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Abstract: Climate change and water are inseparably connected. Extreme weather events cause water
to become more scarce, polluted, and erratic than ever. Therefore, we urgently need to develop
solutions to reduce water contamination. This review intends to demonstrate that pectin-based
materials are an excellent route to detect and mitigate pollutants from water, with several benefits.
Pectin is a biodegradable polymer, extractable from vegetables, and contains several hydroxyl and
carboxyl groups that can easily interact with the contaminant ions. In addition, pectin-based materials
can be prepared in different forms (films, hydrogels, or beads) and cross-linked with several agents to
change their molecular structure. Consequently, the pectin-based adsorbents can be tuned to remove
diverse pollutants. Here, we will summarize the existing water remediation technologies highlighting
adsorption as the ideal method. Then, the focus will be on the chemical structure of pectin and, from
a historical perspective, on its structure after applying different cross-linking methods. Finally, we
will review the application of pectin as an adsorbent of water pollutants considering the pectin of low
degree methoxylation.

Keywords: pectin; low methoxylation degree; adsorption; cross-linking; structural models;
wastewater; remediation; pollution

1. Introduction

Water is at the basis of social and economic development; it is vital to every human
being; it is essential for growing food, health, and safety. Moreover, water is related to
the economic vitality of our society, and, at present, there is no substitute for water on the
earth’s crust. Water has a Sustainable Development Goal (SDG) that is dedicated exclusively
to its promotion (Goal 6, “Ensure availability and sustainable management of water and
sanitation for all”), and it has a crucial role in a good number of the SDGs while forming
an essential factor in others. Nevertheless, due to the effects of climate change, which are
being felt right now [1], water is becoming a more scarce and less predictably available
resource in many world regions [2]. Water scarcity is among the principal problems that
many societies and the entire world will face during the XXI century, and it is already
affecting every continent.

Water on the planet is under pressure because of population growth (we need more and
more water to produce food), the overexploitation of freshwater resources used in different
industries, and climate change. As the population grows and the environment is affected
by climate change, access to drinking water decreases. More than 1300 children under
five die every day because of diseases caused by unsafe drinking water, poor sanitation,
and hygiene. The global demand for freshwater will rise by 40% in 2030, putting pressure
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on water-stressed areas. On top of this, the energy demand will go up by 50%, further
stressing water as 90% of all power generation is water-demanding. The world is heading
toward a global water crisis, and it is urgently necessary to secure freshwater for all.

Water pollution is the release of substances into water bodies (oceans, seas, lakes,
rivers, streams, canals, etc.) that make water unsafe for human or aquatic ecosystems’
use. Nowadays, contamination is observed in almost all sources of available water bodies.
Agriculture products such as fertilizers, manure, pesticides, sediment, pharmaceuticals,
and household products (detergents or soaps) are the primary drivers of extremely diffuse
pollution into rivers, streams, and estuaries. This results in low-oxygen eutrophic ‘dead’
zones [3] that are spreading worldwide. In addition, metal pollution, mostly from mining
and technology manufacturing, is another growing threat, especially in developing coun-
tries that lack environmental regulations and adequate wastewater treatment. Plastic waste,
especially micro-plastics, is another growing concern, with the most significant footprint
existing in the industrial sectors of Asia [4].

A fundamental environmental challenge posed by water contamination is the pres-
ence of emerging contaminants (such as medicines, pharmaceutical products, industrial
chemicals, heavy metals and metalloids, and pesticides), which reduce drinking water
quality drastically. These emerging contaminants are gaining notable prominence in water
remediation research because they possess an intricate molecular nature and are very hard
to detect and remove (see Figure 1 for a list of compounds). Over the last two decades,
pharmaceuticals [5] (including personal care products) and heavy metals have been con-
sidered substantial contaminants in the environment as their presence in water has grown
substantially. We need to consider, for instance, that the EU takes second place for pharma-
ceutical sales for human and veterinary consumption on a global scale. In addition, there
is an increasing trend in their consumption. Consequently, there are several reports on
the contamination of aquatic environments by pharmaceuticals in Europe’s water bodies.
Some examples are the feminization of fish [6,7] or high antibiotic levels in the water [8].
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Pharmaceuticals can enter the environment by different routes [9], including agri-
cultural runoff and urban or industrial waste. Medicines used for humans are mostly
discharged from wastewater treatment plants (WWTP) [9], whereas veterinary antibiotics
discharged in water occur via excretion. This is because antibiotics are only partly me-
tabolized and might retain their antibiotic activity. Between 80 and 90% of the amounts
ingested are excreted and released into the environment, contaminating water and soil [10].
Consequently, bacterial resistance increases the risk of toxicity towards aquatic species
or humans in the case of the ingestion of this water [11]. Therefore, a mixture of antibi-
otics and their metabolites travel through the sewage system to the WWTP, where their
complete elimination is impossible. Thus, antibiotics can reach natural aquatic systems
(surface waters, soils, and sewage sludge). The presence of antibiotic and antifungal phar-
maceuticals may play a role in accelerating the growth and spread of resistant bacteria
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and fungi with the consequent risk to human health. It is also necessary to note that no
clear association has been demonstrated between pharmaceuticals in the environment and
their direct impact on human health. However, the World Health Organization (WHO) has
reported on the possible effects of long-term exposure on vulnerable populations [12]. More
research is still needed to comprehend and evaluate pharmaceutical products concerning
their environmental concentrations and levels of risk [13].

On the other hand, reports on heavy metals such as lead, zinc, arsenic, cadmium,
mercury, chromium, or nickel are also disturbing. Although between 2010 and 2020 and
due to legislation [14], the releases of heavy metals from industries declined significantly
in Europe’s water bodies, we cannot observe the same reduction in other continents such
as America or Asia. In addition, independent of industrial wastes, for instance, arsenic is
naturally (i.e., geogenic) present in rocks and can accumulate in different aquifers [15].

In contrast to medicines, heavy metals are found intrinsically in the earth’s crust and
reach the surface environment through some geological events (for instance, volcanic erup-
tion) or due to anthropogenic activities such as smelting, mining, or pesticide application.
Moreover, technology-based activities (for example, industries, including color pigments
or alloys) have also generated the presence of heavy metals in water bodies. Through
leaching, infiltration, and runoff, metals and metalloids are transported to surface and
ground waters. Once released into the aquatic environment, they are usually adsorbed into
sediment particles but can be re-released during storms or other climatic events. Upon
heavy metals are in water bodies, they do not experience chemical degradation similar to
other pollutants but prevail in the water for a long time. The presence of heavy metals
in water can introduce health issues [16,17] that include the risk of cancer and diabetes,
skin lesions, renal injuries, cardiovascular disorders, neurotoxicity, and neuronal damage,
among others.

