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Metabolomics, also called metabonomics or metabolic profiling, deals with the simultaneous determination
and quantitative analysis of intracellular metabolites or low-molecular-mass molecules. The metabolomics
field, which has begun a little more than ten years ago thanks to the development of technologies such as
nuclear magnetic resonance (NMR) and mass spectrometry (MS), has been successfully applied in different
areas of food science. This review deals with the recent achievements of metabolomics in the comprehensive
analysis of fermented foods predominated by lactic acid bacteria, the fermentative capacity of these microor-
ganisms and the beneficial effects of functional foods and probiotics.
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1. Introduction

In recent years, development andfinancing of a large number of huge
sequencing projects (such as the Human Genome Project, http://www.
ornl.gov/sci/techresources/Human_Genome/home.shtml) have led the
rise and improvement of new technologies to obtain large-scale informa-
tion in the Biology and Bioinformatics fields. The advances achieved in
these areas have caused a new paradigm in biological research that
proposes a global view of biological processes; this concept is reflected
in the emergence of the “The Omics Age”.

“Omics” derives from the Latin voice -omne that means “everything,
totality, whole”. This neologism is actually used as a suffix for referring
to those disciplines as Genomics, Proteomics, Transcriptomics, and
Metabolomics, which study a certain set of molecules in a global way –

genes, proteins, transcripts or metabolites, respectively – or even seek
to define the relationships among them. “Omics” sciences are based on
the analysis of a great volume of information and use bioinformatics
for data interpretation. The analyzed data integration generates big con-
tributions to the knowledge of the versatility and functionality of cells
and their biotechnological applications.

1.1. What is metabolomics?

Metabolomics is an emerging field within “omics” sciences that
began a little more than ten years ago; it is also known asmetabolome
analysis, metabonomics (Nicholson, Lindon, & Holmes, 1999) or
metabolic profiling (Niwa, 1986). Metabolomics deals with the si-
multaneous determination and quantitative analysis of intracellular
metabolites, which have been defined as low-molecular-mass
compounds (b1500 Da) that are not genetically encoded and that
are produced and modified by the metabolism of living organisms
(i.e., microbes). These compounds include endogenous and exogenous
small molecules such as peptides, amino acids, nucleic acids, carbohy-
drates, organic acids, vitamins, polyphenols, alkaloids and minerals.
(Jewett, Hofmann, & Nielsen, 2006; Wishart, 2008b).

Metabolic footprinting or exometabolomics focuses on what the
cell excretes under defined conditions and intends to define a pattern
of extracellular metabolites. Although metabolic footprinting gives
important information about only a small part of the entire bacterial
metabolome, it provides key information that may contribute to the
understanding of cell communication mechanisms (Mapelli, Olsson,
& Nielsen, 2008).

Metabolomics has beenwidely applied tomany disciplines, including
microbiology (Mapelli et al., 2008), human health (Gieger et al., 2008;
Hirayama et al., 2009; Psychogios et al., 2011; Sreekumar et al., 2009), di-
agnostic biomarker discovery (Denery, Nunes, Hixon, Dickerson, & Janda,
2010; Wang et al., in press), food and beverage analysis (Frank, Scholz,
Peter, & Engel, 2011; Rochfort, Ezernieks, Bastian, & Downey, 2010),
plant physiology (Fiehn et al., 2000), and drug discovery and develop-
ment (Wishart, 2008a).

Concerning food science, metabolomics has recently been applied
for monitoring the quality, processing, safety, and microbiology of
both rawmaterials and final products to improve the consumer's health
and confidence (Cevallos-Cevallos, Reyes-De-Corcuera, Etxeberria,
Danyluk, & Rodrick, 2009). In this context, Cifuentes (2009) has recently
defined Foodomics as a new discipline that studies the Food and Nutri-
tion domains through the application of advanced omics technologies;
Nutrigenomics and Nutrigenetics can be considered part of the more
general Foodomics term.

Metabolomic analyses have been generally classified as targeted
(specific) or untargeted (nonselective or integral) analyses. Targeted
analyses focus on a specific group of metabolites that require the
identification and quantification of many metabolites within the
group. This type of metabolomics is important to evaluate the behav-
ior of a specific group of compounds in a sample under certain condi-
tions; it typically requires a higher level of selective metabolite
extraction and purification. In contrast, untargeted or comprehen-
sive metabolomics focuses on the detection of as many groups
of metabolites as possible to get patterns or fingerprints without
identifying or quantifying a specific compound (Cevallos-Cevallos
et al., 2009).

Metabolomics aims to integrate information collected through a
series of recent technological findings in metabolite separation, de-
tection, identification and quantification. Metabolite separation and
detection have been considered key steps in metabolic profiling. The
most popular separation techniques are liquid chromatography (LC)
in its high-performance (HPLC) or ultra-performance (UPLC) forms,
gas chromatography (GC) and capillary electrophoresis (CE). Among
the detection techniques, mass spectrometry (MS), nuclear magnetic
resonance (NMR), and near infrared spectrometry (NIR) are the most
used.

In Foodomics, most separation analyses have been applied through
coupling with various detection techniques; the working principles of
these techniques in food analysis are presented below.
1.2. Separation techniques

