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Plasmarons in high-temperature cuprate
superconductors
Hiroyuki Yamase 1✉, Matías Bejas 2 & Andrés Greco 2

Metallic systems exhibit plasmons as elementary charge excitations. This fundamental

concept was reinforced also in high-temperature cuprate superconductors recently, although

cuprates are not only layered systems but also strongly correlated electron systems. Here, we

study how such ubiquitous plasmons leave their marks on the electron dispersion in cuprates.

In contrast to phonons and magnetic fluctuations, plasmons do not yield a kink in the electron

dispersion. Instead, we find that the optical plasmon accounts for an emergent band—

plasmarons—in the one-particle excitation spectrum; acoustic-like plasmons typical to a

layered system are far less effective. Because of strong electron correlations, the plasmarons

are generated by bosonic fluctuations associated with the local constraint, not by the usual

charge-density fluctuations. Apart from this physical mechanism, the plasmarons are similar

to those discussed in alkali metals, Bi, graphene, monolayer transition-metal dichalcogenides,

semiconductors, diamond, two-dimensional electron systems, and SrIrO3 films, establishing a

concept of plasmarons in metallic systems in general. Plasmarons are realized below (above)

the quasiparticle band in electron-doped (hole-doped) cuprates, including a region around

(π, 0) and (0, π) where the superconducting gap and the pseudogap are most enhanced.
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Superconductivity is driven by forming Cooper pairs of
electrons1. This is achieved even above the boiling point of
liquid nitrogen at ambient pressure in cuprate

superconductors2. The mechanism of such a remarkable phe-
nomenon has been a central issue in condensed matter physics
since their discovery3. The one-particle property of electrons may
possess an important hint to solve it. In fact, electrons are not
independent inside a material, but acquire the self-energy through
various interactions—it is such electrons which drive the
superconductivity.

A well-known interaction is electron–phonon coupling, which
renormalizes the electron band to yield a kink at the corre-
sponding phonon energy4. A kink was actually observed in not
only conventional metals5,6 but also high-temperature cuprates
superconductors7,8. Given that the electron–phonon coupling is
the conventional mechanism of superconductivity9, its role in the
high-Tc mechanism drew much attention. On the other hand, it is
also well recognized that the formation of a kink is not a special
feature of electron–phonon coupling, but rather a manifestation
of coupling to bosonic fluctuations from a general point of view10.
Magnetic fluctuations are bosonic fluctuations and can in fact
yield a kink in the electron dispersion at the energy of the
magnetic resonance mode11–14.

How about charge fluctuations, which are also bosonic ones?
While the understanding of the charge fluctuations is crucial to
the high-Tc mechanism in cuprates, it is only recently when the
charge dynamics was revealed in momentum-energy space by an
advanced technique of resonance inelastic X-ray scattering
(RIXS). In particular, low-energy collective charge excitations
were revealed in electron-doped15–17 and hole-doped
cuprates18,19. The characteristic in-plane and out-of-plane
dependence allowed to identify these excitations as low-energy
plasmons20–23, which were also discussed for layered metallic
systems in the 1970s24–26. Dispersing charge modes were repor-
ted previously by other groups, too, but interpreted differently,
not as plasmons27–31. While the dispersion was presumed to be
likely an acoustic mode15,16,18,19, it was found very recently that
the low-energy plasmons are gapped at the in-plane zone center
for the infinite-layered electron-doped cuprate Sr0.9La0.1CuO2

17,
in agreement with a theoretical study—the gap is predicted to be
proportional to the interlayer hopping20. These low-energy
plasmons may be referred to as acoustic-like plasmons. While
the optical plasmon itself was observed already around 1990 by
electron energy-loss spectroscopy32,33 and optical spectroscopy34,
these recent advances to reveal the charge excitation spectrum in
cuprates attract renewed interest and plasmons offer a hot topic
in the research of cuprate superconductors.