All these risks related to water already have profound social and financial impacts.
Regarding financial consequences, they are not reflected in day-to-day business costs. The
global economic systems treat water as an unlimited and infinite resource with little value,
leading to widespread waste and misuse. Regarding social impacts, we can mention the
relocation of high populations of people due to pollution with the induced impoverishment
of resettles, illnesses, and the increment in the gap between urban and rural areas, including
social conflicts among different stakeholders.

For all these reasons, we need to develop solutions to maintain unpolluted water
urgently. Here, we will review the use of pectin as an adsorbent because it is a promising
alternative for water remediation. Figure 2 reproduces the number of publications in
Clarivate Analytics’s Web of Science from 1970 to the present using the key “pectin and
adsorption”. These findings show a substantial and consistent increase, indicating that
pectin has recently sparked a significant amount of interest in the scientific community for
its potential application as an absorbent.

In the following, we will summarize the water remediation technologies emphasizing
adsorption as the preferred method. Then, the focus will be on the chemical structure of
pectin, highlighting how source and extraction methods affect its final properties, such
as the degree of methoxylation. Then, we will discuss previous works relating to the
insolubilization of pectin (i.e., cross-linking methods) and its structural models developed
from a historical perspective. Finally, we will examine the application of pectin as an
adsorbent of water pollutants such as metal ions and dyes [18,19] considering the low
degree of methoxylation pectin.
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Figure 2. Publications in pectin water remediation for 1970–2022. Data are the number of hits of
a search for publication titles containing the keywords “pectin” and “adsorption” using the Web
of Science.

2. Water Remediation Technologies

Commonly, multiple water treatments are needed to purify raw water before it can be
distributed. The treatment applied depends on the type of pollutant in the water. In each
region of the planet, the contaminants differ. For instance, in North and South America,
we could find high concentrations of arsenic, but this is not the case in oriental Africa. In
addition, different regulations [20] are applied (distinct in each country, region, or continent)
to meet the quality criteria of raw water input. Therefore, the water treatments applied
are different in different world regions. In the following, we will summarize some of the
existing water treatments and, after that, focus on adsorption techniques as a preferred
method of water remediation.

The most common pollutants in wastewater (presented worldwide) are microbes, bac-
teria, or suspended solids that can be removed using traditional methods. However, other
contaminants (pharmaceuticals or industrial chemicals) are difficult to remove, transform,
or degrade. Among the conventional methods, we can mention filtration (water passes
through a column of bed and bank materials to remove particulate material and debris from
the raw water, in addition, microorganisms and algae can also be removed using slow sand
filters) or aeration (to transfer oxygen into water and remove gases and volatile compounds
by air stripping). In addition, phase separation (such as sedimentation, i.e., the separation
of suspended solids (such as algae) by gravity) is also generally used. We can also mention
chemical processes (such as oxidation involving the transfer of electrons from a reduced
reagent to the reduced chemical species), which aim to transform putrescible contaminants
into innocuous products and biological processes. Finally, biological treatments that rely on
bacteria and other tiny organisms using cellular processes are used to break down organic
waste. This treatment aspires to create a system where decomposition results can be easily
collected for proper disposal.

All these methods mentioned above are typically used in wastewater treatment plants
(WWTPs), and they play a crucial role in environmental preservation and are essential for
modern urban life [21]. However, the design of WWTPs is based on the need to reduce
organic and suspended solids, and they are not intended to remove emerging contam-
inants [22]. These types of contaminants (for instance, pharmaceuticals, heavy metals,
or industrial chemicals) are difficult to remove, transform, or degrade [23]. Remediation
efficiencies in WWTPs can be less than 10% in the case of pharmaceuticals [24], and its



Materials 2023, 16, 2207 5 of 26

removal has rarely been considered an objective, but this must now be of primary concern
when water is used, for instance, in agriculture or livestock. It is important to remark
that wastewater contains emerging contaminants, and after the water passes through the
WWTP, it still maintains several of these contaminants [25]. The presence of pharmaceuti-
cals in freshwater has been reported in several research investigations [26–28]. Therefore,
as most WWTPs are not equipped to deal with these products, WWPTs are new sources of
pharmaceuticals for the environment [29,30].

For these reasons above, over the last twenty years, several new treatments for cleaning
water have been developed with the primary goal of including these emerging contam-
inants. Among the most recent developments for water treatment, we can mention the
bio-electrochemical systems in which a reactor simultaneously performs water treatment
and energy production [31,32]. These systems consist of a chamber divided into two parts
by an ion exchange membrane. They can also be employed for organic matter removal [33],
desalination [34], or metal recovery [35]. However, these systems produce low energy [36]
with a high fabrication cost [37] and are difficult to employ in large-scale facilities [38].

Another relatively new treatment is ultraviolet irradiation technology (UV). It is
generally used as a disinfection process because UV radiation, in the wavelength range
from 250 to 270 nm, has a germicidal effect [39]. In this case, water flows around a
series of UV lamps, and therefore, it can be easily implemented into traditional WWTPs.
Mercury lamps have been used as UV radiation sources, but more recently, ultraviolet light-
emitting diodes have become available with many advantages over mercury lamps [40]. In
addition, advanced oxidation processes via semiconductor photo-catalysis water treatment
systems [41–43] are suitable for use in water and wastewater treatment facilities. They
can treat industrial wastewater polluted with high loads of organic substances or metals.
However, this technology is still costly and not massively used in WWTPs.

On the other hand, since the 1990s, membrane filtration technology has been developed
in surface water treatment [44,45]. Membrane filtration is a pressure-driven technology
with pore sizes ranging from nm to microns. Membrane filtration involving reverse osmosis
(RO), ultrafiltration (UF), microfiltration (MF), and nanofiltration (NF) in drinking water
production has increased rapidly over the past decade [46–48]. However, the main problem
of membrane technology is its high fouling tendency [49] (deposition of matter in the
membrane, which dramatically affects its performance).

Adsorption is also a promising and low-cost water purification technology [50]. Al-
though it is an old technique, it has recently been used for numerous purposes. [51–53].
We favor this technology, among the other mentioned methods, mainly because of the
process’s simplicity, cost-effectiveness, energy requirements, and reversibility [54,55]. After
the absorbent is used, it is possible to desorb the pollutants and regenerate the adsorbent
for later reuse [56]. Therefore, adsorption is a technique to recover chemicals that contribute
to the circular economy [57,58]. Additionally, compared to other approaches, the materials
needed to create adsorbents are typically less expensive, and the technology does not
require electricity to be employed effectively [59].

