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ENTROPY NUMBERS AND BOX DIMENSION OF POLYNOMIALS

AND HOLOMORPHIC FUNCTIONS

DANIEL CARANDO, CARLOS D’ANDREA, LEODAN A. TORRES, AND PABLO TURCO

Abstract. We study entropy numbers and box dimension of (the image of) ho-

mogeneous polynomials and holomorphic functions between Banach spaces. First,

we see that entropy numbers and box dimensions of subsets of Banach spaces are

related. We show that the box dimension of the image of a ball under a homogeneous

polynomial is finite if and only if it spans a finite-dimensional subspace, but this is

not true for holomorphic functions. Furthermore, we relate the entropy numbers of a

holomorphic function to those of the polynomials of its Taylor series expansion. As a

consequence, if the box dimension of the image of a ball by a holomorphic function f

is finite, then the entropy numbers of the polynomials in the Taylor series expansion

of f at any point of the ball belong to ℓp for every p > 1.

Introduction

In this note, we study the compactness of the image of homogeneous polynomials

and holomorphic functions between Banach spaces. Let E and F be Banach spaces,

U ⊂ E an open set and f : U → F a holomorphic mapping. Whenever f maps a

ball B ⊂ U onto a relatively compact set, we use entropy numbers or box dimension

(see the definitions in Section 2) to measure the compactness of f(B). For x0 ∈ U ,

let Pmf(x0) be the m-homogeneous polynomial of the Taylor series expansion of f at

x0. This article was originally motivated by the following question, posed by Richard

Aron to the fourth author: given ε > 0 and some ball B ⊂ U , can we relate the degree

of compactness (in terms of entropy numbers or box dimension) of f(B) and that

of Pmf(x0)(B)? Similar questions were addressed in [1, 2, 13, 16] for other ways of

measuring the compactness of a set. Also, entropy numbers and, in general, the theory

of s-numbers and quasi s-numbers of multilinear operators was treated in [3, 8, 9, 10].
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Before dealing with this and other similar questions, we will see in Section 1 that

entropy numbers and box dimension are closely related. Indeed, Proposition 1.2 es-

sentially states that, for a connected set K, the box dimension of K is finite if and

only if the entropy numbers of K decay exponentially.

Also, we show an example of a connected set K such that its box dimension is infinite

and the sequence (en(K))n ∈ ℓ1. In Section 2 we study m-homogeneous polynomials

and holomorphic functions. In particular, we relate the box dimension of the image

and the linear dimension of the subspace it spans. For example, we present a function

f defined on the complex unit disk ∆ such that, for every smaller disk D ⊂ ∆, the

(upper) box dimension of f(D) is 2 while f(D) spans an infinite dimensional subspace

(Examples 2.4 and 2.5). On the other hand, we see that such an example cannot

exist for m-homogeneous polynomials. In fact, if the image of an m-homogeneous

polynomial spans an infinite dimensional subspace, then its box dimension must be

infinite (Theorem 2.2).

Finally, in Section 4, for a given holomorphic function f : U → F , x0 ∈ U and ε > 0

we obtain in Lemma 4.3 a relationship between the entropy numbers en(f(x0 + εBE))

and eN(Pmf(x0)(BE)), where n and N are related (here, BE is the unit ball of E).

As a consequence, we see in Proposition 4.2 that if the (upper) box dimension of

f(x0 + εBE) is finite, then the sequence (en(Pmf(x0)(BE)))n belongs to ℓp for every

p > 1. The problem of measuring Pmf(BE) (in some sense) in terms of the image of f

is closely related to the problem of measuring the absolutely convex hull of a set K in

terms of K (see the proof of [2, Proposition 3.4]). For entropy numbers, this geometric

problem was studied by many authors (see, for example, [4, 5, 12, 10] and the references

therein). Our Proposition 4.2 seems to provide sharper results than those obtained

from the proof of [2, Proposition 3.4] together with the known relationships between

the entropy numbers of a set and its absolutely convex hull (see the discussion after

Proposition 4.2).

Throughout the article, we consider complex Banach spaces E and F and write BE

for the open unit ball of E and ∆ for the open unit disc in C. Also, ℓNp stands for CN

endowed with the ℓp norm. We write ǫj for the vector/sequence which has 1 in the

j-th coordinate and 0 elsewhere. This notation will be used both in CN and in ℓp.

For a m-homogenoeus polynomial P , by
∨
P (x1, . . . , xm) we denote the unique sym-

metric m-linear operator such that P (x) =
∨
P (x, . . . , x) =

∨
P (xm).
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1. Entropy numbers, covering numbers and box dimension

A possible way to refine the concept of compactness in a Banach space is via the

so-called entropy numbers. Recall that the n-th entropy number En(K) of a set K of

a metric space (X, d) is defined as

En(K) : = inf

{
ε > 0: ∃ x1, . . . , xn ∈ X : K ⊂

n⋃

i=1

BX(xi, ε)

}
,

where BX(x, ε) = {x̃ ∈ X : d(x, x̃) < ε}. The n-th dyadic entropy numbers of K are

given by en(K) = E2n−1(K). A subset K of a Banach space is relatively compact if

and only if the sequence (en(K))n∈N ∈ c0. Stronger conditions on the decay rate of

(en(K))n∈N ∈ c0 lead to stronger versions of compactness.