Electron–plasmon coupling was studied mainly for weakly
correlated materials: alkali metals such as Na and Al35, Bi36,
graphene37,38, monolayer transition-metal dichalcogenides (Mo,
W)(S, Se)239, semiconductors39–41, and diamond41. Here the so-
called replica bands are known to be generated by coupling to
plasmons; they are also referred to as plasmon satellites41–43

especially when momentum is integrated. The spectrum of the
replica band is usually very broad and has low spectral
weight38–41,44–46, making it difficult to confirm it in experiments.
Recently, however, the replica band was successfully resolved in
various systems—graphene42,47,48, two-dimensional electron
systems49,50, and SrIrO3 films51. The presence of the replica band
implies that the one-particle Green’s function has poles. That is,
the replica band corresponds to the dispersion relation of qua-
siparticles dubbed as plasmarons52–55.

Can we expect plasmarons in high-temperature cuprate
superconductors? This is a far from obvious issue. First of all,
cuprates are strongly correlated electron systems and thus it is
reasonable to distinguish cuprates from weakly correlated systems

as the ones discussed in the previous paragraph—a direct analogy
between them is not trivial. Second, cuprates are layered systems,
where not only the conventional optical plasmon, but also many
acoustic-like plasmons are present20. This is also a situation dif-
ferent from previous studies of plasmarons35–51.

In this paper, we show that instead of yielding a kink, plasmons
in cuprates lead to plasmarons—similar to weakly correlated sys-
tems. A common feature lies in the singularity of the long-range
Coulomb interaction in the limit of long wavelength. However, the
underlying physics is different. Instead of usual charge density-
density correlations, fluctuations associated with the local constraint
—non-double occupancy of electrons at any site—are responsible
for the emergence of plasmarons. We find that cuprates can host
plasmarons near the optical plasmon energy below (above) the
quasiparticle band in electron-doped (hole-doped) cuprates.

Results
Analytical scheme. Cuprate superconductors are doped Mott
insulators—strong correlations of electrons are believed to be
crucial56,57. The t–J model is a microscopic model of cuprates
superconductors and is derived from the three-band58 and one-
band59 Hubbard model. It reads

H ¼ � ∑
i;j;σ

tij~c
y
iσ~cjσ þ ∑

hi;ji
Jij S

!
i � S
!

j �
1
4
ninj

� �
þ 1

2
∑
i≠j
Vijninj ;

ð1Þ

where ~cyiσ (~ciσ) are the creation (annihilation) operators of elec-
trons with spin σ(=↑, ↓) in the Fock space without double
occupancy at any site—strong correlation effects, ni ¼ ∑σ~c

y
iσ~ciσ is

the electron density operator, and S
!

i is the spin operator. While
cuprates are frequently modeled on a square lattice, we take the
layered structure of cuprates into account and consider a three-
dimensional lattice to describe plasmons correctly. The sites i and
j run over such a three-dimensional lattice. The hopping tij takes
the value tðt0Þ between the first (second) nearest-neighbor sites in
the plane and is scaled by tz between the planes. The exchange
interaction Jij= J is considered only for the nearest-neighbor sites
inside the plane as denoted by 〈i, j〉—the exchange term
between the planes is much smaller than J (Thio et al.60). Vij is the
long-range Coulomb interaction.

It is highly nontrivial to analyze the strong correlation effects
systematically. While a variational approach is powerful61, here
we employ a large-N technique in a path integral representation
in terms of the Hubbard operators62. In the large-N scheme, the
number of spin components is extended from 2 to N and physical
quantities are computed by counting the power of 1/N system-
atically. One of the advantages of this method is that it treats all
possible charge excitations on an equal footing63,64. There are two
different charge fluctuations: on-site charge fluctuations describ-
ing usual charge-density-wave and plasmons, and bond-charge
fluctuations describing charge-density-waves with an internal
structure such as d-wave and s-wave symmetry, including the flux
phase. Explicit calculations clarified that those two fluctuations
are essentially decoupled to each other65. Since we are interested
in plasmons, we focus on the former fluctuations.

Because of the local constraint that double occupancy of
electrons is prohibited at any lattice site, the charge fluctuations
are described by a 2 × 2 matrix Dab(q, iνn) with a, b= 1, 2; q is the
momentum of the charge fluctuations and νn a bosonic
Matsubara frequency. While D11 is the usual density-density
correlation function, D22 is a special feature of strong correlation
effects—it describes fluctuations associated with the local
constraint. As we shall clarify, this D22 plays the central role in
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the formation of plasmarons. Naturally there is also the off-
diagonal component D12(=D21).

