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Abstract
Quantum control relies on the driving of quantum states without the loss of coherence, thus the
leakage of quantum properties into the environment over time is a fundamental challenge. One
work-around is to implement fast protocols, hence the Minimal Control Time (MCT) is of upmost
importance. Here, we employ a machine learning network in order to estimate the MCT in a state
transfer protocol. An unsupervised learning approach is considered by using a combination of an
autoencoder network with the k-means clustering tool. The Landau–Zener (LZ) Hamiltonian is
analyzed given that it has an analytical MCT and a distinctive topology change in the control
landscape when the total evolution time is either under or over the MCT. We obtain that the
network is able to not only produce an estimation of the MCT but also gains an understanding of
the landscape’s topologies. Similar results are found for the generalized LZ Hamiltonian while
limitations to our very simple architecture were encountered.

1. Introduction

The current century promises an advent of revfroolutionary technologies based on quantum information
and quantum computing [1, 2]. Quantum control is a crucial part in the advances of these fields given that it
dictates how a system should be manipulated in order to achieve a target goal [3]. A possible approach is by
applying optimal control techniques [4, 5]. This way the problem is reduced to finding a time dependent
control field ϵ(t) that maximizes a certain objective function, J[ϵ(t)]. This must be done while preserving the
coherence of the system, thus the leakage of quantum information onto the environment over time is a
fundamental challenge. An efficient way to work around the difficulty is to implement rapid controls, that is
to say, to maximize J[ϵ(t)] in the fastest time possible [6].

The speed of these protocols are bounded by the minimum evolution time needed for a system to reach a
target state driven by a time-dependent control field, namely Minimum Control Time (MCT), not to get
confused with the quantum speed limit which is a lower bound dictated by quantum mechanics for a system
to evolve from an initial to a final state [7–10]. Having an estimation of the MCT is of uttermost importance
given that it governs the success of a control protocol in the presence of the detrimental effects from the
environment. While conceptually easy, in practice it is a whole other story. One approach is by utilizing the
quantum brachistochrone formalism, see [11, 12]. Another path is by analyzing the solutions of the optimal
control scheme for different values of T, in other words, by analyzing the control landscapes [13].

Many efforts have been made in developing optimal control methods, especially from a numerical
approach. In this framework, the studies of quantum control landscapes are a key factor. They are essentially
the mapping of the objective function J[ϵ] on the field ϵ parameterized in time [14]. Their topologies are not
trivial, for instance, local maximums or traps appear whenever the control problem holds a constraint [15].
On top of that, usually, optimal controls require very high parameterization dimensions that produce
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landscapes beyond our intuitive understanding [16]. Thus, extracting useful information from them might
be an unimaginable task.

Over the past years, various optimization algorithms have been developed such a as gradient-ascent pulse
engineering algorithm and chopped random-basis quantum optimization, see review in [4]. Recently,
machine learning has been studied as an alternate optimization tool and in other quantum problems
[17–25]. For example, in [26] a reinforcement learning algorithm has been proposed in order to find an
optimal driving protocol for a state transition scheme. Another case is [27], where a supervised learning
algorithm classifies randomness of a system in order to find an optimal control policy.

In this paper we use machine learning but not as an alternate optimization tool. We instead aspire to
answer if an artificial neural network (ANN) is able to estimate the MCT just by training over the landscape
of a system. On that note, we are also interested in the exploration if an ANN actually understands the
topology of the landscape or merely detects that an extremity is reached. Our aspiration is to shed light on
what ANN are able to tell us about physical insights within quantum control. This interpretability notion has
been explored in other research fields see [28–31].

