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A wide class of non-Markovian completely positive master equations can be formulated on the basis of
quantum collisional models. In this phenomenological approach the dynamics of an open quantum system is
modeled through an ensemble of stochastic realizations that consist in the application at random times of a
(collisional) completely positive transformation over the system state. In this paper, we demonstrate that these
kinds of models can be embedded in bipartite Markovian-Lindblad dynamics consisting of the system of interest
and an auxiliary one. In contrast with phenomenological formulations, here the stochastic ensemble dynamics
an the interevent time interval statistics are obtained from a quantum measurement theory after assuming that
the auxiliary system is continuously monitored in time. Models where the system intercollisional dynamics is
non-Markovian [B. Vacchini, Phys. Rev. A 87, 030101(R) (2013)] are also obtained from the present approach.
The formalism is exemplified through bipartite dynamics that lead to non-Markovian system effects such as an
environment-to-system backflow of information.
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I. INTRODUCTION

The description of open quantum systems through local-
in-time Markovian evolutions is well understood from both
mathematical [1] and physical [2] points of view. As is
well known, under a completely positive condition, Lindblad
equations provide the more general evolution structure of the
system density matrix [1,2]. On the other hand, in recent years
an ever-increasing interest has been paid to establishing a non-
Markovian generalization of the open quantum system theory
formulated in terms of nonlocal-in-time evolutions [3]. There
exist diverse formalisms for describing memory effects. One
leading program consists in generalizing Lindblad equations
by replacing the rates of each dissipative channel by a time-
convoluted kernel function. A wide class of both phenomeno-
logical [4–8] and theoretical approaches [9–22] were formu-
lated for building and characterizing master equations of that
kind, which in turn lead to a completely positive solution map.

In the category of phenomenological approaches, quantum
collisional models (QCMs) provided a fundamental tool for
establishing a non-Markovian generalization of Lindblad
equations [4,5]. In this formalism, the evolution of an open
quantum system follows from an average performed over an
ensemble of stochastic realizations of the system state. Each
realization consists in the application, at random times, of a
completely positive transformation. The events can be read as
a “collision” or interaction with the environment. Depending
on the statistics of the collision times and the system interevent
dynamics, different non-Markovian master equations were
established [5–8]. Over that basis, the emergence of non-
Markovian effects such as a system-to-environment backflow
of information [23,24] were also analyzed in the recent
literature [25,26].

The collisional superoperator, the interevent system dynam-
ics, and the collision time statistics are the main ingredients
of the approach. They must be defined, in an arbitrary
way, from the beginning. Therefore, besides its usefulness,
the QCM model does not have an associated microscopic

description, and neither it is completely understood which
kind of underlying mechanism may induce the structure of the
stochastic dynamics. The main goal of this paper is to provide
a rigorous physical framework to answer these issues.

The basic idea consists in embedding the non-Markovian
system evolution in a Markovian bipartite dynamics. It is
defined by the system of interest and an auxiliary (ancilla)
system. We demonstrate that there exist bipartite Markovian
interactions that induce the same system non-Markovian
dynamics. In this way, “microscopic interactions” that lead
to the master equations associated with the QCM are found.
On the other hand, by assuming that the auxiliary system is
continuously monitored in time, over the basis of a
(Markovian) quantum jump approach [27–29], we find that
the realizations of the QCM can be put in one-to-one
correspondence with the realizations of the measurement
apparatus. In this way, the stochastic dynamics of the QCM is
established from a quantum measurement theory. In addition,
this modeling allows to describe the interevent statistics from
the Markovian-Lindblad description.

In Ref. [8] Vacchini introduced a generalized QCM where,
in contrast to previous approaches [5–7], the system interevent
dynamics is defined by a non-Markovian propagator. On the
basis of an underlying tripartite Markovian dynamics, we show
that this generalization can also be described within the present
framework. Even when the stochastic realizations consist of
successive collisional events with a non-Markovian interevent
dynamics [8], they cannot be read as the result of a continuous
measurement action performed over the system of interest.
In fact, in contrast with the results of Ref. [22], here we
demonstrate that QCMs can consistently be recovered when
measuring the auxiliary ancilla system. The non-Markovian
quantum jump approach developed in [22] relies on more
general bipartite interactions. Additionally, the monitoring
action is performed over the system of interest.

It is interesting to note that collisional models were also
proposed as a phenomenological tool for deriving Markovian
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irreversible dynamics [1,30]. Furthermore, from a quantum
information perspective [31], similar approaches were intro-
duced by considering collisions with a string of auxiliary
qubits systems [32–34]. When the system-string interaction is
defined by partial swap and controlled-NOT qubits operations,
specific Markovian master equations describe the system dy-
namics [33]. Generalization of these ideas to non-Markovian
dynamics were considered recently in Refs. [35–37]. The
stretched relation of these results with the present formalism
is also investigated.

The paper is outlined as follows. In Sec. II we present
the Markovian embedding, where the system density matrix
is obtained by using projector techniques [3]. In Sec. III,
from a standard quantum measurement theory, we obtain the
stochastic ensemble dynamic after assuming that the auxiliary
system is subjected to a measurement process. These results
rely on the standard quantum jump approach [27–29] applied
to bipartite dynamics. In Sec. IV, we analyze some examples
that exhibit the main features of the present approach. A
backflow of information from the system to the environment
is explicitly shown. In Sec. V, some generalizations of the
standard collisional approach are provided. The dynamics
presented in Ref. [8] is recovered from a tripartite Markovian
dynamics. The formalisms of Refs. [35–37] are analyzed in
this context. In Sec. VI we present the conclusions.

II. MARKOVIAN EMBEDDING

In this section, it is demonstrated that non-Markovian
QCMs can be obtained by tracing out a bipartite Markovian
dynamics. We deal with the case of stationary renewal
statistics.

A. Phenomenological renewal collisional models

The superoperator Es that defines each collisional event is
written as

Es[ρ] =
∑

α

VαρV †
α ,

∑
α

V †
αVα = Is , (1)

where the set of operators {Vα} act on the system Hilbert space.
Is is the identity matrix. Between collision events the system
dynamics is defined by an arbitrary Lindblad generatorLs (uni-
tary plus dissipative contributions). Thus, given that the last
event happened at time t ′, the interevent evolution follows from
the propagator exp[(t − t ′)Ls]. By assuming that the collision
times define a renewal process, with waiting time distribution
w(t) [5], it is possible to demonstrate that the average system
density matrix ρs

t is governed by the equation [6]:

d

dt
ρs

t = Ls

[
ρs

t

] +
∫ t

0
dt ′k(t − t ′) Cs

{
exp[(t − t ′)Ls]ρ

s
t ′
}
. (2)

The superoperator Cs and the kernel function read

Cs = Es − Is , k(u) = uw(u)

1 − w(u)
, (3)

where u is a Laplace variable [f (u) ≡ ∫ ∞
0 dte−utf (t)].