Adsorption occurs when molecules in a liquid bind to the surface of a solid substance.
The adsorption process establishes weak chemical bonds (ion exchange) and physical forces
(hydrogen bonds, van der Waals, electrostatic interactions) between the adsorbent surface
and the adsorbate. It depends on diverse variables such as contact time, pH, temperature,
surface-volume ratio, and concentration of pollutants [60,61]. Adsorbents with large surface
areas and high porosity usually show high adsorption efficiencies. Different adsorbent
materials for water remediation, such as activated carbon, have been known since early
1900 [62]. Table 1 shows a partial list of examples for adsorbents used in wastewater
treatment. Some of them are carbon materials such as graphene oxide, bio-char [10,63],
or activated carbons [64–66]), silica-based materials [67–69], inorganic materials such as
zeolites [70–72], mineral clays [73,74], and organic materials such as polysaccharides [75,76].
In the latter case, the way in which the removal of contaminants occurs is not sufficiently
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clear in the literature. As we will see below in this review, it could be an ion interchange or
a combination of ionic interchanges plus other types of interaction.

Table 1. Adsorbents used for different pollutants (list restricted to papers from 2010).

Adsorbent Type Contaminant Reference

Activated carbon Dyes, heavy metals [64–66]

Graphene oxide Pharmaceuticals, Organic compounds, metal ions [77,78]

Silica-based materials inorganic and organic pollutants [67–69]

Zeolites Petroleum, fluoride, nitrate, dyes, heavy metals, cesium [70–72]

Biochar Heavy metals [10,79,80]

GO-biochar Persulfate, metal ions, dyes, pharmaceuticals [63]

Mineral Clays (Montmorillonite, Bentonite, Kaolinite,
clinoptilolite, etc.) Nuclear waste, pharmaceuticals [73,74]

Sugar beet pulp Nitrites and nitrates [81]

Organic polymer resin Cationic and anionic surfactants, perfluoroalkyl acids [82,83]

Poly(saccharide)-based materials heavy metals (arsenic) [75,76]

Poly (vinyl alcohol) nanofibers + Iron NPs Arsenic [84,85]

Poly (vinyl alcohol) nanofibers + L-cysteine Arsenic [56]

Polybutylene adipate terephthalate (PBAT) nanofibrous Dyes, pharmaceuticals [86]

Biohybrid membrane of polymeric nanofibers and
free-living bacteria Chromium (Cr-VI) [87]

The adsorption process is typically studied by adsorption kinetics [88], isotherms [89],
and by applying models. Kinetics represents the amount of the pollutant adsorbed by the
adsorbent as a function of the time with an initially fixed pollutant concentration in the
water. Pseudo-first order (PFO), pseudo-second-order (PSO), Elovich, and Boyd’s external
and internal diffusion models are the most used adsorption kinetic models [88]. The
isotherm is represented as the adsorptive capacity of the material measured as a function
of the initial concentration at equilibrium, i.e., when the kinetics has reached the plateau.
Langmuir, Freundlich, Sips, Henderson, Temkin, and Redlich Peterson are the most used
models to explain adsorption [89]. All these models have been previously reviewed in the
literature (see, for instance, references [88,89]). Therefore, we will not review this topic here.

3. Pectin—Chemical Structure

Pectin is an anionic heteropolysaccharide that is present in vegetable cell walls. Pectin
is particularly predominant in fruit peels, especially in citrus peel and apple pomace, but
also in passion fruit rind, pomelo, and banana peel [90]. The pectin backbone chain com-
prises α-(1,4)-linked D-galacturonic acid (GalA) residues [91] (mainly homogalacturonan
(HG), rhamnogalacturonan I (RG-I), rhamnogalacturonan (RG-II)) linked by α 1-4 glyco-
sidic bond. The homogalacturonan domain (HG) is the most abundant and linear domain
(around 60%). Additionally, as shown in Figure 3a, pectin has different branch domains,
such as xylogalacturonan with sugars (xylose, apiose, rhamnose, galactose, arabinose,
fructose, among others).

The carbon 6 of the D-galacturonic acid residues can be methyl-esterified (COOCH3)
or carboxylated (COO−, in its deprotonated form), as indicated in Figure 3b. It also can
be acetylated at the O-2 and/or O-3 position of the GalA residues, although this is less
common [91]. Depending on the ratio of the methyl-esterification of these residues, pectin
shows a different esterification degree (DE).
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Carboxyl groups are hydrophilic and can coordinate with metal ions, whereas methyl-
esterified are phobic. Therefore, by maximizing the number of COO− (i.e., low degree of
esterification), the adsorption efficiency against metal ions is much higher than pectin with
a high amount of COOCH3 groups.

DE is a magnitude that is related to the gelling mechanism of the pectin, and it
classifies pectin into two groups: high methoxyl pectins (HM), where more than 50% of the
galacturonic acid residues are esterified, and low methoxyl (LM) pectins, where less than
50% of the galacturonic acid residues are methoxylated. Independent of the DE, pectin is a
water-soluble biopolymer. Therefore, it should become insoluble to be used as an adsorbent
in aqueous environments. This can be achieved by cross-linking the pectin with various
cross-linking agents, as described in the next section.

Pectin sources (i.e., the plant used to extract pectin) strongly influence the galacturonic
acid content and the degree of methoxylation obtained after extraction [92,93]. These two
variables directly affect pectin’s ability to form a gel. The most common sources of pectin
are apple pomace and citrus peels. Whereas the galacturonic acid content for apple pomace
is between 20 and 44%, and the orange peel has been higher in comparison.

There are different extraction methods to isolate pectin from vegetables, which also
affect the structure of the pectin, and it involves several steps (pretreatment, extraction,
purification, concentration, precipitation, drying, and standardization) [94]. The preferable
method is to mix the cell-wall materials in hot or cold acidified water [95,96] because the
highest extraction yield is achieved. It is also possible to add chelating agents [97] such as
cyclohexane-diamine-tetra acetic acid (CDTA), oxalate, or ethylene-diamine-tetra acetic
acid (EDTA) to promote the release of pectin. On the other hand, if instead an acidic alkaline
extraction is used, the length of the galacturonic acid, the methoxylation degree (DM), and
acetylation (DA) decrease [98].

The possible uses of pectin in different industries are abundant and of different natures,
mainly in the health and pharmacy sector, food applications, and packaging. As pectin is a
natural component of vegetables and fruits, it is an exceptionally safe multifunctional food
additive (E440) that is used, for example, as a texturizer or gelling agent. In addition, pectin
is popular in several scientific fields because of its availability, safety, relatively low price,
and functionality. Specific structural attributes developed by pectin’s functional groups or
the attachment of chemicals on the molecule make it a good candidate for several purposes,
such as food innovations [99], nutritional remediation [100], drug delivery [101], illness
treatment [102], tissue engineering [103], and other approaches [104]. Notably, pectin is
resistant to gastrointestinal hydrolyzing enzymes and acidic/alkaline media, which favors
its application in colon delivery via an oral route under a specific condition.