The concept of covering numbers is closely related to that of entropy numbers. For

a bounded set L ⊂ X and ε > 0, the ε-covering number N(L, ε) is given by

N(L, ε) : = min

{
n ∈ N : ∃ x1, . . . , xn ∈ X : L ⊂

n⋃

i=1

BX(xi, ε)

}
.

Also, the upper and lower box counting dimension of L are given by

dimBL = lim sup
ε→0+

logN(L, ε)

− log(ε)
and dimBL = lim inf

ε→0+

logN(L, ε)

− log(ε)
.

In the case that lim
ε→0+

logN(L, ε)

− log(ε)
exists, we say that the box counting dimension of L

is

dimB L = lim
ε→0+

logN(L, ε)

− log(ε)
.

We remark that, if L ⊂ X is not totally bounded, then dimBL = ∞. Also, if g : X → Y

is a Lipschitz function and L ⊂ X is a bounded subset, then dimBg(L) ≤ dimBL and

dimBg(L) ≤ dimBL. We refer to [7] for the basics of the theory of fractal geometry.

The (linear) dimension of a subset U of a complex vector space V is the dimension

of span{U} and is denoted by dimU . Note that for an open and bounded set U ⊂ C

we have dimBU = dimBU = 2, while dim U = 1.

The following result can be found in [7, Chapter 3.1] for sets in R
N , but the proof

works line by line for general metric spaces?

Proposition 1.1. Let (X, d) a metric space and L ⊂ X a bounded set. If (δn)n is a

decreasing sequence of real numbers such that lim
n→∞ δn = 0 and lim inf

n→∞
δn+1

δn
> 0, then

dimBL = lim sup
n→∞

logN(L, δn)

− log(δn)
dimBL = lim inf

n→∞
logN(L, δn)

− log(δn)
.

The following proposition gives the connection between upper box dimension and

the asymptotic behaviour of the entropy numbers.
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Proposition 1.2. Let (X, d) be a metric space and L ⊂ X a connected and totally

bounded set. Then, dimBL < ∞ if and only if lim sup
n→∞

en(L)
1/n < 1.

Proof. Suppose that dimB = d < ∞. By [11, Corollary 5] (which is stated for subsets

of RN but holds in general metric spaces), there exists nε ∈ N such that for every

n > nε we have

en(L) ≤ 2(2n−1 + 1)−
1

d+ε ≤ 21−
n

d+ε .

This gives

lim sup
n→∞

en(L)
1/n ≤ 2−

1
d+ε < 1.

Conversely, suppose that lim sup
n→∞

en(L)
1/n < 1 and take 0 < β < 1, n0 ∈ N such that

en(L) < βn for all n ≥ n0. For each n, the definiton of en(L) gives us x1, x2, . . . , x2n−1 ∈
X such that L ⊂ ⋃2n−1

j=1 B(xj , 2en(L)). Therefore, N(L, 2en(L)) ≤ 2n−1 and for n ≥ n0

we have

log (N(L, 2en(L)))

− log(2en(L))
≤ (n− 1) log 2

− log(2en(L))
<

(n− 1) log 2

− log(2βn)

=
(n− 1) log 2

− log(2)− n log(β)
−→
n→∞ − log(2)

log(β)
< +∞.

In order to conclude that dimBL < ∞, we want to use Proposition 1.1 with δn =

2en(L), which are clearly decreasing and convergent to zero (since L is totally bounded).

The fact that lim inf
n→∞

δn+1

δn
> 0 follows from Lemma 1.3 below. �

Lemma 1.3. Let (X, d) be a metric space and L ⊂ X a connected set. Then,

lim inf
n→∞

en+1(L)

en(L)
≥ 1

5
.

Proof. Fix n ∈ N, take δ > 0 and set r = (1 + δ)en+1(L). There exists a subset

L0 = {x1, x2, . . . , x2n} of X such that L ⊂ ⋃
x∈L0

BX(x, r).

First, we claim that for x ∈ L0, there exists x̃ ∈ L0, x 6= x̃ such that d(x, x̃) < 2r.

Indeed, suppose that BX(x, r) ∩ BX(x̃, r) = ∅ for every x̃ ∈ L0 \ {x}. Now, the open

set V =
⋃

x̃∈L0\{x}BX(x̃, r) satisfies L ⊂ V ∪ BX(x, r) and V ∩ BX(x, r) = ∅, which is

impossible since L connected.