Here we implement an unsupervised ANN scheme is selected in order to avoid any external bias, thus any
information obtained from the network is purely due to the information stored within the dataset. An
autoencoder extracts the important features of the dataset by means of dimension reduction that are later
classified with the use of the k-means clustering tool. As a first approach, the toy model Landau–Zener (LZ)
Hamiltonian is analyzed given that it has an analytical MCT and a distinctive change in the landscape’s
topologies when the total evolution time is either under or over the MCT. We obtain that the ANN is not
only able to predict the MCT but also gains an understanding of the landscape’s topologies. We moved on to
implement the network in the generalized LZ Hamiltonian where similar results are found beyond some
limitations encountered within our simple scheme.

The paper is organized as follows. In section 2 we present the models used in this work, LZ Hamiltonian
and its generalization, while giving an overview of the optimal control framework. The unsupervised neural
network approach implemented is detailed in section 3. The results obtained for the LZ Hamiltonian and its
generalization are given in section 4. Finally, in section 5 we communicate the conclusions and aspirations
for future works.

2. Optimal control framework andmodels

Quantum control theory is the theoretical framework that studies the manipulation of quantum systems. A
typical driving Hamiltonian is given in the following way,

H[ϵ(t)] =H0 + ϵ(t)Hc, (1)

where H0 is the isolated system one wants to manipulate, known as drift Hamiltonian, Hc the control
Hamiltonian and ϵ(t) a time-dependent control field parameterized in time [32]. The evolution of the system
is governed by the shaping of said field, also referred to as protocol. In this work, we consider the state
transfer scheme; we seek to achieve a desired target state |f⟩ from an initial state |i⟩ after a given evolution
time T. The protocol duration is divided into N ts uniform intervals of∆t= T/Nts and a piecewise function
is used to parameterize the control,

ϵ(t) =


ϵ1 if 0< t⩽∆t
...

ϵNts if (Nts − 1)∆t< t⩽ T.

(2)

The measure used in this work to quantify how well a control protocol performs is the state fidelity, given
by

F[ϵ] = |⟨ f |Uϵ(T)|i⟩|2 ∈ (0,1). (3)

Note that Uϵ(T) is the evolution operator given by the Hamiltonian in equation (1) at time T, thus it is
dependent of the protocol. A simple view of equation (3) discloses that F = 1 corresponds to an optimal
control, the achieved state after a given evolution time is equal to the desired one.
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Figure 1. Control landscapes constructed with equation (3) for the simple Landau–Zener Hamiltonian with δ= 1, thus the
analytical MCT is TMCT = π. Each panel corresponds to a different total evolution time: (a) T = 2, (b) T = 3.14, (c) T = 4 and
(d) T = 5.

In this work, we consider the paradigmatic LZ Hamiltonian where the drift and control Hamiltonian are
the following

H0 =
δ

2
σx and Hc = σz. (4)

Here σx and σz are the Pauli matrices, δ is referred to as the energy gap given that it measures the minimum
separation between the energies of the system under no perturbation [32]. From now on we use the natural
units such that ℏ= 1, thus the units of time T are [1/δ]. This Hamiltonian is of particular interest within the
field given that it describes a simple two level system that can be applied, for example, to a semiconductor
quantum dot [33]. This model is a great starting point given that not only it has a closed solution for its
minimum time [34] but also a rather simple landscape because that optimal solutions are reached with just a
two-dimensional parameterization, N ts = 2 [32].

The typical transfer scheme is to take the initial state |0⟩ and the desired final state |1⟩, in the σz base. In
[34] it was demonstrated that the MCT for the scheme is given by

TMCT =
π

δ
. (5)

Taking advantage that we can visualize optimal landscapes of these systems, in this work we start off
concentrating in the simple case N ts = 2. We parameterize the control field as a piecewise function in the
following way

ϵ(t) =

{
ϵ1 if t⩽ T/2

ϵ2 if t> T/2.
(6)

The controls (ϵ1 and ϵ2) are broken down into mesh points that conform the domain of the fidelity
function forming the landscape. In figure 1 we show the mapping obtained for different evolution times: (a)
T<TMCT, (b) T≃TMCT, (c) T>TMCT and (d) T≫TMCT.