In the large-N theory, Dab(q, iνn) is renormalized already at
leading order. After the analytical continuation iνn→ ν+ iΓch,
where Γch(>0) is infinitesimally small, the full charge excitation
spectrum is described by ImDabðq; νÞ—Bejas et al.65 reported a
comprehensive analysis of ImDabðq; νÞ. In particular, ImD11ðq; νÞ
predicted acoustic-like plasmon excitations with a gap at
q= (0, 0, qz) for qz ≠ 0 as well as the well-known optical plasmon
at q= (0, 0, 0)20. Close inspections revealed that the predicted
plasmon excitations explain semiquantitatively charge excitation
spectra reported by RIXS for both hole-doped18,21 and electron-
doped17,21,22 cuprates.

Charge fluctuations renormalize the one-particle property of
electrons, which can be analyzed by computing the electron self-
energy. This requires involved calculations in the large-N theory
because one needs to go beyond leading order theory. At order of
1/N, the imaginary part of the self-energy is obtained as66

ImΣðk;ωÞ ¼ ∑
a;b¼1;2

ImΣabðk;ωÞ ; ð2Þ

where

ImΣabðk;ωÞ ¼
�1
NsNz

∑
q
ImDabðq; νÞhaðk; q; νÞhbðk; q; νÞ

´ nF �εk�q

� �
þ nB νð Þ

h i
:

ð3Þ

Here ν= ω− εk−q, εk is the electron dispersion obtained at
leading order, ha(k, q, ν) a vertex describing the coupling between
electrons and charge excitations, nF and nB the Fermi and Bose
distribution functions, respectively, Ns the total number of lattice
sites in each layer, and Nz the number of layers; see “Methods”
for the explicit forms of Dab(q, ν), εk, and ha(k, q, ν). The real
part of Σ(k, ω) is computed by the Kramers-Kronig relations.
Since the electron Green’s function G(k, ω) is written as
G−1(k, ω)= ω+ iΓsf− εk− Σ(k, ω), we obtain the one-particle
spectral function Aðk;ωÞ ¼ � 1

π ImGðk;ωÞ:

Aðk;ωÞ ¼ � 1
π

ImΣðk;ωÞ � Γsf
½ω� εk � ReΣðk;ωÞ�2 þ ½ImΣðk;ωÞ � Γsf �2

;

ð4Þ
where Γsf(>0) originates from the analytical continuation in the
electron Green’s function.

The quasiparticle dispersion appears as poles of A(k,ω), i.e., a
sharp peak structure of A(k,ω), and crosses the Fermi energy. On
top of that, A(k,ω) can exhibit other sharp features. If plasmons
themselves are responsible for yielding additional poles of A(k,ω),
namely fulfilling the condition of ω� εk � ReΣðk;ωÞ ¼ 0 with a
relatively small value of jImΣðk;ωÞj, A(k,ω) exhibits a peak
describing electrons coupling to plasmons, namely plasmarons52–55,
with a damping controlled by ImΣðk;ωÞ. Note that the charge
excitation spectrum also contains usual particle-hole excitations, the
so-called continuum spectrum, which can also lead to poles in
A(k,ω). Thus additional poles of A(k,ω) do not necessarily signal
the emergence of plasmarons.

While the t–J model in Eq. (1) contains spin fluctuations, they
appear at order of O(1/N) in the present theory whereas charge
fluctuations appear at O(1). Hence when we compute the electron
self-energy at order of 1/N, only charge fluctuations enter Eq. (3),
which is suitable to study the role of plasmons exclusively in the
one-particle spectral function.

One-particle spectral function. A choice of model parameters is
not crucial to our major conclusions. Here we present results
which can be applied directly to electron-doped cuprates,

especially La1.825Ce0.175CuO4 (LCCO); details of model para-
meters are given in “Methods” and Supplementary Note 3.

Figure 1 shows the one-particle spectral function A(k, ω) along
the direction (π, π)–(0, 0)–(π, 0)–(π, π); kz dependence is weak
and thus kz= π is taken throughout the present paper—the value
of kz shall be omitted for simplicity. The spectrum around ω= 0
is the quasiparticle dispersion renormalized by charge fluctua-
tions. In contrast to the case of electron–phonon coupling67,68

and magnetic fluctuations69,70, it does not exhibit a kink
structure. Rather it is described by the dispersion εk (solid curve)
multiplied by some constant Z(=0.29) as shown by a dotted curve
in Fig. 1. This implies that the renormalization factor depends
weakly on k and the quasiparticle spectral weight is reduced down
to 0.29 by charge fluctuations.