Notice that here, due to the assumed (stationary) renewal
property, the kernel does not depend separately on the time
variables t and t ′. On the other hand, if [Cs ,Ls] = 0, in an

interaction representation with respect to Ls , Eq. (2) (under
the replacement Ls → 0) recovers the evolution introduced
in Ref. [5].

B. Bipartite Markovian dynamics

We introduce a bipartite arrangement defined by the system
of interest S and an auxiliary (ancilla) system A. Their joint
density matrix is ρsa

t . Therefore their marginal density matrices
follow from a partial trace:

ρs
t = Tra

[
ρsa

t

]
, ρa

t = Trs
[
ρsa

t

]
. (4)

The bipartite dynamics is defined by a Markovian Lindblad
equation,

d

dt
ρsa

t = Lρsa
t = (Ls + La + Csa)ρsa

t , (5)

where the (arbitrary) Lindblad generators Ls and La define the
system and ancilla dynamics, respectively. The contribution
Csa introduces their mutual interaction.

Now we ask about the possibility of finding specific system-
ancilla interactions such that the marginal system density
matrix ρs

t [Eq. (4)] fulfills the evolution (2). With this goal
in mind, the superoperator Csa is defined as

Csa[ρ] = 1

2

∑
α,l

γl([Vαl,ρV
†
αl] + [Vαlρ,V

†
αl]), (6)

where γl are dissipative rates and the operator Vαl is

Vαl = Vα ⊗ |al〉 〈a0| . (7)

The set of operators {Vα} are the same as those in Eq. (1).
The states {|a0〉 , |al〉}, l = 1,2, . . . , dim{Ha} − 1, form a
complete orthogonal normalized basis in the Hilbert space
Ha of the ancilla system. Hence, except for the state |a0〉 ,

the index l runs over all available states. Notice that operators
(7) introduce irreversible ancilla transitions between the state
|a0〉 and any of the remaining possible states |al〉 , that is,
|a0〉 � |al〉 .

1. Ancilla dynamics

With the previous choice of operators [Eq. (7)], it is simple
to write down a closed Markovian evolution for the ancilla
state ρa

t . From Eqs. (5) and (6) we get

d

dt
ρa

t = Laρ
a
t = (La + Ca)ρa

t . (8)

The extra Lindblad term reads

Caρ
a
t = 1

2

∑
l

γl

([
Al,ρ

a
t A

†
l

] + [
Alρ

a
t ,A

†
l

])
, (9)

where Al = |al〉 〈a0| . Straightforwardly, this superoperator
can be rewritten as

Caρ
a
t = − 1

2γ
{|a0〉〈a0|,ρa

t

}
+ + γ 〈a0| ρa

t |a0〉 ρ̄a. (10)

Here, {· · · }+ denotes an anticommutation operation, and the
ancilla state ρ̄a is

ρ̄a =
∑

l

γl

γ
|al〉 〈al| , γ =

∑
l

γl, (11)

which in fact satisfies Tra [ρ̄a] = 1.
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2. Non-Markovian system dynamics

In contrast to Eq. (8), the evolution of the system state ρs
t is

non-Markovian. Its calculation is a little more involved, which
here is obtained by using a projector technique [2,3]. I now
introduce the projectors P and Q:

Pρsa
t = Tra

[
ρsa

t

] ⊗ ρ̄a, P + Q = Isa, (12)

where Isa is the identity matrix in the bipartite system-ancilla
Hilbert space, and ρ̄a is the ancilla state (11). The election of
this projector definition will become clear in the next section.

The bipartite evolution (5) can be projected in relevant and
irrelevant contributions [3]

d

dt
Pρsa

t = PL(P + Q)ρsa
t , (13)

d

dt
Qρsa

t = QL(P + Q)ρsa
t . (14)

On the other hand, in consistency with the projector definition
(12), a separable state defines the bipartite initial condition,

ρsa
0 = ρs

0 ⊗ ρ̄a, (15)

where ρs
0 is an arbitrary system state. With this initial state, it

follows that Qρsa
0 = 0. Therefore, Eq. (14) can be integrated

[3] as Qρsa
t = ∫ t

0 dt ′ exp[QL(t − t ′)]QLPρsa
t ′ , which in turn,

after replacing in Eq. (13), leads to the convoluted evolution

d

dt
Pρsa

t = PLPρsa
t + PL

∫ t

0
dt ′ exp[QL(t − t ′)]QLPρsa

t ′ .

(16)

The superoperator L is defined by Eq. (5). From Eqs. (6) and
(7), it can be rewritten as

L[•] = (Ls + La)[•] − 1
2γ {|a0〉〈a0|,•}+

+ γ Es[〈a0| • |a0〉] ⊗ ρ̄a, (17)

where the collision superoperator Es and the ancilla state ρ̄a

are defined by Eqs. (1) and (11), respectively. Equations (12)
and (17) lead to

PL[•] = {Ls(Tra [•]) + γ Cs(〈a0| • |a0〉)} ⊗ ρ̄a, (18)

where Cs follows from Eq. (3). With these last two expressions
it is possible to evaluate all contributions in Eq. (16). By
using that 〈a0| ρ̄a |a0〉 = 0, we get PLPρsa

t = Ls[ρs
t ] ⊗ ρ̄a,

and QLPρsa
t ′ = ρs

t ′ ⊗ La[ρ̄a], where the ancilla superoperator
La follows from Eq. (8). We have also used that Ca[ρ̄a] = 0
[see Eqs. (10) and (11)]. Similarly, it is possible to demonstrate
that QL(ρs

t ′ ⊗ La[ρ̄a]) = (Ls + La)(ρs
t ′ ⊗ La[ρ̄a]), which by

induction implies the expression

exp[QLt]QLPρsa
t ′ = exp[(Ls + La)t]

(
ρs

t ′ ⊗ La[ρ̄a]
)
. (19)

By introducing the previous results in Eq. (16), using that
Tra[La(•)] = 0, straightforwardly we recover the convoluted
evolution (2) with the kernel function

k(t) = γ 〈a0| exp (tLa)La[ρ̄a] |a0〉 , (20a)

= γ
d

dt
〈a0| exp (tLa)[ρ̄a] |a0〉 . (20b)

This is the main result of this section. It demonstrates that
the non-Markovian evolution (2) also arises as the marginal

dynamics of a Markovian bipartite dynamics. In addition, here
the kernel function is not arbitrary. In fact, it is completely
determined from the ancilla dynamics [see Eqs. (8) and
(20)]. Notice that the solution map ρs

0 → ρs
t associated with

the evolution (2) with the kernel (20) is, by construction,
completely positive.