When T<TMCT (figure 1(a)) the landscapes present a sub-optimal (F< 1) single global maximum at the
origin. Whereas, when the system has reached the MCT (figure 1(b)), there is an optimal global maximum in
the origin corresponding to F = 1. This indicates that an optimal control is achieved when taking the
protocol ϵ(ϵ1, ϵ2) = 0. Beyond this total evolution time, figure 1(c), interesting and complex topologies
appear. The center maximum is splitted into two symmetrical structures (highlighted with black arrows) that
oscillate in time. Also, many sub-optimal maximums form along the vertical and horizontal direction that
transform into optimal maximums over time (see figure 1(d)). What is important to note from this system is
that there is a distinctive difference in the landscape’s topologies with T<TMCT and T>TMCT.

3
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Figure 2. Landscapes for the generalized LZ Hamiltonian with N = 3 and δ =∆A =∆B = 1. We take the total evolution times T
as (a) T = 2.5, (b) T = 5.31, (c) T = 7 and (d) T = 9.

The model of LZ can be generalized to an N-level system studied in [35]. In this work, we consider the
case where N = 3 in which the driving Hamiltonian in the base {|0⟩, |1⟩, |2⟩} can be written as

H0 =
1

2

 0 ∆A 0
∆A 0 ∆B

0 ∆B −2δ

Hc =

1 0 0
0 0 0
0 0 1

 . (7)

This Hamiltonian is commonly used in in quantum optics given that it is suitable for describing a
three-level system that leads to a STIRAP protocol when∆A and∆B are the controls [36]. However, in this
work we take∆A,∆B and δ as fixed parameters. Under these conditions, the energy spectrum as a function
of the control holds two avoided crossings, as opposed to the traditional LZ Hamiltonian that only has one.
Although there is no closed analytical MCT solution in this case, we are able to obtain an empirical
estimation from the control landscapes by taking the total evolution time of the landscape that reaches the
highest fidelity within the dataset. This way, for δ= 1, we define an empirical MCT, TMCT = 5.31. Please refer
to the appendix A for further details as to how the value was calculated.

The landscape topologies are very different for this system (figure 2). In particular, they do not hold
symmetric topologies and the global maximum is shifted as a function of δ. More importantly, unlike LZ, this
system does not exhibit a distinctive change in the landscape for when T<TMCT and T>TMCT. For instance
when T≫TMCT, the region of the landscape we are exploring does not hold a optimal control protocol. Thus,
in this sense, we believe that this is a good system to test the generalization properties of our proposed ANN.

3. The unsupervised artificial neural network method

In this work, we would like to explore if an ANN can estimate the MCT by understanding a topology change
within a landscape or simply detects that a pixel of the landscape obtains the value of≈ 1. Given that we do
not want to add any external bias to the network and we usually do not know which is the real value of the
MCT, we opt for a fully unsupervised approach by using a combination of an autoencoder network with
k-means clustering. The architecture is illustrated in the figure 3. A similar implementation has been used in
[37] under another context.

The autoencoder is a typical data reduction network. Its main task is to optimize the network such that
the input layer is the same as the output layer while generating an effective representation of the data,
commonly called features. Given that the network evaluates the loss function comparing its output to its
input, the training is done in an unsupervised or self-supervised fashion [38]. The unsupervised k-means
clustering method is then implemented over these extracted features and, by means of competition
clustering, obtains a natural grouping of data. Note that we use an autoencoder instead of directly clustering
over the control landscapes, this is because we wish to develop a network that detects subtle changes in the
dataset and be represented in the features. Further details of the network are given in appendix B.
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Figure 3. Architecture of the ANN used in this work. It is composed of two parts: the autoencoder network and the k-means
clustering method. The autoencoder is composed of a flattened stage, encoder hidden layers, a layer with the smallest amount of
nodes corresponding to the features, decoder hidden layers and finally a last layer that recovers the dimensions needed for the
un-flattened to have the same dimensions as the input. Below each component a detail of the dimensions are given, where Nh and
fh describe the number of hidden nodes in the first hidden layer and the feature layer, respectively.