Now, take xj1 ∈ L0 and let M1 = {x ∈ L0 : d(xj1 , x) < 2r}. Note that M1 have at

least 2 points of L0: xj1 and the one given by the previous claim. If L0 ⊂ BX(xj1 , 4r),

then L ⊂ BX(xj1 , 5r) and 5r ≥ E1(L) ≥ en(L). Thus

en+1(L)

en(L)
≥ en+1(L)

5r
=

en+1(L)

5en+1(L)(1 + δ)
=

1

5(1 + δ)

and we are done, since δ is arbitrary. If, on the contrary, there exists xj2 ∈ L0 such

that d(xj2, xj1) ≥ 4r, we take M2 = {x ∈ L0 : d(xj2 , x) < 2r}. By the claim above, M2
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has at least 2 points and, clearly, M2∩M1 = ∅. Now, if L0 ⊂ BX(xj1, 4r)∪BX(xj2 , 4r),

then L ⊂ BX(xj1 , 5r)∪BX(xj2, 5r). This implies that 5r ≥ E2(L) ≥ en(L), which gives

en+1(L)

en(L)
>

1

5(1 + δ)

and we are done. If not, there exists xj3 ∈ L0 such that xj3 /∈ BX(xj1, 4r)∪BX(xj2 , 4r)

and we take M3 = {x ∈ L0 : d(xj3 , x) < 2r}. Again by the claim, M3 have at least 2

points and, also, M1 ∩M3 = ∅ and M2 ∩M3 = ∅. Then, if L0 ⊂ ⋃
i=1,2,3BX(xji, 4r),

reasoning as before we obtain that

en+1(L)

en(L)
≥ 1

5(1 + δ)
.

If not, we continue with this procedure and, since L0 have 2n points, this procedure

comes to an end. So for some m ∈ N we get subsets Mi ⊂ L0 and points xji ∈ Mi,

1 ≤ i ≤ m, such that L0 ⊂ ⋃m
i=1BX(xji, 5r), which implies that that 5r ≥ Em(L).

Since the sets Mi are disjoint and each has at least 2 points, then m ≤ 2n

2
= 2n−1.

Thus 5r ≥ Em(L) ≥ en(L) and then

en+1(L)

en(L)
≥ 1

5(1 + δ)
,

which give the desired result. �

We finish this section with an example that will be used later. This example shows

a connected set K in a Banach space E for which the sequence (en(K))n belongs

to ℓ1 while dimB K = ∞ which, thanks to the above proposition, is equivalent to

lim supn→∞ en(K)1/n = 1.

Example 1.4. For 0 < ε < 1, consider the set K = {(xn)n ⊂ C : |xn| ≤ εn} ⊂ c0.

Then dimBK = ∞ and (en(K))n ∈ ℓ1.

Proof. Fix N ∈ N and denote by ΠN : c0 → c0 the projection onto the first coordinates.

Let KN = ΠN(K). Note that KN ⊂ K and that for any (xn)n ∈ K, ‖ΠN((xn)n) −
(xn)n‖ ≤ εN . Then we have the inequalities

(1) en(K
N) ≤ en(K) ≤ en(K

N) + εN for all n ∈ N

We define the diagonal operatorDN : c0 → c0 byD((xn)n) = (x1ε, x2ε
2, . . . , xNε

N , 0, . . .).

Since DN(Bc0) = KN , we can apply [6, Proposition 1.3.2] to estimate the entropy num-

bers of KN as

(2) sup
1≤k≤N

2−
(n−1)

2k ε
k+1
2 ≤ en(K

N) ≤ 6 sup
1≤k<N

2−
(n−1)

2k ε
k+1
2 .
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Combining (1) and (2), we obtain

sup
1≤k≤N

2−
(n−1)

2k ε
k+1
2 ≤ en(K) ≤ 6 sup

1≤k<N
2−

(n−1)
2k ε

k+1
2 + εN .

The above inequality holds for every N ∈ N, so writing s = min{ε, 1
2
} and S =

max{ε, 1
2
}, and using simple calculations, we find positive constants C1 and C2 such

that

C1s
√
n−1 ≤ en(D) ≤ C2S

√
n−1.

Thus, (en(D))n ∈ ℓ1.

To see that dimB K = ∞, fix again N ∈ N and define TN : c0 → CN by TN ((xn)n) =

(x1, x2, . . . , xN). Since TN(K) ⊂ CN has non-empty interior, we obtain that 2N =

dimB(TN(K)) ≤ dimB(K). Since N was arbitrary, the result follows. �

2. On the dimension of the image

We begin this section with the following simple observation: if E and F are normed

spaces, for a linear operator T : E → F there is clear relationship between the box

dimension of T (BE) and its linear dimension. Indeed, if dimT (E) = N is finite, then

T (E) is an isomorphic copy of CN and T (BE) corresponds (via such isomporphisim) to

an open subset of CN . Then, we have dimB(T (BE)) = 2N (which means, in particular,

that T (BE) has finite box dimension). On the other hand, if T (E) has infinite linear

dimension, we can take {xn}n a sequence of linearly independent elements in T (BE).