1.2.1. High-performance liquid chromatography (HPLC)
This commonly used technique enables to separate different

types of compounds, using appropriate columns packed with
3–5 μmporous particles of a stationary phase, with which they inter-
act differently. However, the simultaneous separation of multiple
components is very difficult in a conventional HPLC system. Based
on the nature of the stationary phase and the separation process, liq-
uid chromatography can be classified in: a) adsorption chromatogra-
phy: the stationary phase is an adsorbent (i.e. silica gel) and the
separation is based on repeated adsorption–desorption steps.
Depending on the relative polarity of the two phases this type of
chromatography can be classified as normal and reversed-phase
chromatography. In normal phase chromatography, the stationary
bed is strongly polar in nature and the mobile phase is nonpolar.
Polar samples are retained on the polar surface of the column pack-
ing longer than less polar materials. In contrast, in reversed-phase
chromatography the stationary bed is nonpolar (hydrophobic) in na-
ture, while the mobile phase is a polar liquid; here the more nonpo-
lar the material is, the longer it will be retained; b) ion-exchange
chromatography: the stationary bed has an ionically charged surface
of opposite charge to the sample ions. It is exclusively usedwith ionic or
ionizable samples. The stronger the charge of the sample, the longer it
will take to elute. The mobile phase is an aqueous buffer, where both
pH and ionic strength are used to control the elution time; and c)
size exclusion chromatography: the column is filled with material
of controlled pore sizes and the sample is screened or filtered
according to its solvated molecular size. Larger molecules rapidly
elute while smaller molecules penetrate inside the porous of the
packing particles and elute later. This technique is also called gel fil-
tration or gel permeation chromatography although, today, the sta-
tionary phase is not restricted to a “gel”. Detection systems are
based on refractive index, ultraviolet light, fluorescence, evaporative
light scattering, or mass spectrometry (MS). In high-performance
anion exchange chromatography (HPAEC), pulsed amperometry de-
tection or conductivity detection under ion suppression are used.
Each chromatographic peak corresponds with a metabolite, which
is defined by its interaction with the stationary phase and, hence,
its retention time. The peak area allows the comparison of the con-
centration of a particular metabolite among samples. Fast, highly ef-
ficient separations, without requiring rigorous sample pretreatment
can be obtained. HPLC, coupled with various detection systems, has
been widely used in the last 30 years for the analyses of different
compounds in many research fields (Toyo'oka, 2008; Yoshida et al.,
2012).

http://www.ornl.gov/sci/techresources/Human_Genome/home.shtml
http://www.ornl.gov/sci/techresources/Human_Genome/home.shtml
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1.2.2. Ultra-performance liquid chromatography (UPLC)
Recent technology advancements in liquid chromatography have

been achieved by the introduction of UPLC. Innovations in pump
systems enable operations at high pressures, using 1.7-μm porous
particles packed in long capillary columns combined with high oper-
ating pressures. The UPLC technology provides a higher peak capacity,
greater resolution, increased sensitivity, and higher speed than HPLC
(Wren, 2005). This approach can achieve results similar to those with
HPLC, but inmuch less time. In this respect,Wilson et al. (2005) reported
that running times could be reduced 10 times, making UPLC a promising
analytical strategy for metabolomic research. UPLC makes use of the
same detectors as in conventional HPLC, such as UV–VIS, fluorescence,
and MS. The main research fields that use UPLC–MS technology are
pharmaceutical analysis and bioanalysis, but it has also been applied
in food analyses for determining food components, food additives, and
hazardous compounds (Toyo'oka, 2008).

1.2.3. Gas chromatography (GC)
This is an analytical technique for separating compounds mainly

based on their volatilities; thus, GC is limited to volatile metabolites
and those that can be derivatized to yield volatile andmore thermostable
products; moreover, derivatization may improve the detectability of
the derivative. The reactions to produce volatile derivatives can be
classified as silylation, acylation, alkylation, and coordination complex-
ation. Also, derivatization methods of samples can be divided into pre-
and post-column methods and off-line and on-line methods (McNair
& Miller, 1998). An overview of sample preparation techniques by
sample type was reported by Snow and Slack (2004). In GC, the temper-
ature of the column is gradually raised using a temperature-programmed
oven. The metabolites pass through a capillary column along with a
carrier gas, and are separated by interaction with the stationary phase
of the column. Common detection systems are based on flame ioniza-
tion; generally, the metabolite mass is measured by MS (Yoshida et
al., 2012).

1.2.4. Capillary electrophoresis (CE)
A major fraction of metabolites are too polar – or ionic – to be

retained by columns employed in HPLC. In this sense, CE is a good
approach to be used as separation technique. CE separates species
based on their mass-to-charge ratio into a small capillary filled with
an electrolyte; in contrast with GC and HPLC, which operate based on
differential interaction with a stationary phase. Thus, CE represents a
complementary tool to the traditional chromatographic techniques; in
many cases, samples that cannot be easily resolved by GC or HPLC
can be separated by CE (Montona & Soga, 2007). According to its sep-
aration principle, CE can be classified in electrophoretic flow and
electroendosmotic flow. In the first process sample ions move under
the influence of an applied voltage. The ion undergoes a force that is
equal to the product of the net charge and the electric field strength. It
is also affected by a drag force that is equal to the product of the trans-
lational friction coefficient and the velocity. The electroosmotic flow
(EOF) is caused by applying high-voltage to an electrolyte-filled capillary.
This flow occurs when the buffer running through the silica capillary has
a pH greater than 3; the SiOH groups lose a proton and the capillary wall
has a negative charge developing a double layer of cations attracted to it.
The inner cation layer is stationary, while the outer layer is free to move
along the capillary. The applied electric field causes the free cations to
move toward the cathode creating a powerful bulk flow. Currently, the
process of CE is a generic term and it can be segmented into many sepa-
ration techniques depending on the types of capillary and electrolytes
used (Sekhon, 2011). The most attractive feature of CE is the use of
small amounts of organic solvent and reagents (a fewnanoliters),making
it particularly convenient for volume-limited samples (Yoshida et al.,
2012). This versatile technique enables the separation of a wide range
of analytes, from small inorganic ions to large proteins and even intact
bacteria (Armstrong, Schulte, Schneiderheinze, & Westenberg, 1999;
Bean, Lookhart, & Bietz, 2000; Isoo & Terabe, 2003). In contrast, the
small sample volumes used in CE lead to relatively poor concentration
sensitivity, explaining the few reports on metabolome analysis involving
CE (Yoshida et al., 2012).
1.2.5. Ion mobility spectrometry (IMS)
This is a non-conventional technique where food metabolites are

carried in an inert gas flow, ionized, and separated by a drift gas
flowing in the opposite direction. IMShas been applied formetabolomic
analysis of bacterial metabolites as indicator of microbial growth,
cheese and beer production, and food packaging material (Vautz et al.,
2006).
1.3. Detection techniques