The input dataset is composed of a collection of control landscapes with different evolution times T.
Given that the first layer of the network flattens the dataset into a 1-dimensional array, this enables us to
generalize the architecture for any parameterization dimension (specifically N ts > 2). The input data is
randomly shuffled and separated using the holdout method, 70% of the data is used for training while the
remaining 30% is reserved for validation. In order to avoid a bias training in the autoencoder and k-means,
the training datasets are equally separated into two parts: autoencoder training dataset and k-means training
dataset. For the same reason, the separation is also done for the validation dataset into autoencoder
validation dataset and performance dataset. See appendix B for further information.

The data manipulation consists of three steps: (1) autoencoder training, (2) k-means unsupervised
clustering training and (3) the performance measure. In the following, we will break down each of these
steps. In step (1), the autoencoder is trained using backpropagation with the classical mean squared error
(MSE) loss function. The training parameters are detailed in the appendix B. Once the autoencoder is
optimized, we move on to step (2). The features of both the cluster training dataset and the performance
dataset are extracted. The cluster training features are then used to train the k-means model. In this step we
implement the elbow method to optimize the number of clusters and obtained two clusters, ideally we expect
the classification of the landscapes to be corresponding to T<TMCT and T>TMCT (see appendix B). The
performance features are to be used in step (3) in order to evaluate an overall performance of the network.
Given that we are taking an unsupervised approach there are no correct labels to evaluate a performance
measure, thus we appeal to an alteration of the confusion scheme presented in [39]. If the dataset one is
trying to classify into two groups depends on a parameter that lies within a closed range, in our case the total
evolution time T, then one can assume that there exists a critical point T′ (within this range) that optimally
classifies the dataset into the two groups. In order to find this T′, one can take an auxiliary critical point Taux

and create an auxiliary labeling of all data with parameters smaller than Taux with label A and the others with
label B. Next, by varying Taux, the performance curve is analyzed. In this work the performance measure is
the well used accuracy score. Although not the same scheme as presented in [39] we can still observe that the
performance function with respect to the Taux has an universal shape, with a maximum at the correct critical
point T′.

Ensemble averaging is implemented to smooth the output performance function. This method consists
in combining many networks in order to form a collection of networks. The ensembles are composed of
different combinations of number of nodes in the first hidden layer Nh ∈[100, 110, 120,..., 190] and number
of features extracted fh ∈[10, 20,.., 40], this way we take a total of 40 architectures. The performances of each
of the architectures are later averaged in order to obtain a single mean clustering accuracy.

4. Estimation of the Minimal Control Time

In this section we analyze the application of an ANN framework over the LZ Hamiltonian and its
generalization presented in section 2. We commence with the landscapes from the LZ Hamiltonian,
equation (4), with the parameterization N ts = 2 and ϵ{1,2} ∈ [−5,5] with 100 points (see figure 1 for

5
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Figure 4. Ensemble averaged accuracy performance function for the Landau–Zener Hamiltonian with δ= 1. The minimal control
time predicted by the unsupervised network, marked with T′ is a good estimation with respect to the analytical value (dashed
blue line). The predicted minimal control time for different values of δ are shown in the inset, overall it yields good estimations.

reference). We chose a sweep of total evolution times T from 0.01 to 10 in steps of 0.01, which yields a dataset
of 1000 landscapes (see appendix B for more details).

In figure 4 we show the smoothed output performance function taking the energy gap δ= 1. The critical
point is located slightly below the analytical MCT, with an estimated value of T ′ = 2.9 where the analytical
MCT is TMCT = π. In the inset of figure 4 we show the ANN estimation as a function of the energy gap δ. As
we can see, the unsupervised network gives a good prediction of the MCT, that is to say, without any external
guidance regarding the total evolution time of the landscapes, the network is able to identify a change within
the time shuffled landscapes. We point out that in the main panel a minimum is formed near Taux = 8.1,
further investigation is given in the appendix C.