Now, for each N , span{x1, . . . , xN} ∩ T (BE) is homeomorphic (via the restriction of

a linear isomorphism) to an open subset of CN . Since bi-Lipschitz mappings preserve

box dimension, we have

N = dimB(span{x1, . . . , xN} ∩ T (BE)) ≤ dimB(T (BE)))

for all N . Therefore, the box dimension of T (BE) is also infinite. In particular, we

have the following.

Remark 2.1. If E and F are normed spaces and T : E → F is a linear operator, then

T (BE) has infinite (linear) dimension if and only if it has infinite box dimension.

The aim of this section is to study possible analogous results for homogeneous

polynomials and holomorphic functions between normed spaces. In the polynomial

case, we obtain a result analogous to Remark 2.1, but the proof is much more involved.

Our result in this direction is the following.

Theorem 2.2. Let P : E → F be a homogeneous polynomial. Then, dimP (BE) = ∞
if and only if dimBP (BE) = ∞.
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We devote Section 3 to the proof of this theorem, which involves some results on

polynomials of several complex variables that we think are interesting in their own.

Regarding holomorphic mappings, the situation is completely different: Example 2.4

below shows that the box dimension of the image of f may be finite while its linear

dimension is infinite. Let f : U → F where U ⊂ E is an open set. It is clear that, if

F is finite dimensional, then f(U) has finite both linear and box dimensions. If E is

finite dimensional, things do not go so smoothly (see again Example 2.4). We start

with the following simple positive result.

Remark 2.3. Let E and F be Banach spaces, E finite dimensional, and U ⊂ E be

an open subset. If f : U → F is holomorphic and K ⊂ U is compact, then dimBf(K)

is finite.

Proof. By standard compactness arguments, it is enough to show the result for K a

closed ball (in the finite dimensional Banach space E). Since f is holomorphic, it is

continuously (Fréchet) differentiable. If Df(z) denotes the differential of f at z, let

M be the maximum of ‖Df(z)‖ for z ∈ K. By [14, Theorem 13.8] we have

‖f(x)− f(y)‖ ≤ ‖x− y‖ · sup
0≤t≤1

‖Df(x+ t(y − x)‖ ≤ K‖x− y‖.

Therefore, f is Lipschitz on K and then dimB(f(K)) ≤ dimB(K) < +∞. �

The following examples show, on the one hand, that an analogue to Theorem 2.2 does

not hold for holomorphic mappings. Also, we see in Example 2.4 that the restriction

to a compact subset of U is necessary in the previous proposition.

Example 2.4. For 1 ≤ p ≤ ∞, let f : ∆ → ℓp (c0 if p = ∞) be given by f(z) =

(z, z2, z3, . . .). Then f(∆) is not a relative compact set and, in particular, dimBf(∆) =

∞. Also, for any 0 < r < 1, the linear dimension of f(r∆) is infinite while its box

dimension is finite. In other words, f(r∆) has finite box dimensional but it is not

contained in any finite dimensional subspace of ℓp.

Proof. Take the sequence (zn)n ⊂ ∆ given by zn = (1
2
)

1
2n−1 . Note that, if n < m, then

‖f(zn)− f(zm)‖ℓp ≥ | ((f(zn)− f(zm))2m−1 | =
∣∣∣
(1
2

) 2m−1

2n−1 − 1

2

∣∣∣ ≥
∣∣∣
1

4
− 1

2

∣∣∣ =
1

2
.

This shows that the sequence (f(zn))n ⊂ f(∆) is uniformly separated, and hence f(∆)

cannot be totally bounded.

By Remark 2.3 we know that for 0 < r < 1 we have dimB(f(r∆)) < ∞. To see that

f(r∆) has infinite linear dimension, fix δ < r and define wn = δ
n
for n ∈ N. Let us see
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that {(f(wn))n} is a linearly independent set. If not, for some N ∈ N and some not

all zero scalars a1, . . . , aN we must have
∑N

n=1 anf(zn) = 0, and so



δ δ
2

· · · δ
N

δ2
(
δ
2

)2 · · ·
(

δ
N

)2

...
...

...
...

δN
(
δ
2

)N · · ·
(

δ
N

)N







a1

a2
...

aN




=




0

0
...

0



.

This is impossible since the (Vandermonde) determinant of the matrix is nonzero. �

With the same ideas we can prove the following.

Example 2.5. Consider entire function f : C → ℓp given by f(z) = (z, z2

2!
, z3

3!
, . . .).

Then, for every r > 0 the linear dimension of f(r∆) is infinite while its box dimension

is finite.

3. The proof of Theorem 2.2

Let P : E → F be a m-homogenoeous polynomial. If dim P (BE) < ∞, then it is

clear that dimBP (BE) < ∞, since it is a subset of a finite dimensional vector space.

