time. Note that in the
time-independent case, the MT bound (eq. (1)) gives zero
only if ψ0 = ψ(τ) (which is trivial) or if ΔE → ∞, which
means that the system evolves uniformly with infinite ve-
locity. In the time-dependent formulation, the velocity of
the system in state space is not constant, and the QSL
time can vanish if, for some period, ΔE → ∞.
In the previous example, the value of λ(t) was un-

bounded, and so we could choose λ0 → ∞ so as to generate
instantaneous rotations around the z-axis. If the restric-
tion |λ0| ≤ c is added, the optimal solution (10) changes,
and different results are obtained whether c > ω2/γ or
c < ω2/γ. In the first case, the optimal control proto-
col is of bang-off-bang type, meaning that the evolution
is again in three steps with λ = 0 in the middle. In the
latter, the protocol is of bang-bang type, so that λ �= 0
throughout the evolution. In both cases, |λ(t)| takes its
maximum possible value, that is, c. A detailed discussion
about this cases can be found in ref. [16]. We show the
trajectories generated by both protocols in fig. 4. We used
c = 1.5ω2/γ for the bang-off-bang case and c = 0.5ω2/γ
for the bang-bang protocol. Note that in both cases the
initial and final rotations take place in a tilted axis in the
x-z plane, and yield a finite evolution time. The bounds
described in the previous section can be obtained for these
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Fig. 4: (Color online) Bloch sphere trajectories for the com-
posite pulse protocol with constrained λ. The bang-off-bang
protocol was simulated with c = 1.5ω2/γ, while for the bang-
bang protocol c = 0.5ω2/γ was used. The values of ω and γ
used were the same as in fig. 2.

protocols although TC cannot be worked out anallytically
for the bang-off-bang case. We plot the optimal time along
with these bounds in fig. 5. For the first protocol (top fig-
ure), we observe the same features as in the unconstrained
case, i.e., the evolution time is strictly bounded by below,
as expected, by TA and TC and all quantities are equal for
γ = 0 and γ → ∞. Also, both bounds cross for certain
γ > 0. For the second protocol (bottom figure) all bounds
yield the same result for every γ, due to the fact that in
this particular case, ΔE is constant.
Having explored the bounds obtained directly from ex-

pression (2) for the examples shown above, we remark that
in all cases, considerable knowledge about the state of the
system at all times was required to acquire those bounds.
At the very least, both the total evolution time and the
length of the path followed in state space is required (for
obtaining TB). For computing TA and TC , we must know
ΔE(t) at all times, which usually requires knowledge of
the time evolution operator U(t) for all t ≥ 0 or, at least,
of H(t) and |ψ(t)〉. In the time-independent regime, given
an initial and final state, only ΔE (which is constant)
is required in order to evaluate the MT bound. So, in
this regime, the QSL can sometimes be useful as a sim-
ple straighforward estimation for the minimum evolution
time, which can be computed before analyzing the actual
evolution of the system. For time-dependent systems, on
the other hand, QSL times have to be obtained after the
whole physical process is determined.
Of course, we can still obtain a lower bound on the evo-

lution time which is computed in a simpler way. Namely,
as ΔE(t) ≥ 0 by definition on the integral on the r.h.s. of
eq. (2), it follows that

2arccos (|〈ψ0|ψ(τ)〉|) ≤ 2

∫ τ

0

2ΔE(t′) dt′ ≤ 2ΔEmaxτ,

(21)
where ΔEmax = max0<t<τ ΔE(t) and so

τ ≥ arccos (|〈ψ0|ψ(τ)〉|)
ΔEmax

. (22)

Fig. 5: (Color online) Top: optimal evolution time T and
bounds TA, TB obtained from eq. (2) for the bang-off-bang
protocol (|λ0| ≤ c, c > ω2/γ) as a function of the parameter γ.
Bottom: same quantities for the bang-bang protocol (|λ0| ≤ c,
c < ω2/γ). In both cases, the weaker bound Tm, which is dis-
cussed at the end of the third section, is displayed (dot-dashed
line). See text for details.

This expression will in general be computable without
knowing the complete form of U(t) but will usually give
a weaker bound for the evolution time. For the compos-
ite pulse protocol with unconstrained λ discussed at the
beginning of this section, it is clear that ΔEmax = ∞, so
that from relation (22) we merely get τ ≥ 0. Of course, for
protocols with finite velocity of the system in state space,
the bound will be greater than zero. This is the case of the
bang-off-bang and bang-bang protocols, where ΔE can be
bounded straightforwardly from eq. (13):

ΔE ≤ |λmax|+ |ω| = |c|+ |ω| . (23)

Then, expression (22) yields

τ ≥=
1
2 (π − 2θ)

|c|+ |ω| ≡ Tm. (24)

In fig. 5 we include the plot Tm as a function of γ for
both protocols (dot-dashed line), and it can be seen that
they give weaker bounds on the evolution time than all
the rest.
Finally, we remark that relation (2) can give a tight

bound in our examples if we follow a different procedure.
Turning again to the unconstrained composite pulse proto-
col, note that we know the state of the system as a function
of time ψ(t) given by this control protocol, and remem-
ber the Hamiltonian given by expressions (8) and (10)
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is piecewise-constant and consists on three steps. So,
lower bounds Tmin

i on each step i (i = 1, 2, 3) of the pro-
cedure can be found by means of the time-independent
MT bound (1). The total evolution time T then
satisfies

T = T1 + T2 + T3 ≥ Tmin
1 + Tmin

2 + Tmin
3 , (25)

where Ti is the time required in step i of the protocol.
Evaluation of Tmin

i is straightforward from eq. (1), but
the initial and final states of each step have to be known.
For this control protocol, clearly Tmin

1 = Tmin
3 = 0 and

Tmin
2 =

π − 2θ

2ω
, (26)

so that expression (25) yields

T ≥ π − 2θ

2ω
. (27)

Comparing with the optimal result, eq. (11), it can be
readily seen that the equality in eq. (27) holds and so the
bound obtained is tight. Note that in step 2, the state
follows a geodesic between the initial and final steps (see
fig. 2).

Conclusions. – In this paper we explored the re-
sults obtained from the usual QSL formula (2) for time-
dependent systems when applied to a quantum control
problem, for which optimal solutions are known. We show
that a number of bounds on the evolution time can be
obtained, which can be in general different for the same
physical process. In our analysis, we discuss the specific
meaning of the QSL time, which can be described as the
minimum time required by a quantum system to traverse a
certain distance in state space, under the action of a fully
determined Hamiltonian. Also, we connect the QSL prob-
lem with quantum control, and point out that in some
cases no meaningful bound for the total evolution time
of a control protocol (i.e., only T ≥ 0) can be drawn
from this expressions, a feature that is only possible in
the time-dependent regime (in non-trivial cases). Finally,
we remark that for time-dependent Hamiltonians, the QSL
formulation in general requires the knowledge about the
state of the system at all times, but weaker bounds may
be obtained by imposing restrictions on the parameters of
the control Hamiltonian.
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