1.3.1. Nuclear magnetic resonance (NMR) spectroscopy
It is one of themost frequently used analytical tools for fingerprinting

and profiling studies. It is quick, non-destructive, and relatively inexpen-
sive, after the initial costs of installation. It can detect all compoundswith
NMR-measurable nuclei. Both solid- and liquid-state NMR exist. Its
principal drawbacks, however, are its poor sensitivity and large sample
requirement (Rochfort, 2005; Yang, 2006).
1.3.2. High resolution magic angle spinning (HRMAS) NMR
HRMAS NMR spectroscopy is a rapid and accurate alternative

technique, which retains the advantages of both classical solid- and
liquid-state NMR (Sitter, Bathen, Tessem, & Gribbestad, 2009),
allowing the direct examination of the whole food product without
component extraction (Shintu & Caldarelli, 2006).
1.3.3. Mass spectrometry (MS)
This technique affords high sensitivity and selectivity; its greatest

advantage is that it allows the comprehensive evaluation of various
molecules, as it can discriminate some compound classes, depending
on the ionization type used (Montona & Soga, 2007; Yoshida et al.,
2012). There are several direct MS analysis systems, the most commonly
being Direct infusion mass spectrometry (DIMS), Matrix-assisted laser
desorption ionization mass spectrometry (MALDI-MS), and desorption
electrospray ionization (DESI).WhereasMS based on a triple quadrupole
is optimal for quantitative analyses, accurate qualitative analyses are
performed with MS based on, for instance, time-of-flight analysis.
Recently, selective ion flow tube mass spectrometry (SIFT-MS) has
been introduced for food analysis (Agila & Barringer, 2012; Noseda
et al., 2010, 2012).
1.3.4. Fourier transform infrared spectroscopy (FTIR)
In the early 1990s, infrared (IR) spectroscopy was introduced as a

tool that allowed classifying, characterizing, and identifying microor-
ganisms (Helm, Labischinski, Schallehn, & Naumann, 1991; Naumann,
Helm, & Labischinski, 1991). The application of Fourier transforma-
tion in IR spectroscopy resulted in the development of the FTIR tech-
nique, which was rapidly introduced into the group of metabolomic
procedures. Later, FTIR has been proposed as a metabolomic finger-
printing tool (Fiehn, 2001; Johnson, Broadhurst, Goodacre, & Smith,
2003) for rapid and non-destructive analysis of the quality and
composition of a large number of different products. For instance,
the use of FTIR for milk analysis allows more accurate measurement
of the major (fat, protein and lactose) andminor (urea, fatty acids, ke-
tones, calcium and phosphor) milk components (Heuer et al., 2001;
Soyeurt et al., 2009). Samples, either liquid or solid, do not require
any pre-treatment (extraction and derivation). Solid samples repre-
sent a great feature when performing on-line measurements (Ikeda,
Kanaya, Yonetani, Kobayashi, & Fukusaki, 2007).
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1.4. Hyphenated techniques

Currently, the main analytical techniques used in metabolomics are
hyphenated techniques such as GC, HPLC, and CE coupled to MS
(GC–MS, HPLC–MS, and CE–MS, respectively). GC–MS provides a high
resolution and reproducibility; innovative techniques have been devel-
oped to make metabolic fingerprints by GC–MS (Pongsuwan et al.,
2007). Alternatively, HPLC–MS is the most commonly hyphenated
method used inmetabolome analysis, displaying a high sensitivity com-
pared with GC–MS and CE–MS, and it is a useful tool for non-targeted
metabolome analysis (Yoshida et al., 2012). CE–MS represents a viable
platform for metabolomic studies; the poor sensitivity for low concen-
trations, often cited as a disadvantage of CE when using absorbance-
related detectors, does not represent a problem if using MS for de-
tection. Alternatively, NMR, FTIR and DIMS have been applied for
metabolic fingerprinting, thanks to their high performance and mini-
mal sample preparation (Dunn & Ellis, 2005; van der Greef, Stroobant,
& van der Heijden, 2004). However, detection limits for NMR and FTIR
are higher than for MS-based techniques, limiting the application
range only to those metabolites that are present in high concentrations
(Koek, Jellema, van der Greef, Tas, & Hankemeier, 2011).

It is worth mentioning that none of the individual methods is
capable of detecting all the metabolites of a sample, so a combination
of different techniques is required to ensure that the obtained results
are complementary. Therefore, hyphenated techniques are generally
preferred in metabolomics, since simultaneous quantification and
identification of as many as possible metabolites makes it feasible
getting close to determine the entire metabolome.

1.5. Data analysis

Chemometrics is an essential tool in analyzing differences among
metabolomes, enabling the identification of metabolites relevant for
a specific condition. To investigate whether one group is different
from another, the alignment of the data is usually achieved by the
use of multivariate data analysis (MVDA) techniques, e.g., principal
component analysis (PCA), partial least squares-discriminant analysis
(PLS-DA), or principal component regression (PCR). When working
with multivariate data, severe multicollinearity usually exists as the
number of variables commonly exceeds the number of observations.
For instance, both NMR and MS techniques produce data with thou-
sands of variables while the number of samples is usually limited to
fewer than 100. To overcome dimensionality problems bilinear factor
models are usually designed. In this respect, the basic bilinear factor
model is PCA, which decomposes the data into score vectors and loading
vectors, that when taken outer products and summed, will recreate the
original data. The most interesting phenomena can be observed in the
first few components while the majority of components are regarded as
uninteresting or noise. When an informative response (sample-specific
information) is available, the family of partial least square can do a
more efficient and interpretable decomposition than PCA.With a single
continuous response PLS regression (PLSR) maximizes the covariance
between the explanatory variables and the response. When PLS is
used with a discrete response to form PLS discriminant analysis
(PLS-DA) ,maximization is done on the estimated between groups co-
variance matrix (Liland, 2011). Applications of PCA and PLS-DA in
metabolomics are given later on. Currently, PCA is the most common
tool used as data mining method in Foodomics (McGhie & Rowan,
2012; Ochi, Naito, Iwatsuki, Bamba, & Fukusaki, 2012).