Suppose now that dim P (BE) = ∞. Given N ∈ N we can take x1, . . . , xN ∈ BE

such that {P (x1), . . . , P (xN)} are lineary independent. We choose a bounded linear

projection R : F → span{P (x1), . . . , P (xN)}. The multinomial formula gives us

(3)
R ◦ P

(∑N
i=1 aixi

)
= R

( ∑

k1+...+kN=n

n!

k1 . . . kN !

∏

1≤j≤N

a
kj
j

∨
P (xk1

1 , . . . , xkN
N )

)

= p1(a1, . . . , an)P (x1) + . . .+ pN(a1, . . . , aN )P (xN)

where, for each 1 ≤ j ≤ N , pj : C
N → C is an m-homogeneous polynomial. Note that

pj(ǫj) = 1 and pj(ǫi) = 0 if i 6= j. This means that our polynomials p1, . . . , pN are

linearly independent. We define f : CN → CN by

f(z1, . . . , zN) = (p1(z1, . . . , zN), . . . , pN(z1, . . . , zN))

and T : CN → span{P (x1), . . . P (xN)} by

T (z1, . . . , zN) =
N∑

j=1

zjP (xj),

which is a linear isomorphism.

Since {P (a1x1 + . . .+ aNxN) :
∑N

j=1 |an| ≤ 1} ⊂ P (BE), we have

dimB(P (BE)) ≥ dimB



R ◦ P (a1x1 + . . .+ aNxN) :

N∑

j=1

|aj | ≤ 1



 = dimB(f(BℓN

1
)).
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The proof of Theorem 2.2 is finished once we show that dimB(f (BℓN
1
)) goes to infinity

as N does. This is shown in Corollary 3.3 below, where we see that dimB(f (BℓN
1
)) is

at least N
1
m −m. In order to get Corollary 3.3 we need some preparation, which we

develop in the following subsection.

3.1. On the rank of the jacobian of homogeneous polynomials. Consider

p1, . . . , pr m-homogeneous polynomials from C
N to C such that the r × N jacobian

matrix Jp1,...,pN :=
(
∂pi
∂zj

)

1≤i≤r,1≤j≤N
has maximal rank. Assume w.l.o.g. that the first

principal minor

Q : = Q(z1, . . . , zN ) = det

(
∂pi
∂zj

(z1, . . . , zN)

)

1≤i,j≤r

is not zero. For i = 1, . . . , r, j = r + 1, . . . , N , denote with Qij = Qij(z1, . . . , zN)

the determinant of the submatrix of the jacobian matrix whose columns are indexed

by {1, . . . , r} ∪ {j} \ {i}, multiplied by (−1)i. All these polynomials Q and Qij are

homogeneous of degree r(m− 1).

Is easy to check that any other m-homogeneous polynomial P such that the rank

of the jacobian matrix of p1, . . . , pr, P is equal to r must be a solution of the following

linear system of partial differential equations:

(4) Q
∂P

∂zj
+

r∑

i=1

Qij
∂P

∂zi
= 0, j = r + 1, . . . , N.

We will exhibit a bound on the dimension of the C-vector space of homogeneous

polynomials of degree m satisfying (4) which does not depend on N .

Theorem 3.1. The dimension of the C-vector space of all m-homogeneous polynomials

from CN to C satisfying (4) is bounded from above by
(
r+m−2
m−2

)
.

Proof. As Q 6= 0, after a linear change of variables in CN if necessary, we may as-

sume that the monomial zr(m−1)
1 appears in the Taylor expansion of Q. For α =

(α1, . . . , αN) ∈ (Z≥0)
N , we denote with zα the product zα1

1 . . . zαN

N , and we set |α| =
α1 + · · ·+ αN . We can then write

Q =
∑

|α|=r(m−1)Qαz
α

Qij =
∑

|β|=r(m−1)Qijβz
β

P =
∑

|γ|=m Pγz
γ .

Let ǫ1, . . . , ǫn be the elements of the standard basis of Zn. By setting to zero all the

coefficients in the polynomial (4), we get the following linear system of equations for
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(Pγ)|γ|=m :

(5)
∑

α+γ=δ+ǫj

γj Qα Pγ+
r∑

i=1

∑

β+γ=δ+ǫi

γiQijβ Pγ = 0; j = r+1, . . . , n, |δ| = r(m−1)+m−1.

This is a homogeneous system of
(
n+r(m−1)+m−2
r(m−1)+m−1

)
linear equations in the

(
n+m−1

m

)
vari-

ables (Pγ)|γ|=m. We will show that the corank of this system is bounded from above

by the number of monomials of degree m in r variables, which is equal to
(
r+m−1
m−1

)
.