III. QUANTUM MEASUREMENT THEORY

In the previous section we have found an underlying
bipartite Markovian dynamics that leads to the non-Markovian
system dynamics. Here, over the same basis we find a clear
physical interpretation to the ensemble of realizations [5,6]
associated with the master equation (2).

A. Quantum jumps in the bipartite dynamics

The realizations of the collision model do not rely on
a quantum measurement theory. Nevertheless, this link can
be established by studying the bipartite dynamics when a
measurement process is performed over the ancilla system.
Specifically, we assume that the apparatus is sensitive to all
ancilla transitions |a0〉 � |al〉. As the bipartite dynamics is
Markovian, from a standard quantum jump approach [27,28]
it is possible to associate each realization of the monitoring
process with a realization in the system-ancilla Hilbert space
such that

ρsa
t = ρst

sa(t). (21)

Here, ρst
sa(t) is a stochastic density matrix and the overbar

denotes an ensemble average. The time evolution of ρsa
t is

defined by Eq. (5). As usual, the stochastic dynamics of
ρst

sa(t) consists of disruptive transformations associated to each
recording event, while in the intermediate time intervals it is
smooth and nonunitary [27,28].

Consistently with a quantum measurement theory [2], in
each detection event the bipartite state suffers the (measure-
ment) transformation

ρ → Mρ = J ρ

Trsa[J ρ]
, (22)

where the superoperator J takes into account all possible
transitions |a0〉 � |al〉 that lead to a detection event. Assuming
that La does not induce these kinds of transitions, from Eq. (6)
we write

Mρ =
∑

αl γlVαlρV
†
αl

{Trsa[
∑

αl γlV
†
αlVαlρ]}

, (23a)

= Es 〈a0| ρ |a0〉
Trs[〈a0| ρ |a0〉] ⊗ ρ̄a. (23b)

This last expression follows from the definition of the operators
Vαl [Eq. (7)]. On the other hand, the conditional evolution of
ρst

sa(t) between detection events is given by the normalized
propagator [27,28]

Tc(t)ρ = T (t)ρ

Trsa[T (t)ρ]
, (24)

where the un-normalized propagator T (t) is

T (t)ρ = exp[tD]ρ. (25)
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Here, the exponential superoperator is defined by the generator
D, which is the complement ofJ , that is,L = D + J . Hence,
from Eq. (6) it reads

Dρ = (Ls + La)ρ − γ

2
{|a0〉 〈a0| ,ρ}+. (26)

The measurement transformation M and the propagator
Tc(t) completely define the structure of the realizations of
ρst

sa(t). It only remains to define an algorithm that allows
the random detection times to be obtained. Here they are
characterized through a survival probability function P0(t |ρ)
[27]. Given that at time τ the bipartite system state is ρ, the
probability of not having any detection up to time t is [29]

P0(t − τ |ρ) = Trsa[T (t − τ )ρ] = Trsa[etDρ]. (27)

With this function the realizations can be obtained as follows:
Given the initial state ρsa

0 , the time t1 of the first detection event
follows by solving the equation P0(t1 − 0|ρsa

0 ) = r, where r

is a random number in the interval (0,1). The dynamic of
ρst

sa(t) in the interval (0,t1) is defined by Eq. (24). At t = t1
the disruptive transformation [Eq. (23)] ρst

s (t1) → Mρst
sa(t1) is

applied. The subsequent dynamics is the same. In fact, after
the nth measurement event at time tn, ρ

st
sa(tn) → Mρst

sa(tn), the
time tn+1 for the next detection event follows from P0(tn+1 −
tn|Mρst

sa(tn)) = r, where again r is a random number in the
interval (0,1). The dynamic in the interval (tn,tn+1) is defined
by the conditional propagator (24). The realizations generated
with this algorithm fulfill Eq. (21) (see, for example, Appendix
A of Ref. [22]).

B. Stochastic realizations

The standard quantum jump approach allows the realiza-
tions of ρst

sa(t) to be defined. Straightforwardly from this it
is possible to obtain the partial stochastic dynamics of each
system,

ρst
s (t) = Tra

[
ρst

sa(t)
]
, ρst

a (t) = Trs
[
ρst

sa(t)
]
. (28)

Furthermore, from Eq. (21), the relations ρs
t = ρst

s (t) and
ρa

t = ρst
a (t) are also valid. Given the separable initial condition

(15), from Eqs. (23) and (26) it is simple to realize that ρst
sa(t)

becomes separable at all times:

ρst
sa(t) = ρst

s (t) ⊗ ρst
a (t). (29)

In fact, given the absence of initial correlations, the conditional
dynamic (24) remains separable [see Eq. (26)]. Furthermore,
in each detection event, given a separable input, the postmea-
surement state also becomes separable. Nevertheless, notice
that ρst

s (t) and ρst
a (t) are statistically correlated. Below, we

describe their dynamics.

1. Ancilla realizations

After taking a partial trace over Eq. (23), from Eq. (29) we
deduce that in each measurement event the ancilla state suffers
the transformation

ρst
a (t) → Trs

[
Mρst

sa(t)
] = Jaρ

st
a (t)

Tra
[
Jaρst

a (t)
] = ρ̄a, (30)

where the ancilla superoperator Ja is

Ja[ρ] = γ 〈a0| ρ |a0〉 ρ̄a. (31)

Hence, the collapsed ancilla state is always the same [Eq. (11)].
Similarly, from Eqs. (25) and (26), we deduce that between
detection events the conditional ancilla dynamics is defined
by the (un-normalized) superoperator Ta(t)ρ = exp[tDa]ρ,

where

Daρ = Laρ − γ

2
{|a0〉 〈a0| ,ρ}+. (32)

For separable initial conditions, this propagator also applies at
the initial time. This simplification explains the chosen initial
state (15) and the projectors (12).

From Eqs. (26) and (27), we notice that the survival
probability can be rewritten as [P0(t − τ |ρ) → P0(t − τ )]:

P0(t − τ ) = Tra {exp[Da(t − τ )]ρ̄a} . (33)

In fact, the ancilla state is always the same after a detection
event. Consequently, the measurement statistics correspond
to a renewal process, that is, the interevent probability
distribution is always the same. On the other hand, it is
simple to realize that the measurement transformation (30),
the conditional ancilla dynamics defined by Eq. (32), and
the survival probability (33) also arise by formulating the
quantum jump approach over the basis of Eq. (8). In fact,
La = Da + Ja.