2. Metabolomics in fermented foods

The study of metabolite profiling in fermented foods is used to
observe metabolite changes during fermentation and the possibility
to predict, among others, the sensory and nutritional quality of the
fermented final product. Here, a few examples of fermented foods
where metabolomics has been applied so far are presented.

2.1. Fermented soy foods

Severalmetabolomics studieswere carried outmainly for fermented
soy foods such as meju (Kang et al., 2011), doenjang (Namgung et al.,
2010), cheonggukjang (Park et al., 2010) and fermented soymilk (Yang
et al., 2009), in which food components such as proteins, amino acids,
organic acids, and sugars have been analyzed (Table 1).

Meju is a brick of dried fermented soybeans that belongs to the
traditional Korean cuisine. While not consumed on its own, it serves
as the basis of several Korean condiments, such as doenjang, gochujang
or kanjang (soy sauce). Kang et al. (2011) analyzed the metabolites
produced during meju fermentation that contribute to the nutritional
qualities of doenjang and kanjang. For this purpose, meju was prepared
from soybean blocks that were naturally dried for 1 day and fermented
in rice straw for two months. Microorganisms such as Bacillus sp.,
Aspergillus sp., and Mucor sp. are usually involved in meju fermenta-
tion. Meju samples corresponding to different fermentation periods
were analyzed by UPLC-quadrupole-time of flight mass spectrometry
(UPLC-Q-TOF MS) and data were statistically processed by PLS-DA.
Changes in metabolites such as amino acids, small peptides, nucleo-
sides, urea cycle intermediates, and organic acids, which are responsible
for the unique taste andnutritional quality of fermented soy foods, were
clearly altered throughout fermentation. The authors noted that pro-
teins were degraded as the fermentation proceeded, generating rele-
vant amino acids and peptides related to the taste and nutritional
quality of the product. The concentration of glutamic acid, the metabo-
lite responsible for the characteristic umami flavor, reached amaximum
at the end (60 days) of the fermentation. Also, the concentrations of the
amino acids threonine and proline contributing to the sweet taste; and
phenylalanine, tyrosine, leucine, isoleucine, valine, and methionine
contributing to the bitter taste, increased after 60 days of fermentation
compared with non-fermented soy. Regarding the organic acids, only
citric acid and pipecolic acid were detected, whereby the former de-
clined throughout the fermentation while the latter increased. In
this study, twenty-two metabolites were determined as the major
compounds contributing to the discrimination of meju samples.
The authors found that those metabolites were positively correlated
with the nutritional and sensory qualities of meju and that they
could be used as biomarkers for monitoring the fermentation. More-
over, they concluded that monitoring metabolite changes during the
meju fermentation might be relevant for the preparation of other re-
lated foods such as doengjang and kangjang.

Doenjang, a fermented soybean paste among the Korean traditional
fermented foods, is prepared from meju, which can be consumed as a
condiment in raw-paste form with vegetables, as flavored seasoning,
or even as a dipping condiment. It is traditionally prepared by spontane-
ous fermentation of meju, involving bacteria and fungi, such as Bacillus
subtilis, Rhizopus, Mucor, and Aspergillus species, which are naturally
present. Namgung et al. (2010) studied metabolite changes during
doenjang fermentation by applying GC–MS and PCA for metabolite de-
termination and data processing, respectively. For the elaboration of
doenjang, meju was exposed to sunlight during 3 months, giving rise
to a spontaneous fermentation; then, the pulp was passed to pottery
jars containing 26% brine for another two months. The authors noted
that the concentrations of the amino acids glycine, alanine, serine, and
threonine, responsible for the sweet taste, and glutamic acid and aspar-
agine, responsible for the umami taste, increased considerably between
140 and 160 days of fermentation, glutamic acid being an amino acid of
major occurrence. The concentration of the amino acids responsible for
the bitter taste (leucine and isoleucine) progressively increased up to
100 days of fermentation. Organic acids depended on the existent
microbiota; while the concentrations of lactic acid, succinic acid,
mandelic acid, propionic acid, and glutaric acid increased rapidly with



Table 1
Metabolomics applied to different fermented foods. Analyses of metabolites and detection/separation techniques.

Fermented foods Metabolomic analysis References

Microorganisms Time of fermentation Technique Amino acids* Organic acids*

Meju Bacillus sp., Aspergillus sp.,
Mucor sp.

Two weeks UPLC-Q-TOF MS and
PLS-DA

Glutamic acid
Isoleucine
Leucine
Methionine
Phenylalanine
Tyrosine
Proline
Threonine
Valine

Citric acid
Pipecolic acid

Kang et al. (2011)

Doenjang Bacillus subtilis, Rizhopus,
Mucor, Aspergillus sp.

Three months GC–MS and PCA Alanine
Glutamic acid
Asparagine
Glycine
Isoleucine
Leucine
Serine
Threonine

Citric acid
Glutaric acid
Lactic acid
Mandelic acid
Propionic acid
Succinic acid

Namgung et al. (2010)

Cheonggukjang Bacillus subtilis and
Bacillus sp.

Two or three days GC–MS and PCA Alanine
Asparagine
Aspartic acid
GABA
Glutamic acid
Glycine
Leucine
Lysine
Phenylalanine
Proline
Threonine
Tryptophan
Tyrosine

2-Hydroxyglutaric acid
Citric acid
Fumaric acid
Galactaric acid
Gluconic acid
Itaconic acid
Lactic acid
Malic acid
Malonic acid
Oxalic acid
Succinic acid
Tartaric acid

Park et al. (2010) and
Baek et al. (2010)

Fermented soymilk Bifidobacteria and
Streptococci

24 h H NMR and PCA Phenylalanine Citric acid
Lactic acid
Malic acid
Oxalacetic acid
Succinic acid

Yang et al. (2009)

Gouda cheese
Cheddar cheese
Parmigiano
Reggiano

Lactic acid bacteria Ripening time
60–180 days
180 days
Up to 30 months

GC/TOF-MS and PCA Asparagine
Ethionine
GABA
Glutamic acid
Glycine
Isoleucine
Leucine
Lysine
Ornithine
Proline
Pyroglutamic acid
Tryptophan
Tyrosine
Valine