In the following we focus on understanding the underlining knowledge that the ANN gains over the
datasets. We analyze the weights between the nodes in the first layer of the ANN and the pixels in the
landscapes (see inset of figure 5(a) for reference). As mentioned in section 3, the collection of networks for
ensemble averaging is composed of the different combinations of number of nodes in the first hidden layer
and number of features extracted. Each one of these combinations form a specific architecture ν. Given an
activation function φ, the output function of each node yνi for a given architecture ν can be written as

yνi = φ

∑
j

ων
ij xj

 , (8)

where xj is the pixel in the position j with the landscape reshaped into a 1-dimensional array and the weight
between the input xj and the node yνi is represented by ω

ν
ij . From equation (8) one can interpret the absolute

value of each weight (i.e. |ων
ij |) as a measure of strength of the connection between xj and yνi . Thus, the most

important pixels for the network correspond to those that have a higher |ων
ij | compared to the rest. This

interpretation is similar to the understanding of filters in convolutional neural networks [40].
Figure 5(a) is composed of 40 subplots stacked on top of each other (separated by black horizontal lines)

corresponding to each architecture. Each subplot shows the absolute values of the weights for all the nodes
against the pixels in the flattened landscape. For instance, the first subplot (marked with a purple arrow)
contains the 190 node weights corresponding to the architecture with 40 features. The second subplot (red
arrow) corresponds to the architecture with also 190 nodes but 30 features. This way all the 40 architectures
are stack up on top of each other. In order to compare between architectures, we normalize over the

maximum absolute weight of each architecture,
∣∣∣wν

ij

∣∣∣/max
kl

|wν
kl|. As explained, this plot gives an idea of the

strength of the connection between the node i and the pixel j. The network shows a symmetric behavior with
respect to pixel xj =5000. This symmetry is attributed to the symmetrical aspect of the landscapes of the LZ
Hamiltonian (see figure 1). In the following, we select all the pixels xj that satisfy the following condition:{
xj| 1N

∑
i,ν

(∣∣∣wν
ij

∣∣∣/maxij
∣∣∣wν

ij

∣∣∣)⩾ 0.7
}
, where N is the total amount of architectures. This selection identifies

the regions of the landscapes where the network is paying the most attention. As an illustration, in figure 5(b)
we take the landscape at T = 4 and highlight in black the region of interest to the network. The ANN detects
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Figure 5.Weight analysis of the network. (a) The normalized absolute values of the weights for all the nodes in each architecture
against the pixels in the flattened landscape. (b) The pixels with high importance to the network (explained in the main text)
highlighted over the landscape in black.

the symmetrical structures that form when the optimal maximum is separated into two (white arrows in
figure 5(b)). The network prioritize the horizontal and vertical direction corresponding to the sub-optimal
maximums that form after the total evolution time T reaches the MCT. This indicates that the ANN also
understands that a change in the topology of the landscape corresponds to a change in an underlying
parameter of the system, in this case T. It is an exciting result given that this ANN can give insights of
landscapes that are difficult to analyze visually, for instance, taking landscapes with N ts > 2. With this simple
architecture we tested the LZ Hamiltonian with a N ts = 3 parameterization. Given that it is computationally
demanding to construct the landscapes the larger the N ts, we took a broad discretization of the mesh points;
ϵ{1,2} ∈ [−5,5] with 100 points and ϵ3 ∈ [−5,−4, . . .,5,6] with 11 points. This yielded a predicted T ′ = 4.34,
which we believe can be improved by taking a finer mesh discretization or adding complexity to our ANN.
We note that this analysis was only possible because of the flatten stage of our ANN scheme, it would not
have been possible if we chose, for instance, the widely used two dimensional convolutional neural networks.