2. System realizations

Given the separability property (29), from Eq. (23) it
follows that in each detection event (ancilla measurement
apparatus) the system suffers the transformation

ρst
s (t) → Tra

[
Mρst

sa(t)
] = Es

[
ρst

s (t)
]
, (34)

that is, the transformation associated to a collision event. On
the other hand, given that a measurement event happened at
time τ, from Eqs. (24) and (26) we deduce that the posterior
system conditional evolution is given by

ρst
s (t) = Tra

[
Tc(t − τ )ρst

sa(τ )
] = exp[Ls(t − τ )]ρst

s (τ ). (35)

This interevent evolution also corresponds to the dynamics
of the QCM. Therefore, by assuming that the measurement
process is performed over the ancilla system, the realizations
of the system of interest have the same structure than in the
phenomenological QCM. This is the main result of this section.
Notice that each system collisional event happens when the
measurement apparatus detects an ancilla transition.

The renewal property of the realizations was proven
previously. In fact, from the survival probability (33) we define
the waiting time distribution w(t) = −(d/dt)P0(t), which
delivers

w(t) = −Tra{Da exp[tDa]ρ̄a}, (36a)

= γ 〈a0| exp(tDa)[ρ̄a] |a0〉 . (36b)

In deriving this expression we used Eq. (32) and that
Tra[Laρ] = 0. Hence, in the present modeling the quantum
jump approach allows the waiting time distribution to be
written in terms of the ancilla dynamics. Indeed, from
Eqs. (34) and (35), we deduce that the ancilla dynamics mainly
determine the statistics of the system realizations.
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C. Consistence between master equation and ensemble of
realizations

For showing the consistency of the developed results, it
remains to demonstrate that the waiting time distribution (36),
which determines the realizations statistics, and the kernel
(20), which determines the density matrix evolution, fulfill in
the Laplace domain the relation (3).

The Laplace transform of Eq. (36) reads

w(u) = γ 〈a0| 1

u − Da

[ρ̄a] |a0〉 , (37)

while from Eq. (20) we obtain

k(u)

u
= γ 〈a0| 1

u − La

[ρ̄a] |a0〉 . (38)

In deriving this expression we used that 〈a0| ρ̄a |a0〉 = 0. On
the other hand, using that La = Da + Ja , it follows that

1

u − La

=
∞∑

n=0

[
1

u − Da

Ja

]n 1

u − Da

. (39)

By introducing this expression in Eq. (38) and by using the
definition (31) we get

k(u)

u
=

∞∑
n=1

w(u) = w(u)

1 − w(u)
, (40)

which recovers the relation (3) associated to the phenomeno-
logical approach.

IV. EXAMPLE

In this section, we study the dynamics of a two-level
system, which in turn may be read, for example, as a qubit
unit. In quantum information arrangements it is expected that
decoherence and dissipation are “mediated” by interactions
with extra quantum subunits. Therefore, as ancilla we consider
another system whose dynamics is able to develop quantum
coherent effects. For simplicity it is also taken as a two-level
system.

In the approach developed in the previous sections, the col-
lision statistics is completely defined by the ancilla dynamics.
Hence, in the next example, its structure depends on underlying
quantum coherent effects. We remark that this feature is foreign
in phenomenological formulations, where the waiting time
distribution is usually defined by a linear combination of
decaying exponential functions [5–8]. We demonstrate that
these kinds of distributions arise when the ancilla dynamics is
completely incoherent. This property motivates the dynamics
studied below. Both dephasing and dissipative channels are
formulated.

A. Dephasing channel

As system we consider a two-level system whose Hamilto-
nian reads Hs = h̄ωsσz/2, where ωs is the transition frequency
between its eigenstates, denoted as |±〉 , while σz is the z-Pauli
matrix. The ancilla system is also a two-level system. In an
interaction representation with respect to Hs , the evolution of

the bipartite state ρsa
t reads

dρsa
t

dt
= −i�

2

[
Is ⊗ σx,ρ

sa
t

] + γ

2

([
V,ρsa

t V †] + [
Vρsa

t ,V †]).
(41)

The first unitary contribution defines the ancilla Hamiltonian.
It is given by the x-Pauli matrix σx , written in the basis of σz

eigenstates: |±〉. The Lindblad contribution is written in terms
of the operator [see Eq. (7)]

V = σz ⊗ σ. (42)

Here, σ = |−〉〈+| is the lowering operator acting on the ancilla
states |±〉. Hence, V leads to a dissipative coupling between
both systems. The initial bipartite state [see Eq. (15)] is taken
as

ρsa
0 = ρs

0 ⊗ |−〉〈−|, (43)

where ρs
0 is an arbitrary system state. The ancilla begins in its

lower state.
Performing the partial trace ρa

t = Trs[ρsa
t ], the bipartite

evolution (41) leads to

dρa
t

dt
= −i�

2

[
σx,ρ

a
t

] + γ

2

([
σ,ρa

t σ †] + [
σρa

t ,σ †]). (44)

This marginal ancilla dynamics corresponds to a quantum
fluorescent system [2,28], where γ defines its natural decay
rate while � is the Rabi frequency. On the other hand, the
interaction defined by Eq. (42) leads to a decoherence system
channel [33]. Hence, only the system coherences are affected
by the undesirable interaction.

1. System stochastic realizations

The measurement apparatus records the ancilla transitions
|+〉 � |−〉 . Therefore, from Eqs. (23) and (42) we deduce that
in each measurement event the ancilla collapses to its ground
state ρ̄a = |−〉 〈−| , while the system suffers the completely
positive transformation

Es[ρ] = σzρσz. (45)

As is well known, this superoperator leads to a change of
sign in the system coherences [5]. On the other hand, during
the successive measurement events the system dynamics is
frozen, that is, it does not evolve. This conclusion follows
from Eqs. (35) and (41).

The statistics of the time interval between successive
detection events define a renewal process. Its probability
distribution is given by Eq. (36). Under the associations |a0〉 →
|+〉 , andDa[ρ] = −(i�/2)[σx,ρ] − (1/2)γ {σ †σ,ρ}+, we get
the waiting time distribution

w(t) = 4γ�2e−γ t/2

{
sinh[(t/4)

√
γ 2 − 4�2]√

γ 2 − 4�2

}2

. (46)

Notice that Eqs. (45) and (46) completely define the system
realizations.