Charge fluctuations also generate additional bands as shown in
the inset in Fig. 1. There are two major bands: a low-energy
incoherent band near ω ≈−1.5t and a high-energy side band with
a large dispersion in 4 < ω/t < 7—the spectral weight of the former
is about 10% and that of the latter is about 60%. The reason to call
a side band instead of an incoherent one for the high-energy
feature lies in that ImΣðk;ωÞ almost vanishes in such a high-
energy region, leading to a coherent feature.

Since the low-energy incoherent band disappears when the
long-range Coulomb interaction is replaced by a short-range
Coulomb interaction—the high-energy one still remains66, a
coupling to plasmons is crucial to the low-energy feature. The
major point of the present work is to elucidate that the low-
energy one corresponds to plasmarons52–55 and is essentially the
same as the so-called replica band discussed in weakly correlated
electron systems35–51. In the following we focus on an energy
window −2 ≤ ω/t ≤−1.

Relevant contributions to the formation of plasmarons. As seen
in Eq. (2), ImΣ(k, ω) is given by the sum of four components. To
elucidate the relevant contribution to forming plasmarons, we
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Fig. 1 Intensity map of the one-particle spectral function A(k,ω). The
map is focused on a low-energy region along the direction
(π, π)–(0, 0)–(π, 0)–(π, π) with kz= π. For comparison, the quasiparticle
dispersion obtained at leading order (solid curve) and a renormalized
dispersion multiplied by Z= 0.29 (dotted curve) are superimposed. The
inset shows A(k,ω) in a wider energy window. The additional band in ω < 0
corresponds to plasmarons, which we shall clarify in the present work.
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may introduce an auxiliary parameter r(≥0) as

ImΣðk;ω; rÞ ¼ ImΣ11 þ r ´ ImΣ22 þ 2 ImΣ12

� �
; ð5Þ

where the arguments on the right hand side are omitted for
simplicity and the fact that ImΣ12 is equal to ImΣ21 was used. The
case of r= 1 corresponds to the physical situation seen in Eq. (2).
We then compute A(k, ω) for several choices of r in Fig. 2a–d,
where a different color scale is used to highlight the weak feature
in r < 1; see Supplementary Note 1 for a wider energy window.
Upon decreasing r, the incoherent band loses intensity sub-
stantially, fades away, and finally becomes invisible in r≲ 0.4.
This clearly indicates that the incoherent band is driven by
components involving a, b= 2, namely fluctuations associated
with the local constraint—a direct consequence of the strong
correlation effect.

The corresponding ImΣðk;ωÞ and ReΣðk;ωÞ are also shown in
Fig. 2e–h for two choices of k. ImΣðk;ωÞ exhibits a sharp peak at
ω ≈−1.5t and− 1.3t for k= (0, 0) and (π, 0), respectively, and the
peak is suppressed and broadened with decreasing r. The peak
structure of ImΣðk;ωÞ yields a large dip structure in ReΣðk;ωÞ at
slightly lower energy than the peak energy of ImΣðk;ωÞ via the
Kramers-Kronig relations. Consequently, the term ω� εk �
ReΣðk;ωÞ in Eq. (4) can vanish at two energies when r is close
to 1: one is very close to the peak energy of ImΣ(k, ω) and the
other corresponds to the tail of the dip structure of ReΣ(k, ω).
Since ImΣ(k, ω) becomes small at the latter energy, A(k, ω) forms
a peak there with a damping controlled by ImΣ(k, ω). Hence this
peak is incoherent, but is a resonance in the sense that ω� εk �
ReΣðk;ωÞ ¼ 0 is fulfilled.

Which one is more crucial to the incoherent band, ImΣ12 or
ImΣ22? To answer this, we have studied each component of
ImΣab(k, ω) and computed the spectral function for each of them.
We can check that ImΣ22 is responsible for the formation of the
incoherent band. The component of ImΣ12 works to sharpen the
incoherent band by reducing the absolute value of the imaginary
part of the self-energy (see Supplementary Note 2 for details).