In particular, pectin, with a low level of esterification, also has a high application
value and broad application prospects as a functional food ingredient [105]. It also has
been studied as a forthcoming biomaterial for tissue engineering and biomedical appli-
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cations [106]. Pectin films have also been used in packaging, although there are some
limitations because of their inadequate mechanical properties and high hydrophilicity of
the pectin films [107,108]. This issue can be solved by blending with other polymers [109]
or incorporating cross-linkers and/or filler material [110].

4. Insoluble Pectin—Cross-Linking Agents That Generate Gelation

As mentioned above, pectin is a water-soluble material. Therefore, it must be in-
solubilized to be used as an adsorbent to remove pollutants from water. Different ionic
crosslinking agents were used for pectin, with the cations that were monovalent (Na+,
K+), divalent (Ca2+, Cu2+, Sr2+ Ni2+ Zn2+ Cd2+ Pb2+ or Mg2+), or trivalent (Al3+, La3+, and
Fe3+) being most used. Pectin can also be cross-linked using non-ionic cross-linkers such
as glutaraldehyde [111] or laccase [112]. However, ionic crosslinking is the most widely
used and suitable method because it has the principal advantage of releasing contaminants
(in some cases, recovering a priceless pollutant) and recovering the absorbent that can
be reused.

Among all the possible ions, the divalent cations are the most commonly used ele-
ments for LM pectin gelation. After cross-linking (independent of the cross-linking agent),
pectin undergoes gelation, producing a three-dimensional network in the form of xerogels
(vacuum drying), hydrogels (wet gels), aerogels (supercritical CO2 drying), and cryo-gels
(freeze-drying) depending on the drying conditions [113]. The primary characteristic of wet
gels is their ability to bind considerable quantities of water, thus increasing their volume.
In addition, the swelling favors the access of pollutants to pectin.

The gelation mechanism of pectin is mainly governed by the methyl-esterification
degree. Therefore, the gel formation mechanism differs for high-methoxyl (HM) and
low-methoxyl (LM) pectins [114]. Apart from the methyl-esterification degree, the gelling
process is influenced by ionic strength, molecular weight, and pH [115]. In addition, after
cross-linking, the final structure of pectin depends on the cross-linking cation used.

There are fewer reports on LM pectin cross-linking using monovalent cations such
as sodium (Na+) and potassium (K+). Cross-linking with these monovalent cations is
produced at a low pH (approximately from pH = 2 to pH = 4) [116–119]. The cross-
linking with monovalent ions diminishes the repulsive charges between pectin chains
and promotes chain-chain association via hydrogen bonding [116,119]. It was suggested
that at pH = 4.5, the cross-linking would more effective using K+ than Na+ because of
the charge screening, galacturonic acid de-esterification, hydrogen bond changes, and
electronic attraction [116]. Moreover, by increasing the pH to higher values (alkaline
conditions), it was also found [116] that Na+ ions generated much stronger gels than those
induced by K+ in HM pectin. In accordance, Yoo and coworkers [120] also studied poly
(methyl esterase) mediated de-esterified citrus pectin when cross-linked with Na+, K+, and
Li+. In agreement with Chen et al. [116], they observed that stronger cross-linking was
produced using Na+ followed by K+ at pH = 7, whereas the reverse was true for pH = 5. A
similar study was performed by Strom et al. [119,120], where the influence of L+, Na+, and
K+ on LM pectin rheology in an acid solution was evaluated. These investigations revealed
that K+ formed the strongest gels, followed by Na+ and Li+. Furthermore, LM pectin was
cross-linked by NaCl (0.05M) with and without ZnCl2 [118] and could form nanoparticles.
Li+ does not form gels at any of the tested conditions. This behavior was ascribed to an
increase in the ionic radius of the hydrated cation.

Trivalent cations have also been employed as cross-linking agents for pectin [121–124].
It was found [121,122] that independent of the methyl-esterification degree, Al3+ binds
pectin chains had the condition of pH ≥ 4. In a rheological investigation [122], Ca2+, Cu2+,
Al3+, and La3+ ions were used as cross-linking agents. All these cations can form pectin
gels. It was stated that the weakest gel was formed with La3+, followed by Ca2+, similar
to Al3+, while Cu2+ was one order of magnitude more substantial than the other cations.
Finally, it was reported that the trivalent cations Fe3+, Ce3+, Pr3+, and Nd3+ could establish
cross-links in pectin [124]. In that work, the formation of isolated rhamnogalacturonan
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II dimers was reported. Still, there were no reports regarding what type of structure the
pectin chains formed in the presence of these trivalent metals.

Apart from monovalent or trivalent cations, divalent cations such as Ca2+ are the
most used cross-linking agents for pectin. The gelation of LM pectin with calcium ions
occurs by forming junction zones according to the so-called “egg-box” model, which has
been initially described for alginates [125]. The lower the pectin esterification degree, the
more divalent the cation binding sites that are available on pectin, and the ability to absorb
divalent cations increases. The following section will discuss the egg-box model from a
historical perspective.

Many works have proven the effective cross-linking of LM pectin using Ca2+ [126–134].
In addition to Ca2+, the cross-linking of LM pectin with Cd2+ and Cu2+ was reported for
drug delivery applications [135]; Pectin was also cross-linked with Sr2+ and Zn2+ to form
aerogels for diclofenac sodium controlled release [136]. Pectin cross-linked by Cu2+ ions
was reported to be used as a scaffold for gold nanoparticles [137]. Moreover, pectin was
cross-linked with a 2% (w/v) ZnCl2 solution [138] to evaluate the potential healthcare
applicability, and Das and coworkers [139] used LM pectin cross-linked with Zn2+ to
encapsulate a colon-specific drug delivery microsphere.

On the other hand, other molecules have been used to induce the gelation of LM pectin.
Yoshimura and coworkers [111] described the cross-linking of the LM pectin with ethylene
glycol diglycidyl ether and glutaraldehyde or Ca2+. They found that glutaraldehyde
produced pectin gels, whereas the ethylene glycol diglycidyl ether did not show an apparent
gel formation. Ullah and coworkers [140] reported the cross-link of pectin with methylene
bisacrylamide and ammonium persulfate as initiators. Pre-saponified pectin was also
cross-linked with adipic acid [141] or adipic acid dihydrazide, which was previously
involved in the oxidation of pectin [142]. Chen and coworkers compared the cross-link
using adipic acid dihydrazide and the classic Ca2+ cross-link, reporting that the adipic
acid dihydrazide cross-link significantly improved cell adhesion. Another example of a
non-ionic gelling agent is laccase, which was employed to cross-link sugar beet pectin in
the work, as performed by Jung and Wicker [143], where they noticed an increase in the
molecular weight of pectin by chromatographic techniques.