In Fig. 1 we show a realization of the system coherence
〈+| ρst

s (t) |−〉 . In order to show the consistence of the
developed approach, it was obtained from the realizations of
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FIG. 1. Realizations of matrix elements of the stochastic density
matrix ρsa

st (t) and ρs
st(t): (a) 〈++| ρst

sa(t) |−+〉, (b) 〈+−| ρst
sa(t) |−−〉,

and (c) 〈+| ρst
s (t) |−〉 . The characteristic parameters of the bipartite

evolution (41) satisfy �/γ = 6.

the underlying bipartite dynamics,

〈+|ρst
s (t)|−〉 = 〈++| ρst

sa(t)|−+〉 + 〈+−|ρst
sa(t)|−−〉,

(47)

that is, from the partial trace of ρst
sa(t). The states {|ij 〉},

i,j = +, − , provide a complete basis of the bipartite Hilbert
space. The realizations of ρst

sa(t) follow from a “standard
Markovian quantum jump approach” formulated on the basis
of Eq. (41). We have taken the initial condition ρst

sa(0) =
|x+〉 〈x+| ⊗ |−〉 〈−| , where |x+〉 = (1/

√
2)(|+〉 + |−〉) is an

eigenstate of σx. In Fig. 1(a), we see that in each recording
event the bipartite coherence 〈++| ρst

sa(t) |−+〉 collapses to
zero:

〈++|Mρst
sa(t) |−+〉 = 0. (48)

This result follows from the action of the operator (42),
which induces the ancilla transitions |+〉 � |−〉 . On the other
hand, the bipartite coherence 〈+−| ρst

sa(t) |−−〉 suffers the
disruptive changes 〈+−| ρst

sa(t) |−−〉 → −〈+−| ρst
sa(0) |−−〉

[Fig. 1(b)]. By calculating the measurement transformation
(23), from Eq. (42) we get

〈+−|Mρst
sa |−−〉 = − 〈++| ρst

sa |−+〉
〈++| ρst

sa |++〉 + 〈−+| ρst
sa |−+〉 .

By an explicit calculation of the conditional evolution defined
by the operator D [Eq. (26)], it follows that the quotient of
the previous bipartite matrix elements is an invariant of the

conditional evolution, delivering the observed property

〈+−|Mρst
sa(t) |−−〉 = − 〈+| ρst

s (0) |−〉 , (49)

where we have used that 〈+−| ρst
sa(0) |−−〉 = 〈+| ρst

s (0) |−〉
[Eq. (43)]. Therefore, in each measurement event the coher-
ence 〈+−| ρst

sa(t) |−−〉 , besides a change of sign, recovers its
initial value.

In Fig. 1(c) we plot the realization of 〈+| ρst
s (t) |−〉

obtained from Eq. (47), that is, by adding the two bipartite
coherences. As both coherences 〈++|Mρst

sa(t) |−+〉 and
〈+−|Mρst

sa(t) |−−〉 always oscillate in a complementary way,
during the interevent time intervals 〈+| ρst

s (t) |−〉 is constant,
while in the measurement events it changes sign. In this
way, we explicitly show that the underlying quantum jump
approach led to the realizations of the phenomenological
collision model. In fact, the action of the superoperator (45)
only introduces a change of sign in the system coherences. In a
similar way, it is possible to show that the system populations
are not affected by the dynamics, that is, 〈±| ρst

s (t) |±〉 =
〈±| ρst

s (0) |±〉 .

2. Density matrix evolution

In Fig. 2 we show the average coherence behavior obtained
from the ensemble of realizations shown in Fig. 1 (noisy
curve). Furthermore, we present the exact solution of the
coherence that follows from the master equation (2) (black full
line). Taking into account the underlying Lindblad equation
(41), it can be written as

d

dt
ρs

t =
∫ t

0
dt ′k(t − t ′)Cs

[
ρs

t ′
]
. (50)

The superoperator Cs = (Es − Is), from Eq. (45), reads

Cs[•] = 1
2 ([σz, • σz] + [σz • ,σz]). (51)

FIG. 2. System coherence. Full line, exact solution Eq. (53).
Dotted (noisy) line, average coherence 〈+| ρst

s (t) |−〉 obtained by
averaging 103 realizations. Gray line, relative entropy E(ρs

t ||ρs
∞),

Eq. (55). The parameters are the same as in Fig. 1, �/γ = 6.
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On the other hand, the kernel is determined by the general
expression (20). From Eq. (44) it follows that

k(t) = 2γ�2e−(3/4)γ t

{
sinh[(t/4)

√
γ 2 − 16�2]√

γ 2 − 16�2

}
. (52)

This kernel and the waiting time distribution (46) fulfill the
Laplace relation (3).

Consistently with the system stochastic realizations,
Eq. (50) does not modify the populations, 〈±| ρs

t |±〉 =
〈±| ρs

0 |±〉 . On the other hand, working in a Laplace domain,
the coherences c±

t ≡ 〈±| ρs
t |∓〉 read

c±
t = c±

0

{
e−γ t 2�2

γ 2 + 2�2
+ e−γ t/4

[
γ 2

γ 2 + 2�2
cosh(ϕt)

+ γ (γ 2 + 8�2)

4(γ 2 + 2�2)

sinh(ϕt)

ϕ

]}
, (53)

where for shortening the expression we introduced the “fre-
quency,”

ϕ =
√

(γ /4)2 − �2. (54)

The same expression follows from the alternative solution
c±
t = 〈±| ρs

t |∓〉 = 〈±±| ρsa
t |∓±〉 + 〈±∓| ρsa

t |∓∓〉 , where
ρsa

t is the solution of the bipartite evolution (41). Notice that
in Eq. (53), besides a monotonic decaying contribution, the
two remaining terms may develop an oscillatory behavior. As
shown in Fig. 2, Eq. (53) correctly fits the average ensemble
behavior.

3. Environment-to-system backflow of information

The analysis of Refs. [25,26] demonstrate that QCMs
may lead to non-Markovian effects such as an environment-
to-system backflow of information [23]. This property or
phenomenon can be defined on the basis of “any measure”
that in the Markovian case presents a monotonic time decay
behavior [2]. One well-known example is the relative entropy
between two states [24,25]. As we are not interested in
quantifying the non-Markovian effects, for simplicity here we
consider the relative entropy with respect to the stationary
state,

E
(
ρs

t

∣∣∣∣ρs
∞

) = Trs
[
ρs

t

(
ln2 ρs

t − ln2 ρ∞
s

)]
, (55)

where ρ∞
s = limt→∞ ρs

t . Hence, the backflow of information
arises if there exist times t2 > t1 such that E(ρs

t2
||ρs

∞) >

E(ρs
t1
||ρs

∞). Below we show that this feature arises in the
dynamics described previously.