Aspartic acid
Lactic acid
Succinic acid

Ochi et al. (2012)

Amino acid* and organic acid* analyzed.
UPLC-Q-TOF MS: ultra-performance liquid chromatography-quadrupole-time of flight mass spectrometry.
PLS-DA: partial least squares-discriminant analysis.
GC–MS: gas chromatography–mass spectrometry.
H NMR: proton-nuclear magnetic resonance.
GC/TOF-MS: gas chromatography/time of flight-mass spectrometry.
PCA: principal component analysis.
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the time of fermentation; the concentration of citric acid gradually de-
creased upon fermentation. In this study, the production of glucosamine
and the concentration increase in polyols such as xylitol, inositol and
mannitol during fermentation was evidenced. On the whole, doenjang
samples corresponding to different fermentation periodswere differen-
tiated by analyzing their non-volatile metabolites. Thus, sugar deriva-
tives were considered as main contributors to discriminate samples
during early steps of fermentation, while the amino acidswere indicators
of the later fermentation stages. The major metabolites involved in
doenjang sample differentiation during fermentation were leucine, iso-
leucine, aminoadipic acid, lysine, malic acid, oxalic acid and glucosamine.

Cheonggukjang is also a Korean traditional fermented soybean
paste, but unlike doenjang, it is made by a spontaneous fermentation
(at 42 °C for 2 or 3 days) of cooked soybeans, involving whole soy
and ground and with B. subtilis as the predominant microorganism.
Recently, Park et al. (2010) studied changes in a selected number
of pre-defined metabolites during this food preparation by applying
GC–MSand PCA. Twenty amino acids, twelve organic acids andnine fatty
acids were determined as targeted metabolites in cheonggukjang. In
general, the concentrations of amino acids decreased at the beginning
of the fermentation, while they increased at the end. Interestingly, the
concentrations of the amino acids tyrosine, phenylalanine, alanine,
glutamic acid, threonine, and aspartic acid declined after 50 h of fer-
mentation, while γ-aminobutyric acid (GABA), tryptophan and aspara-
gine levels decreased during fermentation. Fatty acid levels generally
increased alongwith the fermentation period, while the concentrations
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of the majority of the organic acids declined with the exception of
tartaric acid. This study revealed that tryptophan, citric acid, β-alanine,
itaconic acid, 2-hydroxy-glutaric acid, GABA, leucine, malic acid and
tartaric acid were the major components that differentiated the various
cheonggukjang samples upon fermentation.

Baek et al. (2010) studied the metabolomic profiling of this soybean
pasta of different fermentation times and inoculated with different
strains of Bacillus, such as Bacillus amyloliquefaciens CH86-1, Bacillus
licheniformis 58 and B. licheniformis 67, by using GC-TOF–MS, PCA and
PLS-DA. A total of twenty amino acids, ten sugars, five sugar alcohols
and seven organic acids were identified in the different samples, the
metabolite patterns being distinctive according to the fermentation
period. Significant differences in targeted metabolite contents were
detected depending on the inoculated strain; for instance, consumption
of sugars was higher with B. licheniformis 58 and 67, which had higher
hydrolytic activities than B. amyloliquefaciens CH86-1. Cheonggukjang
fermented for 72 hwas discriminated by its amino acid contents in par-
ticular glycine, glutamic acid, leucine, proline, phenylalanine and lysine.

Yang et al. (2009) conducted metabolomic profiling of fermented
soymilk, which was prepared with an inoculums of Bifidobacterium
and Streptococcus strains and fermented at 30 °C for 24 h. The metab-
olites were studied using H NMR spectroscopy followed by PCA. The
authors noted a reduction in sugars and a simultaneous increase in
the concentrations of lactic acid and succinic acid along the fermenta-
tion, due to the action of the inoculated microbial strains. The concen-
trations of malic acid, citric acid and oxaloacetic acid, raffinose and
stachyose, sucrose and phenylalanine diminished during fermenta-
tion. Lactococcus lactis converted fumarate acid into succinic acid,
and malic acid into lactic acid.

2.2. Cheeses

Metabolomics has also been employed to create sensory predic-
tive modeling for both cheeses (Ochi et al., 2012) (Table 1) and
wines (Table 2) (Rochfort et al., 2010). Characterization of the sensory
attributes of these foods and beverages is traditionally performed with
Table 2
Metabolomics applied to wines and fermented cocoa beans. Analyses of metabolites
and detection/separation techniques.

Fermented foods Metabolomic analysis References

Microorganisms
involved

Techniques Metabolites*

Wines:
Cabernet
Sauvignon
and Shiraz
Control, exposed
highly exposed
and shaded

Yeasts NMR and
PCA

Proline
Fructose
Glucose
Methanol
Succinate
Acetate
Aliphatic amino
acids
Ethanol
Glycerol
Malic acid
Tannin

Rochfort
et al.
(2010)

Fermented cocoa
bean

Yeasts, lactic
acid bacteria,
acetic acid
bacteria

HPAEC
and HPLC

Polyphenols
Theobromine
Caffeine
Epicatechin
Catechin
Ethanol
Lactic acid
Acetic acid
Citric acid

Camu
et al.
(2008)

Metabolites* analyzed.
NMR: nuclear magnetic resonance.
HPAEC: high-performance anion exchange chromatography.
HPLC: high-performance liquid chromatography.
PCA: principal component analysis.
tasting assays, for which people should be trained to be able to classify
and describe the different flavors involved in cheeses and wines. Alter-
native techniques are searched and the study of metabolites could be
one of them.