Role of plasmons. What is then the role of plasmons? Plasmons
are described in terms of the charge-charge correlation function,
namely poles of ImD11 in the present theory. Because of the
matrix structure of ImDab, the poles are determined by the zeros
of its determinant. Thus all components of ImDab contain the
same poles as those in ImD11 and thus describe the same plas-
mons equally (see Figs. 1 and 8 in Bejas et al.65 for explicit cal-
culations). Because of the layered structure of cuprates, plasmons
have various branches depending on the value of qz: the usual
optical plasmon corresponds to qz= 0 and the acoustic-like
branches to qz ≠ 020. Their energy varies in 0.07 ≤ ν/t ≤ 1.15
around q= (0, 0, qz) for the present parameters. The peak of
ImΣðk;ωÞ at ω=−1.5t (−1.3t) in Fig. 2e [Fig. 2g] is determined
by the optical plasmon at ν= 1.15t—the energy difference is
easily read off from Eq. (3): the energy of ImDab is given by
ν= ω− εk−q, the optical plasmon is realized at q= 0, ImDab is
odd with respect to ν, and thus the peak of ImΣ(k, ω) is shifted by
εk−q with q= 0.

The crucial role of the optical plasmon is also confirmed
numerically. In Fig. 3, we compute the self-energy ImΣ(k, ω) by
removing a region ∣qz∣ ≤ 2π/10 in the qz summation in Eq. (3) so
that the contribution from the optical plasmon becomes zero.
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Fig. 2 Analysis of plasmarons in terms of Eq. (5). a–d Intensity map of the spectral function A(k,ω) computed with ImΣ(k,ω; r) [Eq. (5)] in −2≤ω/t≤−1
for several choices of r along the direction (π, π)–(0, 0)–(π, 0)–(π, π) with kz= π. The plasmaron band in (a) fades away upon decreasing r, indicating that
fluctuations associated with the local constraint are crucially important to the plasmarons. Note a different color scale in each panel. e–h Imaginary and real
parts of Σ(k,ω) as a function of ω at k= (0, 0) and (π, 0) for several choices of r. The peak of ImΣ(k,ω) in (e) and (g) is determined by the optical
plasmon. The line of ω− εk is also shown in (f) and (h). The plasmaron energy is determined by its crossing point of ReΣ(k,ω) on the lower energy side
when r is close to 1.
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We then observe that the peak structure in ImΣ(k, ω) completely
disappears, not shifts to another energy window. The resulting
A(k, ω) no longer forms any structure there.

It might be puzzling—on one hand, the optical plasmon is
responsible for the formation of the plasmarons (Fig. 3), but on
the other hand, the same plasmons in ImD11 and ImD12 do not
generate them (Fig. 2). The vertex function ha(k, q, ν) in Eq. (3)
was checked not to be important. The key lies in the role of the
long-range Coulomb interaction Vq, which diverges as q−2 in
the limit of q→ 0. As is well known, this is the very reason why
the plasmons are realized4—the inverse of the charge response
function or the determinant of Dab vanishes along the plasmon
dispersion. The crucial difference among ImΣab appears in the
numerator. To see this we study the explicit form of Dab, which is
given by

Dabðq; νÞ ¼
1
D

�Π22ðq; νÞ Π12ðq; νÞ � Nδ
2

Π12ðq; νÞ � Nδ
2 �Π11ðq; νÞ þ Nδ2

2 Vq � Jq
� �

0
@

1
A :

ð6Þ
Here D is the determinant of the matrix ½Dabðq; νÞ��1, δ

the doping rate, Jq the superexchange interaction in momentum
space, Πab a bubble describing particle-hole excitations with
appropriate vertex functions ha(k, q, ν), and N the number of spin
components (N= 2 corresponds to the physical situations); a
complete expression of each quantity is given in “Methods”. In
the limit of q→ 0, we can obtain by virtue of Vq ~ q−2

ImD22ðq; νÞ �
V2

qImΠ22

ðReDÞ2 þ ðImDÞ2 : ð7Þ

The other components of ImD11 and ImD12 become smaller by
order of V�2

q and V�1
q , respectively. Hence, ImD22 becomes

dominant over the other components in the limit of q→ 0 and
thus ImΣ22 has a sizable contribution compared with the other
components. This explains the reason why ImΣ22 is responsible
for the plasmarons, although all components of ImDab equally
describe the same plasmons.