In Fig. 2 we also plotted E(ρs
t ||ρs

∞) (gray full line)
where ρs

t is the solution of Eq. (50). The stationary state
is the diagonal matrix ρs

∞ = diag{〈+| ρs
0 |+〉 , 〈−| ρs

0 |−〉}.
Clearly the time behavior is nonmonotonous, indicating a
backflow of information. Furthermore, the oscillatory behavior
of E(ρs

t ||ρs
∞) is correlated with the oscillatory behavior of the

coherences, which arise whenever ϕ is a complex quantity,
that is, from Eq. (54), � > (γ /4).

4. Incoherent ancilla dynamics

For the dynamics (41), the ancilla dynamics develop
quantum coherent effects [Eq. (44)], which in turn determine
the waiting time distribution [Eq. (46)]. Here, we introduce

an alternative ancilla dynamics which only induces incoherent
transitions. Instead of Eq. (41), for the same system S, we take
the bipartite evolution as

dρsa
t

dt
= γ

2

([
V,ρsa

t V †] + [
Vρsa

t ,V †])
+ β

2

([
A,ρsa

t A†] + [
Aρsa

t ,A†]), (56)

with initial condition ρsa
0 = ρs

0 ⊗ |−〉〈−|, while

V = σz ⊗ σ, A = Is ⊗ σ †. (57)

Hence, the ancilla dynamics [Eq. (8)] only lead to the

incoherent (classical) transitions |+〉 γ� |−〉 and |−〉 β� |+〉 .

The corresponding statistical behavior is defined by a (two-
level) classical rate master equation.

We assume that the recording apparatus is only sensitive
to the ancilla transition |+〉 � |−〉 , that is, the transition
induced by the operator V. In this situation, from Eqs. (23)
and (57), we deduce that the collisional superoperator again
reads Es[ρ] = σzρσz [Eq. (45)]. Thus, the system evolution
is given by Eq. (50). Nevertheless, the kernel follows from
Eq. (3), where the waiting time distribution can be calculated
from Eq. (36). We get

w(u) =
(

γ

u + γ

)(
β

u + β

)
. (58)

In the time domain w(t) is the convolution of two exponential
functions. The system coherences become c±

u = c±
0 (u + γ +

β)/[2u2 + 2u(γ + β) + γβ], which can also be written as
a lineal combination of decaying exponential functions.
Independently of the initial conditions, in this case the
dynamics does not present an environment-to-system backflow
of information, suggesting that underlying coherent effects
may be necessary for the development of this phenomenon.

Taking an ancilla system with a higher number of states, all
of them coupled via incoherent transitions, the waiting time
distribution becomes defined by more complex expressions
which in the time domain are linear combinations of decaying
exponential functions. For example, taking a unidirectional
coupling |a0〉 � |a1〉 � · · · |am〉 � |a0〉 , all of them with rate
γ, the waiting time distribution becomes w(u) = [γ /(u +
γ )]m+1. These kinds of distributions, which rely on incoherent
ancilla dynamics, were considered, for example, in Ref. [8].

B. Dissipative channels

In the previous example, Eqs. (50) and (51) define a
non-Markovian decoherence channel. One may also consider
interactions that lead to dissipative channels. For example,
by maintaining the ancilla dynamics (44), a depolarizing [31]
non-Markovian channel arises by introducing two bipartite
Lindblad terms [α = x,y in Eq. (6)] defined by the operators
Vx = √

pσx ⊗ σ, and Vy = √
1 − pσy ⊗ σ, where the param-

eter p satisfies 0 < p < 1. With the same collision statistics
[Eq. (46)], in this case the stationary system state becomes
ρs

∞ = (1/2) Is . A thermal stationary state can be obtained by
considering a generalized amplitude damping superoperator
[31].
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V. GENERALIZED COLLISIONAL MODELS

In the previous sections we associated the basic master
equation of the collision model [Eq. (2)] with an underlying
Markovian microscopic dynamics [Eq. (5)]. Furthermore, the
realizations of the model, given that the ancilla system is
continuously monitored in time, were established on the basis
of the quantum jump approach. In this section, we show that
these results also apply in different possible generalizations of
the basic approach.

A. Nonstationary renewal collision dynamics

The basic ingredients of the present approach remain valid
when the evolution of the ancilla system, in the bipartite Lind-
blad dynamics (5), depends explicitly on time, La → La(t).
Under this situation, the main change is the measurement
statistics. While it remains a renewal process, the waiting time
distribution explicitly depends on the observation time. This
case can be worked out with the elements introduced in the
previous sections.

B. Nonrenewal collision statistics

With the same system realizations, the formalism may
become nonrenewal when the measurement process is non-
renewal. Basically this situation occurs whenever the ancilla
resetting state is not always the same. This case arises, for
example, when the operators (7) are generalized as

Vαlk = Vα ⊗ |al〉
〈
ak

0

∣∣ . (59)

Hence, instead of a unique state |a0〉 , here many of them play
the same role. Assuming that the measurement apparatus is
sensitive to “all transitions”

∣∣ak
0

〉
� |al〉 , the stochastic ancilla

becomes nonrenewal. This case may correspond, for example,
to optical cascade systems [29].

While the structure of the system realizations remains the
same, the statistics of the interevent time intervals can only be
determined by knowing the ancilla state at all times. Therefore,
for generating the system realizations, unavoidably one must
also generate the ancilla realizations.

C. Non-Markovian intercollision dynamics

Maintaining the renewal property, in Ref. [8] Vacchini intro-
duced an interesting generalization that consists in assuming
that the interevent dynamics is non-Markovian. This situation
naturally arises when considering a system interacting succes-
sively with a string of qubits systems [35–37].

Instead of the Markovian evolution defined by Eq. (35), it
is taken as

ρst
s (t) = G(t − τ )

[
ρst

s (τ )
]
, (60)

where G(t) is an arbitrary (trace preserving), completely
positive propagator that cannot be written as a semigroup,
G(t) �= exp[tLs] [8]. Here, we demonstrate that this case can
also be covered with the present formalism.