Next we analyze the features obtained from different architectures with their corresponding cluster
assigned by the unsupervised k-means clustering. Figures 6(a) and (b) exhibit the 10 features assigned to
each time for two different architectures: 100 and 120 initial hidden nodes, respectively. As seen, the features
extracted from the landscapes corresponding to a total evolution time T < TMCT are very different from
those corresponding to T> TMCT. Near the theoretical TMCT (black dashed line) the features suffer a
transition. We remind the reader that this is obtained with an unsupervised network and the landscapes are
presented to the network in a shuffled time-order. This indicates that although we are not using feedback
connections (typically used for time-dependent problems) our network still understands an underlining
time order. The same was observed for all the architecture configurations, for instance, in figure 6(c) we
exhibit the case with 40 features and 100 hidden nodes in the initial layer. An interesting study is the quest of
a good set of hyperparameters (number of nodes, layers and features) such that the features have the physical
meaning of the problem. Such exploration will be included in future works.

We now apply the unsupervised network to the generalized LZ Hamiltonian presented in section 2. In
figure 7(a) the weight analysis of the network is presented. As mentioned in section 2 the landscapes of this
control do not present symmetric topologies which is reflected in |ων

ij |. As before, we would like to relate the
most important regions of the landscape to the network, thus we take all the pixels xj that satisfy the same
condition used in the LZ Hamiltonian analysis but with a threshold of 0.5. The results are highlighted in
black in the figure 7, where we take the total evolution time T = 4 as an example. In this case, the network
identifies where the region control landscape reached the global maximum and, similar to before, it also pays
attention to where the sub-optimal mountains are formed thus this gives us the belief that the network is able
to understand the topologies. In section 2 we defined an empirical MCT TMCT = 5.31 which is compared to
the MCT predicted by the ANN in figure 7(c). Despite the fact that the prediction is lower than the empirical
value (blue dashed line), we still were able to identify key factors of the networks understanding of the

7



Quantum Sci. Technol. 8 (2023) 035023 S Sevitz et al

Figure 6. Features obtained from different architectures (a): 10 features and 100 hidden initial nodes, (b): 10 features and 120
hidden initial nodes and (c) 40 features and 100 hidden initial nodes. Underneath each feature combination, the corresponding
cluster assigned by the k-means clustering method with blue: group A and yellow: group B.

Figure 7. Analysis of the unsupervised network applied to the generalized LZ Hamiltonian. (a) Weight analysis of some of the
architectures of the network, an unsymmetrical behavior can be observed coinciding with the unsymmetrical control landscape.
(b) Control landscape of the system where in black the pixels with high importance to the network are highlighted. (c) Ensemble
averaged accuracy performance function for the generalized Landau–Zener Hamiltonian with δ= 1, the dashed blue line marks
the empirical MCT. (d) Features and clusters obtained by the architecture with 100 initial hidden nodes and 10 features.

landscapes where a region of interest as to where the MCT is located. We note that these results were only
observed for the case of δ= 1. For the other cases the network fails to estimate a MCT, we suspect that this is
due to the simplicity of the network. We understand that there are more sophisticated ANN frameworks
available, such as convolution neural networks or long short term memory networks which will probably

8
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yield more accurate results but as this is one of the first works covering the idea, we wanted to investigate
with the simplest case we could find.

5. Conclusion

The external driving of quantum systems is extremely vulnerable in the presence of environments due to
decoherence. A work around to this challenge is to implement fast controls, thus the knowledge of the MCT
is of much importance in order to obtain revolutionary advances in quantum technologies. Despite its
importance, few methods have been developed both from an analytical and numerical approach. In this
paper, we propose to employ machine learning techniques to estimate the MCT of a protocol while studying
what an ANN is able to learn from a system as well as its limitations. In this sense, in order to not give the
network any external bias, we tested a fully unsupervised ANN scheme composed of an autoencoder and a
k-means clustering method. We analyzed the LZ Hamiltonian given that it has an analytical MCT and a
distinctive change in the landscape’s topologies when the total evolution time is under or over the MCT. We
obtained that the network is able to not only produce an estimation of the MCT but also to gain an
understanding of the landscape’s topologies. We moved on to implement the network in the generalized LZ
Hamiltonian where similar results were yielded and also found some limitations to our very simple
architecture.