To do so, we will show that for any γ̃ ∈ (Z≥0)
N such that |γ̃| = m, and γ̃j > 0 for

some j > r, there is an equation from (5) from where we can express Pγ̃ as a function

of all those Pγ with zγ ≺ zγ̃ in the standard lexicographic order z1 ≺ x2 ≺ . . . ≺ zN .

This will amount to a triangular submatrix of the linear system (5) with the desired

corank.

Write then γ̃ = (γ̃1, . . . , γ̃j, 0, . . . , 0), with γ̃j 6= 0, j > r, and set

δ̃ := r(m− 1) + γ̃1, γ̃2, . . . , γ̃j−1, γ̃j − 1, 0, . . . , 0).

We extract the equation corresponding to δ = δ̃ in (5), and find that

• Pγ̃ appears in a nonzero term in the first sum (corresponding to α̃ = (r(m −
1), 0, . . . , 0), recall that by hypothesis we have that Qα̃ 6= 0 and also γ̃j 6= 0);

• all the Pγ appearing in the second (double) sum have γℓ = 0 if ℓ > j and

γj ≤ γ̃j − 1, so we have that zγ ≺ zγ̃ ;

• the rest of the Pγ appearing in the first sum must satisfy

γ1 ≤ r(m− 1) + γ̃1

γ2 ≤ γ̃2
...

...

γj ≤ γ̃j

γℓ = 0 ∀ℓ > j.

As γ 6= γ̃ then there exists a unique i > 1 such that γi < γ̃i and γℓ = γ̃ℓ for

ℓ > i. This implies that zγ ≺ zγ̃ also in this case, which concludes with the

proof of the claim.

�

Remark 3.2. The bound is sharp as it can be seen easily by choosing as Pi = zmi for

i = 1, . . . , r. Then, the C-vector subspace of all the polynomials of degree m in the

variables z1, . . . , zr satisfy (4). On the other hand, it is a classical result (see [15]) that

one can make a linear change of variables such that the polynomial system depends

polynomially on r < N variables if and only if the equations (4) can be defined with

Q, Qij ∈ C.
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Corollary 3.3. Let p1, . . . , pN m-homogeneous polynomials from CN to C which are

linearly independent. Then the rank of the jacobian matrix of this family (i.e. the

dimension of the image of the map f : CN → CN defined by these polynomials) is at

least N
1
m −m.

Proof. Denote with r the rank of Jp1,...,pN , and suppose w.l.o.g. that Jp1,...,pN has

maximal rank. Then, we have that all pj satisfies (4) for j = 1, . . . , N. As they are

linearly independent, from Theorem 3.1, we deduce straightforwardly that

N ≤
(
r +m− 1

m− 1

)
≤ (r +m)m. �

4. Entropy numbers for holomorphic functions and their Taylor

coefficients

In this section we relate the entropy numbers of f with the entropy numbers of the

polynomials of the Taylor series expansion of f and viceversa. We start with a simple

example. Let f : Bc0 → c0 be defined as f((xn)n) = (x1, x
2
2, x

3
3, . . .). It is clear that

Pmf(0)((xn)n) = (0, . . . , xm
m, 0, . . .), getting that dimBPmf(0)(BE) = 2. On the other

hand, given ε > 0 we have, for every n ∈ N

en(f(εBc0)) = en({(xn)n ⊂ C : |xn| ≤ εn}),

which are the entropy numbers of the set from Example 1.4. Thus, we see that

dimBf(εBc0) = ∞ for every ε > 0. This example shows the (expected) fact that the

homogeneous polynomials in the Taylor expansion of f can have small dimensional im-

ages while f maps any ball in an infinite dimensional set. In particular, by Proposition

1.2 (and its proof) we have that

lim sup
n→+∞

en(Pmf(0)(Bc0))
1/n ≤

√
2

2
for all m

while, on the other hand,

lim sup
n→+∞

en(f(εBc0))
1/n = 1.

This shows that a (uniformly) fast decay of the entropy numbers of Pmf(0)(BE) does

not imply a fast decay in the entropy numbers of f(εBE) for ε > 0.

Recall that, by Example 1.4, the sequence (en(f(εBc0)))n belongs to ℓ1 for every

ε > 0. The following example shows a bit more.

Example 4.1. There is an holomorphic function f : Bc0 → c0 such that every polyno-

mial of its Taylor expansion at 0 has finite rank (hence, for every ε > 0, dimB Pmf(0)(εBc0)
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is finite) but for any ε > 0 the sequence (en(f(εBc0))n does not belong to ℓp for any

1 ≤ p < ∞.

Proof. Consider (σm)m the partition of the natural numbers such that each σm is a

finite set with m! consecutive elements:

σ1 = {1}; σ2 = {2, 3︸︷︷︸
2!

}; σ3 = {4, 5, 6, 7, 8, 9︸ ︷︷ ︸
3!

}; σ4 = { . . .︸︷︷︸
4!

}; . . .

and define f : Bc0 → c0 by

f((xn)n) = (x1, x
2
2, x

2
3︸ ︷︷ ︸

2!