The generalized QCM can be embedded in a tripartite
underlying Lindblad equation. Hence, besides the system of
interest S, the ancilla system A, we consider an extra auxiliary
system B. The evolution of their joint density matrix ρsab

t is

written as

d

dt
ρsab

t = Lρsab
t = (Lsb + La + Csab)ρsab

t . (61)

The first superoperator reads

Lsb = Ls + Lb + Csb. (62)

Here, Ls and Lb are arbitrary Lindblad equations for the
systems S and B, respectively. Csb is an extra Lindblad
contribution that introduces an arbitrary interaction (unitary
and dissipative) between them. As before, La defines the
dynamics of the ancilla system A. The contribution Csab

introduces a dissipative interaction between the three systems,

Csab[ρ] = 1

2

∑
α,l,m

γl([Vαlm,ρV
†
αlm] + [Vαlmρ,V

†
αlm]), (63)

where γl are the dissipative rates and the operators are

Vαlm = Vα ⊗ |al〉 〈a0| ⊗ |b0〉 〈bm| . (64)

The system operators Vα and the states |al〉 are the same as in
Eq. (7), where the index l = 1,2, . . . , dim{Ha} − 1 does not
include the single state |a0〉 . On the other hand, the states |bm〉 ,

m = 0,1, . . . dimHb − 1 form a complete orthonormal basis
in the Hilbert space Hb of B. Notice that here the state |b0〉
must be included in the summation index m. For simplicity,
the tripartite initial state is chosen to be separable,

ρsab
0 = ρs

0 ⊗ ρ̄a ⊗ |b0〉 〈b0| , (65)

where ρs
0 is an arbitrary system state and ρ̄a follow from

Eq. (11).
We determine the system realizations over the basis of

a standard quantum jump approach formulated on the basis
of Eq. (61). As before, the measurement apparatus is only
sensitive to transitions of the auxiliary system A. Therefore the
transformation associated with each detection event, instead of
Eq. (23), here reads

Mρ = Es[
∑

m 〈a0bm| ρ |a0bm〉]
Trs[

∑
m 〈a0bm| ρ |a0bm〉] ⊗ ρ̄a ⊗ |b0〉 〈b0| . (66)

The collisional superoperator Es is given by Eq. (1). On the
other hand, the (tripartite) conditional dynamics can be written
as in Eqs. (24) and (25). Nevertheless, here the superoperator
D reads

Dρ = (Lsb + La)ρ − γ

2
{|a0〉 〈a0| ,ρ}+. (67)

In deriving this result we used that
∑

α V †
αVα = Is , and∑dimHb−1

b=0 |bm〉 〈bm| = Ib. With the previous definition of D,

the expression for the survival probability [Eq. (27)] remains
almost the same, P0(t − τ |ρ) = Trsab[etDρ].

Over the basis of the previous two equations and the initial
condition (65), it is simple to conclude that the tripartite
stochastic state ρst

sab(t) [ρst
sab(t) = ρsab

t ] can be written at all
times as

ρst
sab(t) = ρst

sb(t) ⊗ ρst
a (t). (68)

The dynamics for the ancilla state ρst
a (t) remains the same as

before, that is, Eqs. (30)–(32) are not modified by the introduc-
tion of system B. Consequently, the measurement statistics,
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defined by the survival probability (33), or equivalently, the
waiting time distribution (36), are also the same.

The induced stochastic system dynamics follows from
ρst

s (t) = Trab[ρst
sab(t)]. Hence, in each recording event the state

suffers the disruptive transformation

ρst
s (t) → Trab

[
Mρst

sab(t)
] = Es

[
ρst

s (t)
]
. (69)

This expression follows straightforwardly from Eq. (66), after
using Eq. (68) and noting that

∑
m 〈bm| • |bm〉 = Trb[•]. On

the other hand, the intercollision dynamic [Eq. (35)] here
is ρst

s (t) = Trab[Tc(t − τ )ρst
sab(τ )]. Given that Tc(t) follows

from Eqs. (24) and (25), the operator D [Eq. (67)] and the
separability property defined by Eqs. (66) and (68) lead to

ρst
s (t) = Trb{exp[(t − τ )Lsb] |b0〉 〈b0|}ρst

s (τ ). (70)

This conditional dynamics recovers the phenomenological
proposal Eq. (60). Hence, the non-Markovian propagator G(t)
reads

G(t) = Trb[exp (tLsb) |b0〉 〈b0|]. (71)

This is the main result of this section. It implies that the
generalized phenomenological approach of Ref. [8] can be
described over the basis of a tripartite Markovian evolution. If
Lsb = Ls + Lb, that is, when the system S and the ancilla
B do not interact, the formalism of the previous section,
G(t) = exp(tLs), is recovered. Hence, given the structure of
the operators (64), it becomes clear that the main role of system
B is to modify the intercollision system dynamics.

The realizations defined by the measurement transforma-
tion (66) and the interevent dynamics (71) are similar to those
found in Ref. [22], where a non-Markovian generalization
of the quantum jump approach was defined over a similar
basis by assuming that the system of interest is submitted to
a measurement process. Nevertheless, the present treatment
explicitly demonstrates that collisional dynamics can only be
linked with a quantum measurement theory if the monitoring
action is performed over the auxiliary ancilla system.

The nonlocal character of the propagator G(t) can be shown
by writing Eq. (71) in the Laplace domain as G(u) = Trb[(u −
Lsb)−1|b0〉〈b0|]. This expression can be rewritten as G(u) =
{Tra[(u − Lsb)−1(u − Lsb)|b0〉〈b0|]}−1{[G(u)]−1}−1. Using in
the curly brackets that X−1Y−1 = (YX)−1, where X and Y are
arbitrary matrices, it follows that G(u) = {[G(u)]−1(uTra((u −
Lsb)−1|b0〉〈b0|] − Tra[(u − Lsb)−1Lsb|b0〉〈b0|)]}−1, which in
turn leads to

G(u) = 1

u + K(u)
, (72)

where the system superoperator K(u) is

K(u)=
{

Trb

[
1

u − Lsb

|b0〉〈b0|
]}−1

Trb

[
1

u − Lsb

Lsb|b0〉〈b0|
]
.

Hence, in the time domain we get

d

dt
G(t) =

∫ t

0
dt ′K(t − t ′)G(t ′), (73)

where K(t − t ′) is defined by its Laplace transform K(u).
The evolution of ρs

t can be obtained from Eq. (61) by
using projector techniques. A simpler way is to calculate the
average behavior of the ensemble of stochastic realizations

(see Ref. [8]). On the other hand, the QCM introduced by
Ciccarello, Palma, and Giovannetti in Ref. [36], which relies
on interaction with a qubits string, can also be recovered from
the present approach. In fact, as demonstrated in Ref. [8], it
arises by taking Es → Is . Hence, each collision only resets the
evolution induced by G(t). The results presented by Rybar
et al. in Ref. [35] rely on a similar approach. All non-
Markovian effects arise because the ancilla string start in
a correlated state [37]. Nevertheless, in our approach that
formalism seems to be equivalent to a system-ancilla dynamics
coupled via a unitary evolution, which in turn leads to a
randomlike superposition of Hamiltonian system propagators.
Therefore, extra analyses are necessary for establishing a full
mapping between both approaches.

In what follows we analyze how different underlying
dynamics lead to dephasing and dissipative intercollision
dynamics [8,36].