McCuet et al. [144] electrospun LM pectin with poly(ethylene oxide) and later cross-
linked either with Ca2+ or oligochitosan. They found that the morphology of the resulting
fibers was preferable to cross-linking them with oligochitosan, and it was more suitable
for tissue engineering as it has no apparent cytotoxicity due to a positive surface charge.
Finally, Mongkolkitikul et al. [145] cross-linked citrus pectin with citric acid and FeCl2 to
encapsulate ibuprofen. They discovered that the diffusion coefficient was significantly
improved using FeCl2 as a cross-linker.

In conclusion, we described that the effective cross-link of the LM pectin could be
achieved through several cross-linking agents of different natures. Divalent cations are the
most widely used among these agents for relevant industrial or commercial applications.
Therefore, in the next section, we describe the structure of the LM pectin cross-linked by
divalent metal cations.

5. Structural Models of Cross-Linked LM Pectin and Alginates

This section will discuss the structural models proposed for pectin after cross-linking.
From a historical perspective, we will mainly focus on the interaction of pectin with divalent
ions because this is the most relevant cross-linking agent for obtaining a material suitable
for water remediation.

5.1. Historical Perspective of Structural Models Induced by Calcium

In 1973, Grant and coworkers [125] first proposed the interaction between a polysac-
charide chain (such as alginate or pectin) and divalent cations in terms of the egg-box
model. Initially, this model introduced alginates: a non-branched polysaccharide composed
of two monosaccharides, α–L guluronic and β-D mannuronic acids [146]. Using circular
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dichroism, the authors suggested a cooperative inter-chain mechanism of ion binding
involving two chains associated with the coulomb interaction between the active sites and
the metal ion. More specifically, two opposite α-L-guluronate sequences paired together
to form a structure with cavities, within which Ca2+ ions were accommodated through
specific coordination interactions between two free carboxyl groups.

Five years later, Morris et al. [147] studied alginate chain gelation by X-ray diffraction
coupled with circular dichroism using different calcium concentrations. Their results
showed that the primary inter-chain association mechanism was regularly dimerizing
alginate or poly (guluronate) chain segments. This structure results in cross-linked dimers
with a geometric design that resembles an egg box (see Figure 4). Compared with the first
proposal of the “egg-box” model, the dimers can further aggregate laterally into multimers,
as revealed by small-angle X-ray scattering. In addition, the sugar ring belonging to
guluronic acid and the polymer chain adopts a characteristic zigzag shape. Studying
the lateral aggregation of dimers is essential to understanding the properties of these
biomaterials in terms of their structure to explain what happens during a water remediation
process. On the other hand, knowing the correct features and operating principle of
the “egg-box” model helps to understand the possible pollutants of adsorption models
from wastewater.
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In 1981, Walkinshaw and Arnott [148] added, for the first time, the concept of the
junction zone for the “egg-box” model for poly(galacturonic) acid and a high methoxylation
degree of calcium pectate (i.e., pectin cross-linked with metal ions). In this new model, for
poly(galacturonic) acid, chain–chain interactions were stabilized by intermolecular hydro-
gen bonds formed between several adjacent D-galacturonic acid units and hydrophobic
bonding between methyl esters. Similarly, hydrophobic binding from segments of methyl
groups and specific intermolecular hydrogen bonds stabilized calcium pectate. The main
interactions between pairs of chains could be the bridges formed by calcium ions, which
incorporate into their coordination shells two-polyanion oxygen atoms from one chain
and three from the other. In addition, in 1982, Powell et al. [149] investigated rhamnose
distribution for the formation of stable poly(galacturonic) acid inter-chain junctions for
high and low degrees of methyl(esterification). Their results confirm the Walkinshaw and
Arnott hypothesis [148]. They also indicate that the length of the poly(galacturonic) acid
sequences between rhamnose interruptions (i.e., hairy regions) is approximately constant
(i.e., they prove the existence of the junction zone).

Later, Kohn [150] studied the interaction between carboxyl groups and divalent cations
in pectin fragments, resulting in a complex formation. The interaction exhibits different
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affinities towards divalent cations: Ca2+, Sr2+, and Zn2+ ions are bound according to
the well-known “egg-box” model, whereas Cd2+, Cu2+, and Pb2+ form intra- and inter-
molecular complexes. This work proved that the “egg-box” structure only formed with
specific metal ions. This revolutionized the egg-box model because, depending on the
concentration and interaction with metal ions, LM-pectin could be cross-linked in different
ways with different properties.

At this point, and to bring all the above studies together, a book entitled the chemistry
and technology of pectin [151] was first published in 1991. This event changed scientists’
attitudes toward pectin research because of the exponential growth of publications in the
following years.

During the first ten years of the 2000s, scientists began to study the “egg-box” model
using various approaches, and different reconsiderations of the model have been proposed.
A molecular simulation study [152], made on pairs of galacturonate oligomers, found a shift
along the chain axis in the association of associated galacturonate chains. Therefore, they
proposed the “shifted egg-box” model to explain the gelation mechanism of galacturonate
chains, where two shifted antiparallel pectin chains are necessary to form the egg-box dimer.

In 2007, the “shifted egg-box” model for Ca-alginate gels was re-examined [153] and
confirmed using X-ray diffraction measurements. Unlike previous “egg-box” models
developed for pectin, in this case, the authors considered the helical conformation of the
main chain, which had not been considered before. These results suggest that instead of a
2/1 helical conformation, as previously proposed for the egg-box model [154], a 3/1 helical
conformation for the junction zones was energetically more favorable for these materials.
In the same year, Fang et al. [155] studied the Ca2+-alginate gel of high (long polymer chain)
and low molecular weight (short polymer chain) using isothermal titration calorimetry.
They proposed a three-step binding behavior of calcium to alginate to form “egg-box”
dimers: (i) the interaction of Ca2+ with a single guluronate unit forming mono-complexes
(i.e., a carboxylic group with Ca2+); (ii) the propagation and formation of egg-box dimers via
the pairing of these mono-complexes; and (iii) the lateral association of the egg-box dimers,
generating multimers. The short chains are quite rigid, and inter-cluster association is the
only possible way for the “egg-box” dimers to aggregate laterally. This aggregation results
in an increase in molecular size. However, long chains are more flexible and have smaller
clusters. The intra-cluster association, in this case, results in a reduction in molecular size
(see Figure 5).

In 2008, Fang and coworkers [156] compared pectin with alginate for calcium-binding
behavior. LM pectin is similar to alginate, but a two-step mechanism is involved. Whereas
step I can be attributed to a mono-complex between Ca2+ ions and a polygalacturonate
chain, step II is the formation of egg-box dimers through the pairing of the mono-complexes.
In addition to steps I and II, the binding of alginate with Ca2+ includes a third step that is
assigned to the lateral association of egg-box dimers.