, x3
4, x

3
5, . . . , x

3
9︸ ︷︷ ︸

3!

, . . .).

In other words, the j-th coordinate of f((xn)n) is xN
j if j ∈ σN . Note that for every

m ∈ N we have

Pmf(0)((xn)n) = (0, 0, . . . , xm
j , x

m
j+1, . . . ,︸ ︷︷ ︸
m!

, 0 . . .),

where j, j + 1, . . . ∈ σm. Now, denote by Πσm
: c0 → c0 the projection onto the coordi-

nates belonging to σm. To see that (en(f(εBc0)))n does not belong to ℓp for any ε > 0,

we may suppose that ε = 2−r for some r ∈ N. Note that a sequence (xn)n belongs

to f(ΠN(2
−rBc0)) if and only if |xj | ≤ 2−rN for j ∈ σN and xj = 0 otherwise. Then,

applying for instance [6, 1.3.2], we have

eN !+1

(
ΠσN

f(2−rBc0)
)
= sup

1≤k≤N !
2−

N!
2k 2−rN =

2√
2
2−rN ,

Now, for 1 ≤ p < ∞ we have

∞∑

n=1

en(f(2
−rBc0))

p = e1(f(2
−rBc0))

p +
∞∑

N=1

(N+1)!∑

n=N !+1

en(f(2
−rBc0))

p

≥
∞∑

N=2

(N+1)!∑

n=N !+1

eN !+1(f(2
−rBc0))

p

≥
∞∑

N=2

(N+1)!∑

n=N !+1

eN !+1(ΠσN
(f(2−rBc0)))

p

≥
∞∑

N=2

((N + 1)!−N !)2−p( 1
2
+rN)

≥
∞∑

N=2

2−
1
2N !N(2−rp)N .

Since the last term diverges for every r and p, we are done. �

Note that in the above example, f(ΠN(2
−rBc0)) coincides with PNf(0)(2

−rBc0) and,

also, that the dimension of Pmf(0)(2
−rBc0) is finite for every m but goes to infinity

as m does. It would be interesting to know if the sequence (en(f(εBE)))n must decay

fast if the dimensions of Pmf(0)(2
−rBc0) are uniformly bounded.
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The last goal of this note is to find some bounds for the entropy numbers of

Pmf(x0)(εBE) in terms of properties of f . Let us start by taking a standard ap-

proach. Following (the proof of) [2, Proposition 3.4], for an holomorphic mapping

f : U → F and x0 ∈ U , there is ε > 0 such that

(6) Pmf(x0)(εBE) ⊂ coe (f(x0 + εBE)),

where coe denotes the absolutely convex hull of a set. Thus, a good natural starting

point to estimate the entropy numbers of Pmf(x0)(εBE) in terms of those of f(x0 +

εBE) is to estimate en(coe (f(x0 + εBE)) in terms of en(f(x0 + εBE)). Now, suppose

that dimBf(x0 + εBE) = N < ∞. By [11, Corollary 5], we get that for every ε > 0,

En(f(x0 + εBE)) ≤ 2(n+ 1)−1/(N+ε).

From this estimate and [5, Proposition 4.5], we get

(7) en(coe (f(x0 + εBE))) ≤ C(n+ 1)−1/N .

for some C > 0 (note that, when we take coe , we pay the price of changing En
to en). Finally, (6) and (7) give the following estimate for the entropy numbers of

Pmf(x0)(εBE).

en(Pmf(x0)(εBE)) ≤ en(coe (f(x0 + εBE))) ≤ C(n+ 1)−1/N .

This bound allows us to deduce for example, that (en(Pmf(x0)(εBE)))n ∈ ℓp for ev-

ery p > N . Our last theorem improves this claim, showing that under the same

assumptions we actually have (en(Pmf(x0)(εBE)))n ∈ ℓp for every p > 1.

Theorem 4.2. Let E and F be Banach spaces, U ⊂ E be an open set, x0 ∈ U and

ε > 0 be such that x0 + εBE ⊂ U . Let f : U → F be a holomorphic function such that

dimBf(x0 + εBE) < ∞. Then, (en(Pmf(x0)(BE))n∈N ∈ ℓp for every p > 1 and every

m ∈ N.

Before proving the theorem, we need a technical lemma. In what follows, for a ∈ R,

we write ⌈a⌉ = min{k ∈ Z|k ≥ a}.

Lemma 4.3. Let E and F be Banach spaces, U ⊂ E be an open set, x0 ∈ U and ε > 0

be such that x0 + εBE ⊂ U . For an holomorphic function f : U → F and n,m ∈ N,

the following inequality holds

e(n−1)Cn+1(Pmf(x0)(εBE)) ≤ 2en(f(x0 + εBE))

where Cn =

⌈
C

en(f(x0 + εBE))

⌉
for some positive constant C = C(f) which depends

only on f .
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Proof. We may suppose that x0 = 0 and ε = 1. Fix n,m ∈ N. Given δ > 0, there

exists M = {y1, y2, . . . , y2n−1} ⊂ Y such that f(BE) ⊂
⋃2n−1

k=1 yk + (en(f(BE)) + δ)BF .