Ochi et al. (2012) used GC-TOF–MS and PCA to analyze the com-
ponents of different cheeses such as Cheddar, Gouda, and Parmigiano
Reggiano. Cheddar cheese is a relatively hard pressed cheese with
acidic flavor that is made with pasteurized cow's milk, Gouda cheese
is a semi-firm cheesewith soft and creamy flavor that becomes stronger
and more consistent with ripening, while Parmigiano Reggiano cheese
is a hard cheese with PDO (protected designation of origin) status
(protection is by a specified law reserved exclusively to the cheese
produced in the Italian area of Parma, Reggio Emilia, Modena, Bologna
and Mantova). The authors analyzed samples from these three cheeses
produced in different countries and with different manufacturing pro-
cesses and dates. The peak profiles obtained for Parmigiano Reggiano
cheese showed a marked difference with respect to the other two vari-
eties; while althoughmanufacturing and ripening processes of Cheddar
and Gouda cheeses are different, the final metabolite profiles were not
much influenced and displayed similar peaks. PLS regression models for
six sensory attributes such as “rich flavor”, “sour flavor”, “bitter flavor”,
“saltyflavor”, “creamyflavor”, and “milkyflavor”wereused in an attempt
to characterize the cheeses. However, by using GC-TOF–MS only a secure
model for “rich flavor” and “sour flavor” was reached; the results
indicated that the hydrophilic low-molecular-mass-components that
allowed differentiation of these two flavors were aspartic acid, leucine,
methionine, tyrosine, pyroglutamic acid, glycine, glutamic acid, valine,
lysine, isoleucine, and asparagine, which positively contributed to the
“rich flavor”, while lactose and tryptophan contributed negatively. The
prediction of “sour flavor” was influenced by 4-aminobutyric acid, lactic
acid, and ornithine as positive contributors, and lactose, succinic acid
and proline as negative ones. Thus, the analyses of hydrophilic and
low-molecular-mass-metabolites allowed the prediction of specific
sensory characteristics related with cheese ripening. Interestingly, the
metabolomics approach is an effective way to verify the authenticity
of food products (i.e., PDO cheeses), as it identifies a “molecular finger-
print” that accurately represents the food product and discriminates it
from different or fraudulent varieties (Lindon, Nicholson, & Holmes,
2007).

Recently, Mazzei and Piccolo (2012) have applied HRMAS-NMR
metabolomics to assess the quality and traceability of Mozzarella di
Bufala Campana (MBC), a PDO cheese made from buffalo's milk
belonging to the Campania Region of Italy. The obtained spectra,
selectively simplified with two NMR pulse sequences and combined
with multivariate analyses, enabled significant metabolic differentia-
tion between MBC samples from different manufacturing sites in the
Campania Region. Only four variables, assigned to galactose, lactose,
acetic acid and glycerol, contributed to distinguish between samples.
To evaluate MBC aging, two-day old MBC samples were compared
with fresh cheeses; an increase in the concentratins of isobutyl alco-
hol, lactic acid and acetic acid was detected in the former ones.
These components are by-products of mozzarella biodegradation and
represent specific elements for characterizing aged MBC metabolome.
Also, Shintu and Caldarelli (2005) succeeded in the characterization of
Parmigiano Reggiano cheese, according to its ripening age, by applying
HRMAS NMR combined with PCA and Discriminant Analysis (DA). The
authors (2006) also showed that application of HRMAS NMR together
with chemometric methods was effective in assessing aging and trace-
ability of Emmental cheese.

2.3. Wines

Wine is an alcoholic beverage made from grapes through alcoholic
fermentation of their must or juice. Fermentation occurs by the met-
abolic action of yeasts that transform the sugars of the fruit into ethyl
alcohol and carbon dioxide. However, wine characteristics are the
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sum of a set of environmental factors that include climate, latitude,
altitude, daylight hours, etc. Red wines can be classified by the varie-
ties of grape fermented into, for example, Cabernet Sauvignon,
Malbec, Merlot, Syrah, Pinot Noir, Tempranillo, Bonarda, Sangiovese,
etc. Rochfort et al. (2010) analyzed different wine samples to predict
their sensory characteristics through metabolomics. For this purpose,
NMR and PCA for data analysis were used to study two varieties of
wines, Cabernet Sauvignon and Shiraz, with different light exposure
levels and classified as Control (standard practice vineyard), Exposed
(achieved with a foliage wire 600 mm above the top cordon), Highly
Exposed (using a wire leaf plucking in the fruit zone with foliage),
and a Shaded treatment (using 70% shade-cloth). The results showed
a clear differentiation between wines of the grape varieties Cabernet
Sauvignon and Shiraz and among the different degrees of sunlight
exposure. The differentiation between varieties was mainly due to
the higher concentrations of proline in the Cabernet Sauvignon
wines compared to Shiraz, while the later one presented higher con-
centrations of sugars (fructose and glucose), methanol, succinate,
acetate and some aliphatic amino acids. Regarding the sunlight expo-
sure, it was possible to discriminate the Shaded from the Control
treatment, the differences being similar in both varieties. Both
wines showed less concentration of ethanol and higher concentra-
tions of glycerol, acetate and malic acid, as well as more sugar and
amino acids. The Shaded wines were characterized by a lower astrin-
gency, less body and a slight increase in sour taste (Joscelyne,
Downey, Mazza, & Bastian, 2007). The metabolic study of Rochfort
et al. (2010) corroborated with the higher concentrations of acids
and a lower tannin concentration, responsible for the sourness flavor
and astringency, respectively, compared to the control. Alternatively,
the Exposed samples were partially distinguishable from the Control
samples. As a result, the metabolite profiling made a differentiation
between wine varieties possible, even among different sunlight expo-
sure treatments, and allowed to predict the sensory qualities of wines
by using a NMR tool.

The described reports represent the scarce studies available on
metabolomics of fermented foods that were undertaken to evaluate
their nutritional quality and to generate predictive models of sensory
characteristics as noted in wines and cheeses. Although this meth-
odology is much easier and cheaper than the traditional ones used
for the characterization of sensory attributes, much work still re-
mains to be done.