We believe this is the first approach into understand how and what the ANN does and ultimately shed
light on its limitations. We would like to remark that here we generated an unsupervised network that is able
to detect topologies changes in the control landscapes, even really subtle ones. As to the practicability of the
implementation, we believe that in the low parameterization (coarse-grained modeling) the landscapes
exhibit slight characteristics that the network is able to detect in order to generate a region of interest where
the MCT is located. Once this region is defined, a more sophisticated method could be applied to refine the
estimation. More work is still to be done in the future, specifically testing its limitations, modification of the
architecture to enhance its generalization and interpretation and an analysis of the computational resources.
We hope that our findings will serve as the foundations to further investigate and exploit the underlying
abilities of the ANN.
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Appendix A. Empirical MCT of the generalized LZ Hamiltonian

In this section we give further details as to how we define an empirical MCT from the generalized LZ
Hamiltonian defined by equation (7) in the main text.

Although there is no closed analytical MCT solution in this case, we are able to obtain an empirical
estimation from the control landscapes by taking the total evolution time of the landscape that reaches the
highest fidelity within the dataset. In figure 8 we plot the maximum fidelity achieved in each a landscape as a
function of the total evolution time T for δ = 1. This way an empirical MCT is defined by selecting T that
holds the highest fidelity (marked with a vertical dashed line).
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Figure 8.Maximum fidelity of the landscape corresponding to each total evolution time T for δ = 1. In dotted lines, the empirical
MCT is highlighted corresponding to TMCT = 5.31.

Figure 9. Illustration of the separation of the dataset for training and validation . The holdout method is implemented where 70%
of the dataset is used for training and the remaining 30% is reserved for validation. Then the training datasets is equally separated
into two parts: autoencoder training dataset and k-means training dataset. The same is done with the validation dataset
separating into the autoencoder validation dataset and performance dataset.

Appendix B. Artificial neural network details

In this section we will give further details as to the creation of the landscapes used as the datasets as well as
the ANN used in this work.

The control landscapes used as the datasets of the ANN were constructed using the QuTiP toolbox
version 4.7.0 [41]. Each landscape corresponds to a certain total evolution time, T ∈ [0.01,0.02,0.03,...,10]
yielding a dataset of 1000 components. The separation into training and validations subsets was done using
the shuffled holdout method; 70% of the data is used for training while the remaining 30% is reserved for
validation. In order to avoid a bias training in the autoencoder and k-means, the training datasets were
equally separated into two parts: autoencoder training dataset and k-means training dataset. The same is
done with the validation dataset separating into the autoencoder validation dataset and performance dataset.
Figure 9 shows a visual illustration of the dataset separation to give clarity. Once the datasets are constructed,
we move onto the construction of the ANN.