Discussion
From Eqs. (3) and (7), one may recognize that the mathematical
structure of ImΣ22 in the limit of q→ 0 is the same as the well-

known expression of the self-energy in weak coupling theory,

ImΣRPAðk;ωÞ ¼ �1
NzNs

∑
q
ImDRPAðq; νÞ nF �εRPAk�q

� �
þ nBðνÞ

h i
;

ð8Þ
where ImDRPAðq; νÞ ¼ V2

qImΠRPAðq; νÞ is the imaginary part of
the screened Coulomb interaction computed in the random phase
approximation (RPA); ν ¼ ω� εRPAk�q. Therefore weakly correlated
electron systems in general can also host plasmarons in
principle35–51. However, plasmarons are overdamped in many
cases and leave faint spectral weight38–41,44–46. This unfavorable
situation is soften when the system has a relatively small band
width so that the correlation effect becomes relatively large. In
fact, the importance of the small band width to plasmarons was
discussed in SrIrO3

51. See Supplementary Note 5 for explicit
results.

In the present t–J model, the band width is very small at order
of tδ/2 and δ ≈ 0.1–0.2. Furthermore, the magnitude of all the
components of ImΣab is comparable to each other, but the sign of
ImΣ12 is the opposite to those of ImΣ11 and ImΣ22 in ω < 0 (see
Supplementary Note 2). Hence after the summation in Eq. (2),
ImΣ is substantially reduced in ω < 0. Nonetheless, a small band
width allows to fulfill the resonance condition ω� εk �
ReΣðk;ωÞ ¼ 0 as shown in Fig. 2f and h for r= 1. These features
work constructively to host plasmarons in a strongly correlated
electron system more than a weakly correlated one.

The dispersion of plasmarons exhibits a dispersive feature
similar to the quasiparticle dispersion as shown in Fig. 4—the
plasmaron dispersion follows 0.98εk− 1.33t. The value of −1.33t
is related to, but not exactly equal to, the optical plasmon energy
ν= 1.15t and the factor 0.98 is a renormalization. The plasmaron
dispersion can also be fitted to εk− 1.33t approximately. This
feature is easily understood intuitively. The energy of the one-
particle excitation ω is related to the charge fluctuation energy ν
via ω= ν+ εk−q in Eq. (3). Since it is the optical plasmon which
generates the plasmarons, ν is estimated by its energy and q may
be put to zero; recall that ImDab(q, ν) is an odd function with
respect to ν. Consequently, the dispersion of plasmarons essen-
tially follows the (bare) quasiparticle dispersion εk. In this sense a
term of “replica band” used in weakly correlated electron systems
can be inherited even in strongly correlated electron systems.

Figures 1, 2a, and 4 can be applied directly to electron-doped
cuprates, especially LCCO. The energy of plasmarons is con-
trolled by the optical plasmon energy, which can be determined
precisely by electron energy-loss spectroscopy and optical spec-
troscopy. Given that the typical energy scale of the optical plas-
mon in cuprates is around 1 eV, the plasmarons can be tested by

Fig. 3 Role of the optical plasmon for plasmarons. The self-energy and the
spectral function are computed at k= (π, 0) by removing a region ∣qz∣ ≤ 2π/10
in the qz summation in Eq. (3), namely without contributions from the optical
plasmon. They do not form any structure. Dotted curves are the corresponding
results with the full qz summation. The line of ω− εk is also given. The contrast
between the solid and dotted curves demonstrates the importance of the
optical plasmon to forming the plasmarons.
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Fig. 4 Dispersion of plasmarons. It follows 0.98εk− 1.33t (dashed curve)
and in this sense, it is a replica band of εk.
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angle-resolved photoemission spectroscopy (ARPES) by search-
ing the energy region typically around 1 eV below the electron
dispersion especially along the direction (0, 0)–(π, 0) [see the inset
of Fig. 1 and Fig. 4]. This energy window has not been studied in
detail in ARPES71. Recalling that the plasmarons were detected
even in weakly correlated systems such as graphene42,47,48, two-
dimensional electron systems49,50, and SrIrO3 films51, there
seems a good chance to reveal them also in cuprates.