2.4. Cocoa bean fermentation

Cocoa beans are used as raw material for the production of choc-
olate, the flavor of which depends on certain metabolites or aroma
precursors present in the cocoa beans and those developed mainly
during cocoa bean fermentation and drying. Chocolate flavor is a
very complex mixture of more than 550 compounds. It has been
found that undesirable bitter and astringent tastes decrease during
fermentation, while desirable fruity, floral and cocoa flavors develop
during fermentation and drying; making these two processes the key
ones in chocolate flavor development. During fermentation, the role
of microorganisms is limited to removal of the pulp that surrounds
the beans and the production of essential metabolites. This happens
through pectin depolymerization by yeasts and anaerobic yeast fer-
mentation of sugars to ethanol, microaerophilic LAB fermentation
of sugars and citric acid to lactic acid, acetic acid and mannitol, as
well as aerobic exothermic oxidation of ethanol into acetic acid by
acetic acid bacteria. Camu et al. (2008) studied the formation of
targeted metabolites during cocoa bean fermentation and drying to
unravel the influence of microbial activities on chocolate flavor.
Spontaneous cocoa bean fermentations of wet beans (heap method) on
two small farms in two different seasons (main- and mid-crop) were
carried out. Variations in concentrations of polyphenols, theobromine
and caffeine were determined during fermentation and drying, using
high-performance anion exchange chromatography (HPAEC) and
HPLC. During fermentation, the polyphenol and alkaloid concentrations
of cocoa beans were heap- and crop-dependent, epicatechin and
theobromine concentrations decreasing during fermentation. The
total polyphenol content was reduced throughout fermentation by
approximately 10–50% during the main-crop, while almost no re-
duction in total polyphenol content was found upon fermentation
during the mid-crop. At the end of the fermentation, ethanol, lactic
acid, acetic acid and citric acid were found, their formation being de-
pendent on the heap. The concentrations of these compounds were
different in pulp and in beans; the concentration of ethanol and
acetic acid was slightly higher in the pulp than in the beans, while
the concentration of lactic acid was considerably higher in the
pulp. When fermented cocoa beans were dried, the polyphenol content
further decreased and approximately 50% of epicatechin and 60% of
catechin were lost. Metabolic analysis carried out by Camu et al.
(2008) allowed differentiating metabolites present in fermented
cocoa beans obtained from different crop periods, and those present
in the beans and pulp, that will later be reflected in the chocolate flavor.
Understanding metabolite occurrence and their development during
fermentation will enable controlling the fermentation process to
achieve a high quality end product.

3. Metabolomics in fermented functional foods

Functional foods contain compounds or ingredients that may help
reduce the risk of disease or promote better health beyond providing
adequate nutritional effects. Functional foods, which include probiotics,
prebiotics and synbiotics, have a significant and growing global market,
especially in Europe, Australia and Japan (Stanton, Ross, Fitzgerlad, &
van Sinderen, 2005). In this review, the effect of probiotics in the
human gut analyzed through metabolomics is discussed.

3.1. Probiotics

Probiotics have been defined as “live microorganisms that when
being administered in an appropriate dose, they confer a benefit of
health to the receiver” (FAO/WHO 2001). Probiotic bacteria have
been studied for their impact on the metabolism of food molecules
in the intestine such as lactose digestion and cholesterol metabolism.
They are also known to contribute to protein and ammonia metabo-
lism and to alter the composition of the gut microbiota (Rabot,
Rafter, Rijkers, Watzl, & Antoine, 2010). The impact of probiotic
strains on the composition and functioning of the human gut and
their influence on the resident microbiota is not entirely understood.
The difficulty lands on the quantity and diversity of human
microbiota, as our gut contains 100 trillion microbes belonging to
nine different divisions, among which the most relevant ones are
Firmicutes and Bacteroidetes. Moreover, the microbial composition
of the intestine varies among individuals. An additional complexity
arises with the fact that some bacteria are residents in the gut while
others have a transitory effect when passing through with food and
water (Sonnenburg, Chen, & Gordon, 2006). These facts show the
importance of creating a simplified model for understanding the effect
of the microbial communities on the health of the host and the effect
of probiotic administration.

The effect of probiotics on the human gut has been studied by
different approaches such as Genomics, Transcriptomics, Proteomics,
and more recently, Metabolomics. By applying Metabolomics, the
multi-parametric metabolic response of an organism to biological
stimuli can be analyzed (Martin et al., 2007). Thus, this methodology
may elucidate if the metabolites released or degraded by probiotic
strains have an effect on cytokine expression and may also give
information about changes in beneficial metabolite concentrations
in different organs when probiotics are present in the gut.



1159F. Mozzi et al. / Food Research International 54 (2013) 1152–1161
Techniques such as UPLC, HRMAS-NMR, LC–MS, etc., coupled to
complex statistical data analysis allows measuring multiple metabo-
lite concentrations, which enables the elucidation of the effects of
probiotics on the host and on the metabolism of other microorgan-
isms present in the gut.

Thanks to the use of GC–MS analysis, De Preter et al. (2010) could
show a dose-dependent saccharolytic fermentation of the prebiotic
oligofructose-enriched inulin (OF-IN) by means of an in vitro fecal
model. A total of 107 different volatile organic compounds were identi-
fied; the concentrations of acids, esters and some aldehydes, significantly
increased with increasing doses of OF-IN, while the concentrations of
sulfur compounds and phenolic compounds, which are the result of
toxic protein fermentation, decreased.

Several reports using animal models in which germ-free mice were
used as host have been released (Martin et al., 2010; Matsumoto et al.,
2012; Sonnenburg et al., 2006). These methods allow direct coloniza-
tion of the experimental subject with probiotic strains or establishing
different microbiota, simulating the adult or infant human gut, and
supplying different probiotics and/or pathogenic strains. Martin et
al. (2007) confirmed the effect of some probiotic strains on the
host, analyzing different parts of germ-free mouse intestines by
HRMASNMR. The authors found that the administration of Lactobacillus
paracasei NCC2461 could increase the lactate concentration in the
jejunum, suggesting nutrient processing by this strain. Also, the
concentrations of choline, glycerophosphorylcholine (GPC) and acetate
was lowered in the jejunum and ileum; these components are key in-
termediates of lipid metabolism, indicating that this LAB strain could
modulate the intestinal fat metabolism. Moreover, the authors showed
that the concentrations of taurine and creatine, which regulate intestine
hyper-contractility, were diminished in the presence of L. paracasei
NCC2461 and that the concentrations of glutathione (a potent antioxi-
dant) and its precursors were lowered, indicating that this probiotic
strain could regulate enterocyte glutathione metabolism, which could
be related to gastrointestinal cancer. Similar studies were done by the
same authors (Martin et al., 2008) using germ-free mice colonized by
an infant microbiota and the probiotic strains L. paracasei NCC2461
and L. rhamnosus NCC4007. In this work, metabolites were analyzed in
gut, plasma, urine and fecal extracts by HRMAS-NMR. The results
showed that these probiotic strains could alter hepatic lipid metabo-
lism, diminish plasma lipoprotein level and stimulate glycolysis. The
presence of probiotics influenced also amino acid catabolism and the
concentrations of methylamines and short-chain fatty acids.