Write C = supx∈BE
‖P1f(x)‖ and let Cn =

⌈
2πC

en(f(BE))

⌉
. We split the interval

[0, 2π] into Cn disjoint intervals J1, . . . JCn
of length 2π

Cn
. Note that, for x ∈ BE , and

t0, t1 in one of this intervals, we have

‖f(eit0x)− f(eit1x)‖ ≤ C|eit0 − eit1 | ≤ C
2π

Cn
≤ en(f(BE)).

As a consequence, if some t0 and some yk ∈ M satisfy ‖yk − f(eit0x)‖ ≤ en(f(BE))

then, for any other t in the same interval as t0, we have ‖yk − f(eitx)‖ ≤ 2en(f(BE)).

We define the set

L = {y ∈ F : y =
1

2π

Cn∑

j=1

∫

Jj
zje

−itmdt, for some z1, . . . , zCn
∈ M}.

Note that L has (2n−1)
Cn = 2Cn(n−1) elements. The proof is complete if we show that

for x ∈ BE, there exists y ∈ L such that ‖y − Pmf(0)(x)‖ ≤ 2en(f(BE)). By the

Cauchy integral formula (see for instance [14, Corollary 7.3]) we have

Pmf(0)(x) =
1

2π

∫ 2π

0
f(eitx)e−itmdt =

1

2π

Cn∑

j=1

∫

Jj
f(eitx)e−itmdt.

For each j, take zj ∈ M such that ‖zj − f(eitx)‖ ≤ 2en(f(BE)) for all t ∈ Jj. Then,

y = 1
2π

Cn∑

j=1

∫

Jj
zje

−itmdt ∈ L and

‖y − Pnf(0)(x)‖ =

∥∥∥∥∥∥
1

2π

Cn∑

j=1

∫

Jj

(
f(eitx)− zj

)
e−itmdt

∥∥∥∥∥∥

≤ 1

2π

Cn∑

j=1

∫

Jj
2en(f(BE))dt

= 2en(f(BE)). �

Proof of Theorem 4.2. By Lemma 4.3, given p > 1 we have

∞∑

n=1

en(Pmf(0)(BE))
p =

∞∑

j=1

j Cj+1∑

n=(j−1)Cj+1

en(Pmf(0)(BE))
p

≤
∞∑

n=1

(nCn+1 − (n− 1)Cn)e(n−1)Cn+1(Pmf(0)(BE))
p

≤ 2p
∞∑

n=1

(nCn+1 − (n− 1)Cn)en(f(BE))
p,

We finish the proof by showing that

lim sup
n→∞

n

√
(nCn+1 − (n− 1)Cn)en(f(BE))p < 1.
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Since f(BE) is a connected set, by Proposition 1.3 we have

lim inf
n→∞

en+1(f(BE))

en(f(BE))
≥ 1

5
.

Thus, there exists n0 ∈ N such that for any n > n0,

n

n2 + (n− 1)C


 C

en+1(f(BE))
en(f(BE)

+ en(f(BE))


 < 1.

This implies that for every n > n0

n

(
C

en+1(f(BE))
+ 1

)
− (n− 1)C

en(f(BE))
<

n2

en(f(BE))
,

and since C
en(f(BE))

≤ Cn ≤ C
en(f(BE))

+ 1, we get the inequality

nCn+1 − (n− 1)Cn ≤ n2

en(f(BE))
.

From this last inequality we obtain that,

(8) n

√
(nCn+1 − (n− 1)Cn)en(f(BE))p ≤

(
n

√
en(f(BE))

)p−1
n
√
n2.

Since we are assuming that dimBf(BE) < ∞, by Proposition 1.2 we have that

lim supn→∞
n

√
en(f(Be)) < 1. This and (8) complete the proof. �

We do not know if Proposition 4.2 holds for p = 1. More precisely, we have the

following question

Question 4.4. Let E and F be Banach spaces, U ⊂ E an open set, and x0 ∈ U .

Take f : U → E an holomorphic function and suppose that there exists ε > 0 such

that dimB f(x0 + εBE) < ∞. Is it true that (en(Pmf(x0)(BE))n belongs to ℓ1 for all

m ∈ N?

A probably more natural question, whose positive answer would clearly imply a

positive answer to Question 4.4, is the following.

Question 4.5. Let E and F be Banach spaces, U ⊂ E an open set, and x0 ∈ U . Take

f : U → E an holomorphic function and suppose that there exists ε > 0 such that

dimB f(x0 + εBE) < ∞. Is it true that for every m ∈ N, dimBPmf(x0)(BE) < ∞?
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