In experiments72, the optical plasmon energy increases with
carrier doping up to 20% doping. Therefore, the energy of plas-
marons follows the same tendency. This feature can also be uti-
lized to confirm plasmarons in cuprates. While ARPES is an ideal
tool to test plasmarons, X-ray photoemission spectroscopy43 and
tunneling spectroscopy42 can also be exploited to detect plas-
marons as an emergent satellite peak.

What happens for hole-doped cuprates, where the optical
plasmon32–34 as well as acoustic-like plasmons17–19 typical to
layered materials were actually observed? Performing the same
analysis as that for the electron-doped cuprates, we predict
plasmarons also in hole-doped cuprates. In contrast to the
electron-doped case, however, they are realized along the direc-
tion (π, 0)–(π, π)–(π/2, π/2) in ω > 0, requiring inverse ARPES to
test the plasmaron dispersion; See Supplementary Note 4 for
details.

For cuprates, it has been discussed that coupling to bosonic
fluctuations yields a kink in the electron dispersion. While plas-
mons are also bosonic fluctuations, their role in cuprates should
be sharply distinguished from phonons7,8 and magnetic
fluctuations11–14. Plasmons do not yield a kink (see Fig. 1), but
instead generate plasmarons as an emergent incoherent band
(Fig. 4).

The present calculations have been performed in a layered t–J
model. If one employs a two-dimensional model, the plasmon
dispersion in cuprates cannot be captured especially for the
optical plasmon. In this sense, the inclusion of the three-
dimensionality of the long-range Coulomb interaction is crucially
important to discuss plasmarons in cuprates, although we
checked that the interlayer hopping integral tz is not relevant to
plasmarons.

A replica band is also discussed in the polar electron–phonon
coupling mechanism in TiO2

73–75 and the interplay between the
electron–phonon and electron–plasmon couplings was studied76.
A clear distinction between those two couplings is made by
studying the carrier density dependence of the replica band51. In
the present study, however, the electron–phonon coupling is
irrelevant because phonon energy is limited below 100 meV in
cuprates whereas our relevant energy scale is about 1 eV.

Conclusions
The present large-N theory captures the plasmon excitations
observed in both electron- and hole-doped high-temperature
cuprate superconductors with a good accuracy so that detailed
comparisons with experimental data were made17,18,21,22. We
have computed the electron self-energy in the same theoretical
framework, but by going beyond leading order theory.

Our major point lies in the indication that cuprates can host
plasmarons—quasiparticles coupling to plasmons—near the
optical plasmon energy below (above) the quasiparticle dispersion
in electron-doped (hole-doped) cuprates; plasmons do not yield a
kink in the quasiparticle dispersion, in stark contrast to phonons
and magnetic fluctuations. Since plasmarons are found clearly
close to momentum (π, 0), where the superconducting gap as well
as the pseudogap is enhanced, it is very interesting to explore
further the role of plasmarons in the formation of the super-
conducting gap and the pseudogap in cuprate superconductors.

Our second major point lies in elucidating the mechanism of
plasmarons: they are driven by the strong correlation effect—
fluctuations associated with the local constraint that imposes no
double occupancy of electrons at any site. The underlying physics
to generate plasmarons in cuprates is thus different from that in
weakly correlated electron systems35–51. However, both have a
common mathematical structure to yield plasmarons, establishing
a general concept of plasmarons in metals. Plasmarons tend to be
well-defined for a system with a smaller band width. This con-
dition is usually fulfilled in cuprates because of strong correla-
tions, but also in a weakly correlated system such as SrIrO3

films51.

Methods
We present a minimal description of the large-N theory of the layered t–J model
with the long-range Coulomb interaction—a complete formalism is given in
Yamase et al.66.