In 2010, Gohil [157] studied the structural reorganization of pectin and alginate films
after calcium binding by X-Ray diffraction and dynamic mechanical measurements. His
results suggest that the structural reorganization of molecular network structure, after
binding with Ca2+, destroyed some existing pectin crystalline tie points, resulting in its
amorphization, as described by the “fringe-micellar” structure. In the same year, Fraeye
and coworkers [130] summarized in detail how the characteristics of the final pectin gel
are affected by different “intrinsic” and “extrinsic” parameters such as the amount and
distribution of methyl ester, chain length, pectin concentration, amidation, and acetylation
degrees, molecular weight, calcium content, temperature, and pH. Table 2 highlights how
these parameters influence the final characteristics of the gel.
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Figure 5. Ca2+ binding to alginate in multi-steps is shown schematically for the (a) Short-chain
alginate and (b) Long-chain alginate, respectively. R stands for the Ca2+ to the guluronate residue
feeding ratio [119].

Table 2. Parameters (intrinsic to pectin and extrinsic) that influence the gel formation.

Intrinsic Parameters

Methoxylation degree (DM) Decreasing DM: the number of sequences of non-methoxylated GalA residues long enough for the
egg-box formation to increase. This results in a substantial increase in the calcium ion binding capacity.

Pattern of methoxylation
Pectin with a block-wise distribution of non-methoxylated carboxyl groups can associate with
egg-box formation at a higher DM.
Pectin with carboxyl groups randomly distributed does not form egg-box patterns.

Chain length The lower the molecular mass of pectin, the lower the gel strength.

Branching Large side chains are likely to cause steric hindrance, which may hamper pectin-pectin interactions.

Amidation Amidated pectin can form stronger gels, especially at a low pH, because of the formation of
hydrogen bonds between amide groups.

Acetylation Acetyl groups drastically decrease the binding strength of pectin with calcium ions.
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Table 2. Cont.

Extrinsic Parameters (Environment)

Calcium content

The influence of calcium ion concentration on the gelation of LM pectin is mostly described in
terms of a stoichiometric ratio:
R = 2[Ca2+]/[COO−].
R = 0.5, theoretically, all calcium ions are bound, forming the “egg-box” structure.

Pectin content When R is kept constant, gel strength increases with the polymer concentration.

pH

To form ionic cross-links between the pectin carboxyl groups and calcium ions, pectin needs to be
charged, i.e., the carboxyl groups need to be dissociated. Above pH = 4.5, the gel properties are
relatively independent of pH, but when the pH of a pectin-calcium gel decreases below 4.5, the
charge density of pectin decreases and, consequently, its affinity for calcium ions decreases.
However, this effect is partly compensated by forming hydrogen bonds between protonated
carboxyl groups.

Temperature
At high temperatures, a chain scission is promoted, and, as a consequence, dimers are formed.
These junction zones are stabilized upon cooling through hydrogen bonding, which is
accompanied by cooperative calcium immobilization.

Ventura and coworkers [158] published a SAXS analysis of Ca2+–LM pectin gels with
different calcium concentrations, coupled with molecular dynamics simulation studies.
They proposed a new “egg-box” model considering semi-flexible and no linear chains.
This chain flexibility was not considered in any of the previous models developed. They
showed [158] that rod-like and point-like cross-links between neighboring pectin molecules
could occur. With the increased Ca2+ concentration, the number of road-like cross-links
decreased while the number of point-like cross-links increased. In this study, the authors
proposed that the cross-linking scheme was mainly governed by the branched nature of
pectin, as opposed to the linear nature of alginate.

Wang et al. [159] studied the high and low methoxyl pectin self-assembly molecules,
which were regulated by calcium ions using atomic force microscopy (AFM) in the following
years. The addition of calcium ions increased the viscosity of the low-methoxyl pectin
solution. Otherwise, the viscosity of the high-methoxyl pectin solution remained stable.
AFM confirmed that the esterification degree and calcium concentration cause different
binding methods with calcium ions between pectin governed by the branched nature of
pectin [158]. The formation of dimers by lateral aggregation was observed only for the
LM-pectin. However, for the HM-pectin, the large number of esterified galacturonic acid
residues limits pectin fiber aggregation due to the nonspecific hydrophobic interaction and
hydrogen bonds. This study was another confirmation of the two-step binding behavior
of calcium to pectin. The AFM study showed that there were two possible ways of dimer
aggregation. In accordance with the Walkinshaw and Arnott hypothesis [148], the lateral
aggregation of dimers involved hydrogen bonds between hydroxyl groups of different
pectin fibers. However, dimers can aggregate along the pectin fiber, as the picture shows.

Finally, we wanted to indicate that by looking at Figures 3–6, it is possible to under-
stand how the “egg-box” model has evolved since it was proposed in 1973.
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5.2. Recent Evolution of Structural Models for Pectin Is Cross-Linked with Other Metals

As mentioned above, pectin is susceptible to cross-links with other cations apart from
calcium. Specifically, in 2015, Assifaoui et al. [160] published the structural differences
found in LM pectin when cross-linked with Ca2+ and Zn2+. These results show that Ca2+

cations only interact with carboxyl groups and form more homogeneous pectin network
fibers (i.e., the well-known “egg-box” dimers). In contrast, Zn2+ also interacts with hydroxyl
groups, resulting in a less homogeneous cross-linked pectin network (see Figure 7).

In 2016, Huynh et al. [161] investigated the binding mechanism using different cationic
metals (Zn2+, Ca2+, Ba2+, Mg2+) by isothermal titration calorimetry, viscosity measurements,
and molecular dynamics simulations in poly (galacturonic) acid. In this framework, a
monodentate interaction meant the interaction between a carboxyl group of galacturonic
acid and a cation. In contrast, a bidentate interaction means the binding of two oxygen
atoms of the galacturonic acid (from two different pectin chains) and a cation. They reported
that the interaction between divalent cations and poly (galacturonic) acid is monodentate
for Mg2+ and Zn2+ and bidentate for Ba2+ and Ca2+. Moreover, the binding mechanism for
the divalent cations, Zn2+, Ca2+, and Ba2+, can be associated with mono-complexation and
point-like cross-links or related to the appearance of the dimmers formation, depending on
the molar ratio between the divalent cation and galacturonic acid (R = Metal2+/Gal). This
conclusion was based on the number of water molecules coordinated with the different
cations. In the case of Zn2+, Ca2+, and Ba2+, the coordination with water was weaker in
strength than those of Mg2+. During the cross-link, the metal ions lose one water molecule
for the Zn2+ and two for Ca2+ and Ba2+, respectively. However, Mg2+ strongly interacts with
water and remains weakly bound to poly(galacturonic) acid by sharing water molecules
from its coordination shell with the carboxylate groups. Finally, two years later, Huynh
et al. [162] studied the gelation kinetics of pectin induced from divalent cations (Zn2+, Ca2+,
Ba2+, Mg2+) by viscoelastic and turbidity measurements. Their results confirmed that the
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cations’ diffusion kinetics was lower for Zn2+ than for Ca2+ and Ba2+. However, for the
Mg2+, the gel was not formed, supporting a previous study [161].
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To finish this section, Table 3 summarizes the milestones in developing the structural
models of pectin when cross-linked with metal cations.