1. Dephasing intercollision dynamics

In this example, both the system and the ancillas are two-
level systems. Their tripartite Markovian evolution is given by
Eq. (61). In an interaction representation with respect to the
system Hamiltonian, we write

Lsb[ρ] = −i

h̄
[Hsb,ρ] = −iλ

2
[σz ⊗ Ia ⊗ σx,ρ], (74)

where σj , j = x,y,z, are the Pauli matrices defined in each
Hilbert space. Hence, the system of interest S and the auxiliary
system B are coupled via a Hamiltonian interaction. The
isolated dynamics of ancilla A is unitary,

La[ρ] = −i

h̄
[Ha,ρ] = −i�

2
[Is ⊗ σx ⊗ Ib,ρ]. (75)

The dissipative tripartite interaction [Eq. (63)] reads

Csab[ρ] = γ

2

∑
m=0,1

([Vm,ρV †
m] + [Vmρ,V †

m]). (76)

The index m = 0,1, runs over the basis {|b0〉 , |b1〉} of system
B. The two operators Vm are

Vm = σx ⊗ σ ⊗ |b0〉 〈bm| , (77)

where, as before, σ is the lowering operator, here defined in
the Hilbert space of system A. Consistently with Eq. (65), the
initial tripartite state is

ρsab
0 = ρs

0 ⊗ |−〉 〈−| ⊗ |b0〉 〈b0| . (78)

From the previous definitions, Eqs. (66) and (69) lead to
the collision system superoperator

Es[ρ] = σxρσx. (79)

Notice that σx arises from the first (system) operator contribu-
tion in Eq. (77). On the other hand, the dynamics of system A

again is defined by Eq. (44). Consequently, the waiting time
distribution is given by Eq. (46). The intercollision dynamic
follows from Eqs. (71) and (74). By an explicit calculation,
we get the completely positive (non-Markovian) dephasing
superoperator

G(t)ρ = 1
2 [1 + d(t)]ρ + 1

2 [1 − d(t)]σzρσz, (80)
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which in turn can be rewritten as

G(t)ρ =
(

〈+| ρ |+〉 d(t) 〈+| ρ |−〉
d(t) 〈−| ρ |+〉 〈−| ρ |−〉

)
. (81)

The function d(t) defines the system coherence behavior. It
reads d(t) = cos(λt).

In the first example worked out in Ref. [8], the superoperator
is given by Eq. (79), while the propagator G(t) is given
by Eq. (80) (see Supplemental Material of [8]). Hence, our
results provide a clear microscopic description for that phe-
nomenological model. The waiting time distribution, instead
of Eq. (46), is a classical one like Eq. (58). That case can be
recovered, replacing the ancilla dynamics (75) by

La[ρ] = β

2

([
A,ρsa

t A†] + [
Aρsa

t ,A†]) (82)

with the operator

A = Is ⊗ σ † ⊗ Ib. (83)

As explained previously, diverse “underlying classical” wait-
ing time distributions can be obtained by adding extra ancilla
states, all of then coupled by incoherent transitions.

2. Dissipative intercollision dynamics

Instead of the dephasing evolution (80), the intercollision
dynamics may also lead to dissipative effects. This property is
defined by the superoperator Lsb [Eq. (74) in the previous
example]. For example, Lsb may correspond to a Jaynes-
Cumming interaction, which couples the system to a set of
bosonic field modes initially in the vacuum state [2,24]. This
case, which has been studied in Refs. [8,36], can be analyzed
over the basis developed previously.

VI. SUMMARY AND CONCLUSIONS

Phenomenological QCMs provided an important theo-
retical tool for establishing and describing non-Markovian
completely positive dynamics. In this paper we have developed
a solid physics basis for understanding this approach. It relies
on a Markovian embedding of the non-Markovian system
density matrix evolution, which in turn allows derivation of the
phenomenological trajectories from a quantum measurement
theory.

First, we focused our analysis on the leading case in which
the collision statistics is defined by a renewal process, while
the interevent dynamics is defined by a Markovian quantum
semigroup. By using projector techniques we demonstrated
that the non-Markovian density matrix evolution [Eq. (2)]
can be obtained, without involving any approximation, from a
bipartite Markovian dynamics, where the system of interest in-
teracts with an auxiliary ancilla system [Eq. (5)]. The memory
kernel that determines the system evolution becomes defined
by the ancilla dynamics [Eq. (20)]. The proposed Markovian

embedding allows association of a clear microscopic dynamics
to the QCM. In fact, Lindblad equations are linked with
well-defined microscopic dynamics.

In a second step, we assumed that the ancilla system
is continuously monitored in time. Hence, over the basis
of the quantum jump approach formulated for the bipartite
dynamics, we find that the realizations of the QCM are
recovered from the marginal conditional stochastic system
dynamics [Eq. (21)]. In fact, each recording event of the ancilla
measurement apparatus leads to the collisional transformations
of the phenomenological approach [Eq. (34)]. The intercolli-
sion system dynamics follows from the conditional bipartite
dynamics between detection events [Eq. (35)]. The waiting
time distribution of the interevent time interval also becomes
defined by the ancilla dynamics [Eq. (36)]. In this way, the
phenomenological realizations of the collisional approach
were derived from a quantum measurement theory.

The Markovian embedding and the link with the quantum
jump approach were explicitly shown through an example
where the dynamics of both the system of interest and
the auxiliary one develop in two-dimensional Hilbert spaces
(Figs. 1 and 2). In contrast to phenomenological formulations,
here the collision statistics arise from quantum coherent
effects developing in the ancilla Hilbert space. A system-to-
environment backflow of information characterizes the dy-
namics. In opposition, when the ancilla dynamic is completely
incoherent, this feature is absent.

The previous finding provides a solid basis for propos-
ing different generalizations of the QCM. For example,
nonstationary renewal collision dynamics can be obtained
by introducing an explicit time dependence in the ancilla
dynamics. Nonrenewal collision statistics can be related to a
nonrenewal ancilla measurement process. On the other hand,
we showed that by introducing a second auxiliary system, the
intercollision dynamics becomes defined by a non-Markovian
propagator, Eq. (71). This finding allowed us to recover a recent
proposed generalization of the QCM [8], which in fact can also
be embedded in a Markovian evolution, and their realizations
derived from a quantum measurement theory. From this
result, we also concluded that some non-Markovian collisional
models formulated in terms of qubit logical operations [36] can
also be recovered from our formalism.

The present analysis allows us to read the phenomenologi-
cal QCMs from a different perspective. Besides a solid physical
basis of the corresponding non-Markovian dynamics, the
developed approach provides an alternative powerful tool for
describing non-Markovian memory effects in open quantum
systems.
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