The electron dispersion εk consists of the in-plane dispersion εkk and the out-of-
plane dispersion ε?k ,

εk ¼ εkk þ ε?k : ð9Þ
At leading order, they are calculated as

εkk ¼ �2 t
δ

2
þ Δ

� �
cos kx þ cos ky

� �
� 4t0

δ

2
cos kx cos ky � μ ; ð10Þ

ε?k ¼ �2tz
δ

2
cos kx � cos ky

� �2
cos kz ; ð11Þ

where Δ is the mean value of the bond field, δ the doping rate, and μ the chemical
potential. For a given δ, Δ and μ are determined self-consistently by solving the
following coupled equations:

Δ ¼ J
4NsNz

∑
k

cos kx þ cos ky
� �

nF εk
� �

; ð12Þ

ð1� δÞ ¼ 2
NsNz

∑
k
nFðεkÞ : ð13Þ

As already mentioned in the Analytical Scheme subsection, charge fluctuations
in the t–J model are composed of on-site charge and bond-charge fluctuations.
They are, however, essentially decoupled to each other65. Since the former is
relevant to the present work, we focus on that. In this case, the bosonic propagator
of charge fluctuations, namely Dab(q, iνn), is described by a 2 × 2 matrix with
a, b= 1, 2:

Dab q; iνn
� �� 	�1 ¼ Dð0Þ

ab q; iνn
� �h i�1

� Πab q; iνn
� �

; ð14Þ
where Dð0Þ

ab ðq; iνnÞ is the bare bosonic propagator,

Dð0Þ
ab q; iνn
� �h i�1

¼ N
δ2

2 Vq � Jq
� �

δ
2

δ
2 0

0
@

1
A : ð15Þ

Here Jq ¼ J
2 ðcos qx þ cos qyÞ is the superexchange interaction in momentum

space and Vq is the long-range Coulomb interaction for a layered system77:

Vq ¼ Vc

Aðqx ; qyÞ � cos qz
; ð16Þ

where Vc ¼ e2dð2ϵ?a2Þ�1 and Aðqx ; qyÞ ¼ αð2� cos qx � cos qyÞ þ 1; e is the
electric charge of electrons, a the unit length of the square lattice, d the distance
between the layers, α describes the anisotropy between the in-plane and out-of-
plane interaction and is given by α ¼ ~ϵ

ða=dÞ2 with ~ϵ ¼ ϵk=ϵ? , where ϵ∥ and ϵ⊥ are the
dielectric constants parallel and perpendicular to the planes, respectively. The 2 × 2
matrix Πab is the bosonic self-energy at leading order

Πabðq; iνnÞ ¼ � N
NsNz

∑
k
ha k; q; εk � εk�q

� � nF εk�q

� �
� nF εk

� �
iνn � εk þ εk�q

hbðk; q; εk � εk�qÞ

� δa1δb1
N

NsNz
∑
k

εk � εk�q

2
nF εk
� �

;

ð17Þ
and the 2-component vertex is given by

haðk; q; νÞ ¼
2εk�q þ ν þ 2μ

2
þ 2Δ cos kx �

qx
2

� �
cos

qx
2

� �
þ cos ky �

qy
2

� �
cos

qy
2

� �
 �
; 1

� �
:

ð18Þ
We then compute the electron self-energy from charge fluctuations described by

Eq. (14) at order of 1/N. This yields Eq. (3) in the main text—its derivation is
elaborated in Yamase et al.66.
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Fixing temperature to zero, we choose parameters J/t= 0.3, t0=t ¼ 0:3, tz/
t= 0.03, α= 2.9, Vc/t= 18, δ= 0.175, Nz= 10, Γch/t= 0.03, Γsf/t= 0.03, and t/
2= 0.5 eV, which reproduce semiquantitatively the plasmon excitations observed
in RIXS for one of the typical electron-doped cuprates LCCO17. The factor of 1/2 in
t/2 comes from a large-N formalism where t is scaled by 1/N. We assume N= 2 in
comparison with experiments. These parameters were obtained to achieve the best
fit to the experimental data under an additional conditions that they should be
realistic and do not contradict with the existing knowledge. While Γch and Γsf are
positive infinitesimals from the analytical point of view, we employ small, but finite
values in actual numerical calculations. This may mimics broadening of the
spectrum due to electron correlations at higher orders as well as instrumental
resolution. In the figures we presented, all quantities with the dimension of energy
are measured in units of t.

Data availability
The data that support the finding of this study are available from H.Y. and M.B. upon
reasonable request.
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