Table 3. Historical development of the binding mechanisms between divalent cations and both
poly(galacturonic) chains or pectin.

Year Event Reference

1973 First postulation of egg-box model for pectin [125]
1978 Dimers formation [147]

1981 Junction zones model [148]

1982 Junction zone distribution [149]

1987 Divalent cations coordination [150]

1991 First book in pectin chemistry and technology [151]

2001 Shifted egg box model for pectin gels [152]

2007 Multi-step binding ions behavior [153]
[155]

2008 Alginate and pectin comparison [156]

2010 Structural reorganization of pectin and alginate after calcium binding [157]

2013 Egg-box model with semi-flexible chains [158]

2015
Cross-link differences between different multivalent cations

[160]
2016 [161]
2018 [162]

2020 Different ways in pectin dimers aggregation [159]
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6. Properties of Pectin That Influence the Absorption of Metal Ions

Several investigations focused on using pectin as an adsorbent to remediate heavy met-
als from the water. It is important to remark that we do not review the values of adsorption
capacities for each pectin type developed in the literature. This task has been conducted in
other revisions, such as references [19,76]. Instead, we compared the adsorption capacities
of the LM pectin since, as explained above, we believe this material is more appropriate
for water remediation purposes. Table 4 shows an overview of the maximum binding
capacities for different divalent metals for pectin with an LM degree (<50).

Table 4. Summary of pectin-based adsorbents’ maximum adsorption capacity (qmax) for different
divalent metals. Here, we only considered pectin of a low methoxylation degree. The table indicates
the pectin origin, type of adsorbent, cross-link agent (CA), degree of methylation (DM), and type
of pollutant.

Origin Adsorbent CA DM [%] Pollutant qmax [mg/g] Ref.

Citrus fruit Pectin Ca2+ <50 Hg2+ 1.7 mmol/g [163]

Commercial pectin Demethylated pectin Ca2+/Mg2+ 13 Fe2+ 0.523 mol
Fe2+/mol GalA [164]

Commercial pectin Pectin microgel particles Ca2+ 16.4 MB * 284 mg/g [165]

Citrus peel Pectin with Oxisol
Nr. 6.7

Cu2+ 33.8 mmol/kg
[166]

Pectin with Utisol Cu2+ 37.0 mmol/kg

Sweet potato
residue

HHP-AP ** modified pectin
Nr.

16.11
Pb2+ 263.15 mg/g

[167]Pectin 28.01 163.93 mg/g

Commercial pectin Chitosan-pectin gel beads Alkaline
solution

6.68

Cu2+ 169 mg/g

[168]Cd2+ 177.6 mg/g
Hg2+ 208.5 mg/g
Pb2+ 266.5 mg/g

Sugar beet pectin Pectin xerogel beds Ca2+ <50
Cd2+ 0.151 mmol/g

[169]Pb2+ 0.290 mmol/g
Cu2+ 0.343 mmol/g

Citrus pectin
Pectin microspheres

Ca2+
47.9

Pb2+
127 mg/g

[170]LM pectin microspheres 18.04 292 mg/g
Pectic acid microspheres 0.9 325 mg/g

Citrus peel Pectin and guar gum beds Ca2+ 20 Pb2+ 104.8 mg/g [171]

Citrus peel Pectin-alginate beds Ca2+ <50
Cu2+ 2.79 µmol/bead

[163]
Cd2+ 3.4 µmol/bead

Phyllospadix
iwatensis

Native Pectin

Nr.

6.91 Pb2+ 2.447 mM/g

[172]Hydrolized Pectin 2.54 Cd2+ 1.643 mM/g
Pb2+ 2.818 mM/g
Cd2+ 2.396 mM/g

Grapefruit peel Biochar-pectin-alginate beads Ca2+ 17.5 Cu2+ 80.6 mg/g [173]

Commercial pectin Pectin Ca2+ <50 MB ** 354.6 mg/g [127]

Orange Waste Pectin/cellulose microfibers beds Ca2+ <50
Fe2+ 98.0 mg/g

[174]Cu2+ 88.5 mg/g
Cd2+ 192.3 mg/g

* MB: methylene blue; ** HHP-AP: high hydrostatic pressure assisted pectinase, Nr.: not reported.

Cataldo et al. [163] prepared pectate and poly(galacturonate) calcium gel beads for
mercury (II) removal. Based on a different pH value study, they found that the best pH
range for Hg2+ removal was between 3 and 3.6. Celus et al. [164] studied the ability of
citrus pectin to adsorb Fe2+, emphasizing two structural properties: the degree of methyl
esterification (DM) and the degree of blockiness (ratio of non-methyl esterified GalA units
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present in blocks to the total amount of GalA units) of citrus pectin. They found that the
DM and DBabs influenced pectin-Fe2+ interactions: the higher the DBabs or lower DM, the
higher the Fe2+ binding capacity.

In another study, pectin micro-gel particles were also used to remove methylene blue
(MB) [165]. The authors found very high absorption ratios (see Table 4), even with time
shorter than 20 min. Additionally, LM pectin was used to clean mineral soils polluted
with Cu2+ [166]. Recently, a sweet potato residue modified by high hydrostatic pressure
(HHP)-assisted pectinase was prepared [167]. This material was used for Pb2+ removal.
They showed that the modified sweet potato pectin exhibited more excellent adsorption
performances for Pb2+ and Cu2+ than natural pectin.

LM Pectin was also mixed with other biopolymers, such as chitosan, to prepare
chitosan-pectin gel beads, which were synthesized via a green method [168] to remove a
collection of heavy metals (Cu2+, Cd2+, Hg2+, and Pb2+). They analyzed different variables
such as the effect of pH, contact time, heavy metals concentration, temperature, and
adsorption mechanism. They found that adding pectin increased the adsorption capacities,
porosity, and stability of the adsorbents. The infrared analysis of the adsorbents indicates
that the interaction between heavy metals and chitosan-pectin gel beads is due to the
complexation with functional groups such as carboxyl, hydroxyl, amine, and amide.