The autoencoder was developed using the Keras interface that runs over the Tensorflow platform version
2.6.0 [42]. The architecture (figure 3 in the main text) is composed of a flattened stage, encoder hidden
layers, a layer with the smallest amount of nodes corresponding to the features, decoder hidden layers and
finally a last layer that recovers the dimensions needed for the un-flattened to have the same dimensions as
the input. The code allows for a deep network with many hidden layers, but for the purpose of this paper, we
only required a shallow network with two encoder/decoder hidden layers. As described in the main text,
ensemble averaging was implemented. For this, various architectures are to be constructed in order to form a
collection of networks. This is done by building different combinations of number of nodes in the hidden
layer Nh ∈[100 110 120,...,190] and number of features extracted fh ∈[10,20,..,40], which yields a total of 40
architectures. The non-linear hyperbolic tangent activation function is implemented over the encoder and
decoder layers in order to generate complex solutions and not restrict ourselves to principal component
analysis networks. In order to prevent overfitting while avoiding the underfitting regimen the classical
L2-norm regularization term is implemented over the encoder/decoder layers with the hyperparameter
α= 0.005. We show that there is no overfitting by training the LZ Hamiltonian, equation (4), with δ= 0.7
and predicting over another system, for instance taking δ= 0.5 and δ= 1 (figure 10(a)). The last layer has a
linear activation function and its only purpose is to recover the dimensions needed for the un-flatten layer to
reshape into same dimensions as the input landscape. The training is done with the Adam stochastic gradient
optimizer with 100 epochs and a batch size of 32, implementing the MSE loss function and a learning rate of
0.001. With these configurations, a typical training and validation plot is shown in figure 10(b). In average, at
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Figure 10. (a) Verification of no overfitting by training the LZ Hamiltonian (equation (4)) with δ= 0.7 (black line) and predict
over the following systems; δ= 1 (red line) and δ= 0.5 (orange line). The dashed vertical lines correspond to their respective
analytical MCT. (b) Training (blue) and validation (orange) loss plot for one autoencoder architecture training as a function of
the number of epochs.

Figure 11. Elbow method in order to determine the optimal value of clusters to separate the features extracted from the
landscapes. The red arrow indicates the optimized number of clusters, corresponding to k= 2.

the end of the training the MSE loss is of order 10−2, this value can be lowered to 10−4 by setting α= 0. Next
we move on to explain the k-means clustering method.

The K-means methods main function is to separate a dataset into k groups. In this work we use the
algorithm given by Scikit-learn version 1.0.2 [43]. Here the unsupervised clustering is done by minimizing
the inertia criterion.

The features obtained by using the ANN are clustered by the unsupervised k-means. Given that the
algorithm requires the number of clusters to be specified beforehand and we did not want to force the ideal
two clustering scheme, we implemented the elbow method. Figure 11 shows the average result (over all the
40 architectures) of the method implemented done over the training features extracted from the LZ
Hamiltonian with an energy gap δ= 1. As it can be seen 2 clusters is the optimized number of clusters, thus
in all the networks we use the K-Means clustering into k= 2 groups.

Appendix C. Long times

In this section we give further details as to the minimum formed in the accuracy performance of figure 4 in
the main text. For this, we train the ANN network with the LZ Hamiltonian (equation (4)), with the same
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Figure 12. Analysis of prediction of ANN over long times. (a) Ensemble averaged accuracy performance function for the
Landau–Zener Hamiltonian with δ= 1 for long times. (b) Fidelity measure in the protocol ϵ1 = ϵ2 = 0 as a function of the total
evolution time T. (c) The period of the oscillation in the ANN accuracy measure (red) compared with time period of the fidelity
measure of the control ϵ1 = ϵ2 = 0 times 2 (orange) as a function of the energy gap of the Landau–Zener Hamiltonian δ.

details as explained in the appendix B, and predict over a larger dataset that covers a total evolution time T ∈
[0.01, 0.02, .., 49.9].

In the figure 12(a) we show the smoothed output performance accuracy achieved for a larger time scale.
The accuracy presents an oscillatory behavior with period τ . In section 2, we noted that the optimal control
of the LZ Hamiltonian in the MCT was located in the center, that is ϵ1 = ϵ2 = 0 where, for larger times, this
center maximum splitted into two symmetrical structures oscillating in time. This can be observed by
analyzing F[ϵ1 = 0, ϵ2 = 0] (equation (3)) for different total evolution times, figure 12(b). Figure 12(c)
compares the period obtained in the performance of the ANN (red) with the one obtained from the fidelity
measure in the center of the control landscape (orange) times 2. As one can see, for the different energy gaps
δ analyzed, they match pretty well. This displays that the network acquires more knowledge of landscapes
than expected. Further analysis will be done in the future, given that it is outside the scope of this work.
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