Martin et al. (2010) studied also the effect of administering a sym-
biotic, a prebiotic (non-digestible food ingredient that stimulates the
growth and/or activity of bacteria in the digestive system) together
with a probiotic strain, on a humanized baby intestinal microbiota
metabolome. This symbiotic combination was directly related to the
increased growth of bifidobacteria and lactobacilli; these bacterial
variations were related to lower concentrations of unassigned fatty
acids, higher concentrations of oligosaccharides and greater increase
of acetate, compared to mice that did not receive the synbiotic.
Also, modulation of protein metabolism was observed as reduced con-
centrations of glutamate, ornithine, glycine and valine and increased
concentrations of 5-aminovalerate were found.

In another study, Wikoff et al. (2009) analyzed the effect of the gut
microbiome on blood metabolites of germ-free and conventional
mice by using LC–MS, confirming a significant cooperation between
bacterial and mammalian metabolism. The authors showed that
microorganisms in the gut could influence the amino acid metabolism
as well as the synthesis of the antioxidant indol-3-propionic acid.

Matsumoto et al. (2012) analyzed the mouse metabolome using
CE–TOFMS; differences between the metabolomic profile of germ-free
mice and ex-germ-free mice colonized with bacteria from the feces of
conventional mice were described. The authors showed that prosta-
glandin E2, an interleukin (IL)-10-independent innate immune sup-
pressor, was present only in ex-germ free mice, indicating that the
intestinal microbiota contains activation factors for innate immunity,
similar to inflammation.

The effect of probiotics using human subjects was also analyzed by
the metabolomic approach. In this respect, the lipidomic profile and
its influence on the inflammatory variables (C-reactive protein,
interferon-α and IL-6) in serumof healthy adults receiving L. rhamnosus
GG (LGG) was studied using UPLC coupled to MS by Kekkonen et al.
(2008). The administration of the LGG strain showed a decrease in
lysophosphatidylcholines (LysoGPCho) levels. This lipid affects many
cell functions such as survival, migration and secretion. It is also in-
volved in oxidative metabolism, angiogenesis and carcinogenesis.
LysoGPCho is an atherogenic lipid that has been associated with in-
flammation, endothelial dysfunction and coronary atherosclerosis.
This lipid induces the secretion of several inflammatory cytokines
in human peripheral mononuclear cells. A direct regression between
LysoGPCho production and IL-6 release was found, explaining the
anti-inflammatory effect of LGG. Also, Kekkonen et al. (2008) observed
a decrease in the concentrations of sphingomyelins in plasma samples
of individuals treated with LGG, as this sphingolipid functions also as
regulator of inflammation response. The decrease of the concentrations
of these lipids could partially explain the effect of LGG on ulcerative co-
litis and normalized gut permeability.

Another useful model for studying the effect of probiotics on
human health is by using subjects suffering from irritable bowel
syndrome (IBS). This disease is a common disorder affecting 5–10%
of the population; its symptoms include abdominal pain, irregular
bowel movements, constipation and/or diarrhea (Madsen, 2011).
Hong et al. (2011) analyzed by HRMAS-NMR serum and feces of
individuals suffering from this disease before and after being treated for
2 monthswith fermentedmilks containing lactobacilli and bifidobacteria
strains. After probiotic administration, the alterations in blood levels
of glucose, tyrosine and lactate were normalized. Alternatively,
Ponnusamy, Choi, Kim, Lee, and Lee (2011) showed differences be-
tween the metabolites present in the intestines of individuals suffer-
ing from IBS and healthy adults and made a correlation among the
metabolites found and the microorganisms present in the gut.
Feces of individuals suffering from IBS had higher concentrations of
hydroxyphenyl acetate and hydroxyphenyl propionate, which are
produced from phenylalanine by Clostridium sp., and showed in-
creased concentrations of aminobutyric acid, which is correlated
with the presence of Faecalibactreium prausnitzii. A correlation be-
tween the concentrations of alanine, glutamic acid and pyroglutamic
acid and the presence of lactobacilli was found; however, the cell counts
of these bacteria in the intestines was higher in subjects suffering from
IBS. On the contrary, the cell counts of Bifidobacterium strains were
higher in healthy adults.

Metabolomics is an interesting tool for studying the effect of
probiotics on the host health. This “omics” together with the study
of the host's Proteomics and Genomics can provide new information
related to the effects of probiotics on consumer's health. Moreover,
metabolomics may give information on the effect of administrating a
probiotic strain on the metabolic behavior of the resident microbiota
of healthy subjects and of those suffering from different diseases such
as IBS.

4. Conclusions

Metabolomics, an emerging field within the “omics” sciences,
deals with the simultaneous determination and quantitative analysis
of intracellular metabolites that are produced and modified by the
metabolism of living organisms. Several hyphenated techniques com-
bined with multivariate analyses have been applied for accurate and
discriminative metabolite determination of samples. Metabolomics
have been successfully used in food science to evaluate the molecular
fingerprints of fermented foods, such as soy foods, cheeses, and
wines. This approach allowed assessing food quality and maturity,
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as well as traceability and authenticity of fermented products such as
PDO cheeses. Moreover, metabolomics has been useful in evaluating
the beneficial effect of probiotics in certain human diseases such as
IBS. Although recently applied, metabolomics became a promising ap-
proach to rapidly evaluate as many as possible metabolites to
determine globally the quality, traceability and safety of fermented
food products.
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