Mata et al. [169] prepared sugar-beet pectin xerogels using residues of the sugar
industry. Their study is in conditions of continuous biosorption and not on stationary
conditions as the above presented. In this case, the adsorbent was used for metal recovery
from effluents in continuous systems. They studied different experimental conditions: feed
flow rate and bed height (amount of biosorbent) and found that the best conditions for
Cu2+ sorption in column reactors were: 3 g of biomass, 25 mg/L metal, 2 mL/min feed
flow rate, and a reverse feeding system.

It is necessary to remark that there was a substantial dispersion of results obtained
in the literature in relation to the adsorption capacity of pectin-based adsorbents. This is
because the adsorption capacity of pectin strongly depended on its chemical characteristics
and relied on both the source on which pectin was obtained and the extraction method.
For instance, an early work by Kartel et al. [175] showed that apple pectin had the highest
affinity for Co2+ ions, whereas, in the case of beet pectin, the affinity was better for Cu2+ and
Cd2+ ions. In contrast, citrus pectin showed a different preference for Ni2+, Zn2+, and Pb2+

ions. These different affinities depend on the structural differences of pectin. For instance,
the galacturonic acid content for apple pomace is between 20 and 44% [176], whereas, for
orange peel, it has been between 66 and 70% on a dried basis. In addition, apple pectin
obtained from the different extraction procedures was highly methylated (from 54.5% to
79.5%) [98], but the methoxylation degree was much lower for orange peels. Thus, the
source of pectin and the way it is extracted determines the structural properties of pectin,
which, in turn, defines the adsorption capacity of heavy metals.

Among the different structural properties of pectin, the more critical parameter related
to heavy metals binding is the methoxylation degree (DM) [91,177]. When DM is small,
more carboxyl groups are available on pectin, which can interact with the metal ion,
increasing the adsorption capacity. In addition, it has been reported that the pattern of
methyl esterification is also crucial for determining adsorption capacities [178].

The influence of DM on the adsorption of metal ions has been studied for the adsorp-
tion of Zn2+ [179], Fe3+ [164], Ca2+, Zn2+, Fe2+, and Mg2+ [180]. The influence on other
structural parameters of pectin, such as the degree of acetylation (DA), chain length, or the
branched domains (for instance, RG I, RG II, etc., see Figure 2a), have been less studied
concerning the adsorption capacity.

The molecular weight of pectin also influenced the adsorption capacity. The lower
the molecular weight, the higher the adsorption capacity [181]. This effect occurs because
small pectin chains can reveal additional active sites that can result in a more significant
electrostatic attraction to capture more heavy metal ions [172]. In addition, a longer pectin
chain can form a firmer gel in which the metal ions cannot penetrate.
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In addition, due to the high degree of heterogeneity regarding chemical composition
and physicochemical properties such as molecular weight, the degree of esterification,
dispersion, and galacturonic acid content of the pectin, predictions of the metal-binding
capacity of different pectin batches are quite tricky.

7. Future Perspectives

Pectin-based adsorbents have very high capacities for the adsorption of heavy metals.
However, the adsorption of heavy metal ions through ion exchange depends on the interac-
tion between the ion used for cross-linking and the heavy metal ion. This removal method
is, therefore, perfect for any pollutant in ion form but not for other types of contaminants,
such as bacteria or pharmaceuticals. This is one of the topics on which basic science needs
to implement improvements to impose pectin-based absorbents on the market.

Related to this above, the egg-box model of pectin gelation by calcium has been widely
studied since it was proposed in 1973. The formation of this egg-box structure is crucial to
the adsorption capacity of pectin because the pollutant capture is produced because of an
interchange between the contaminant and the calcium ion. However, some research gaps
still exist in the formation of the egg-box structure. For instance, it is still debated which
structure is formed by the cross-link with other cations in addition to Ca2+.

On the other hand, as mentioned, Ca2+ allows the formation of the “egg-box” structure
with rod-like cross-linking forming dimers, which can aggregate each other. In the case
of Zn2+, the cross-link is point-like. It results in a final different structure that affects the
final properties of the pectin. However, a network formed by other divalent metals has
not been elucidated yet. In the case of trivalent metals, some of them cannot cross-link
pectin, and it is still unclear why. Concerning trivalent cations that effectively cross-link
LM pectin means, there is still a gap in terms of which mechanism they follow and what
final structure they form between the metal and the biopolymer.

It is still unclear which are the best sources and parameters for pectin extraction and
synthesis because they play an essential role in the final intrinsic properties of the biopoly-
mer, such as ramification, active sites, and steric hindrance that can affect interactions
with the multivalent metal ions. Standardized protocols are needed to obtain suitable
pectin-based water remediation materials consistently.

Another variable that still needs to be developed for pectin-based adsorbents is the
type of pectin’s pore structure, which is formed when cross-linked with different agents.
This variable could be crucial to improve the adsorption capacities of pectin. Thus, opti-
mizing the water diffusion through the hydrogel means that it is easier for active sites and
adsorbates to come into contact, increasing the adsorption capacity of the hydrogel against
heavy metals.

An additional improvement aspect is its potential capacity to remediate pollutants
that are different from heavy metals such as pharmaceuticals. This can be conducted
by modifying the pectin chemical structure and generating new functional groups that
are susceptible to the adsorption of contaminants, adding other fillers or functionalized
nanoparticles, or altering the cross-linking agent. Therefore, more basic-oriented research
is needed to obtain the simple, cheap, and large-scale production of pectin base material to
remove multiple pollutants from aqueous media.

Finally, large-scale industrial applications still need to be practiced to clean pharma-
ceuticals and other micro-pollutants from water using pectin based-adsorbents. Further
investigations are, therefore, needed to fulfill a large-scale extraction from by-products of
the juice industry, for example, to further stimulate the circular economy.

8. Summary

This review shows that pectin-based materials have enormous potential for specific
pharmaceutical, food, industrial, and biomedical applications. In particular, we discussed
the development of membranes to absorb pollutants from liquid water. Pectin has the
advantage that it is considered a widely available and cheap bioresource.
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Considering heavy metal adsorptions, pectin-based materials are exciting for the
development of water remediation adsorbents because adsorbed heavy metals can be
desorbed and re-covered for future uses, changing the pH in a controlled environment.
When heavy metals are desorbed, pectin hydrogels can be used for several adsorption–
desorption cycles. Once the lifecycle of the hydrogel is accomplished, it can be discarded
with no environmental impact, as if it is biodegradable once, pollutants can be desorbed.
However, the adsorption capacities depend on several factors, as discussed here; therefore,
more fundamental research is encouraged in this field.

In particular, we demonstrated that LM pectin is a suitable material to remediate
water from heavy metals and an exceptional candidate for investigation as a multipollutant
remediator following different cross-linking strategies and extraction methods.
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