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Abstract
Mesenchymal stromal cells (MSCs) are more often obtained from adult and
extraembryonic tissues, with the latter sources being likely better from a ther-
apeutic perspective. MSCs show tropism towards inflamed or tumourigenic
sites. Mechanisms involved in MSC recruitment into tumours are compre-
hensively analysed, including chemoattractant signalling axes, endothelial
adhesion and transmigration. In addition, signals derived from hepatocellu-
lar carcinoma (HCC) tumour microenvironment and their influence in MSC
tropism and tumour recruitment are dissected, as well as the present contro-
versy regarding their influence on tumour growth and/or metastasis. Finally,
evidences available on the use of MSCs and other selected progenitor/stem
cells as vehicles of antitumourigenic genes are discussed. A better knowledge
of the mechanisms involved in progenitor/stem cell recruitment to HCC
tumours is proposed in order to enhance their tumour targeting which may
result in improvements in cell-based gene therapy strategies.

*These two authors share credits for senior authorship.
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The occurrence of non-haematopoietic stem cells in the
bone marrow (BM) was first suggested in the 19th cen-
tury by Julius Cohnheim (1), who proposed that bone
marrow could be the source of fibroblasts contributing
to wound healing in different tissues (2). However, it
was not until the 70s when Friedenstein isolated for the
first time adherent and spindle-shaped cells from the
BM with clonogenic potential, which were named as
‘colony forming units-fibroblasts’ (CFUs-F) (3). Addi-
tional studies by Friedenstein and Owen demonstrated
their adipocyte and osteocyte differentiation potential
(4, 5). Since then, several research groups named such
cells as BM stromal cells, mesenchymal stem cells and,
more recently, mesenchymal stromal cells (MSCs) (3, 6,
7). MSCs were subsequently isolated from a wide variety
of tissues (see below).

Mesenchymal stromal cells constitute a heteroge-
neous population of cells, but a subset of them has been
shown to contain multipotent stem cells (8, 9). Despite
the lack of a specific marker, the International Society
for Cellular Therapy (ISCT) proposed minimal criteria
to define human MSCs: adherence to plastic in culture,
multipotent differentiation potential and a characteristic
cell surface protein expression profile. Thus, there is
now a general consensus in that MSCs express CD105,
CD73 and CD90, and lack haematopoietic markers such
as CD45, CD34, CD14 or CD11b, CD79a or CD19, as
well as HLA class II (7). This phenotype may vary
among species, tissue sources and culture conditions
(10, 11). Regarding their differentiation potential, MSCs
must be able to differentiate in vitro into osteoblasts,
adipocytes and chondroblasts (12). Additionally, it has
been reported that MSCs might have the ability to dif-
ferentiate in vitro to cardiomyocytes, vascular endothe-
lial cells, neurons, hepatocytes and/or other epithelial
cells (13–16) or eventually could express some of their
specific markers.

Hundreds of clinical trials have been carried out
using MSCs. A striking feature of these cells is their abil-
ity to be cultured and expanded in vitro, together with
their apparent self-renewal properties, low inherent
immunogenicity (17), trophic activity (18), high capac-
ity to promote vascularization (19, 20) and eventually
broad differentiation potential. All these particular and,
at the same time, complex properties have prompted
their experimental use in the regenerative medicine field
(21, 22) as well as in the treatment of myocardial ischae-
mia/infarction (23), cerebral injury (24, 25), bone dis-
eases and muscular dystrophy (26). In this regard,
several studies have postulated that endocrine signals
released by injured tissues and organs induce selectively
migration of MSCs (20, 27–31). Furthermore, MSCs
exhibit increased motility towards inflamed regions as
well as tumourigenic sites (32, 33). This phenomenon
would be expected since tumours are considered as
unresolved wounds (34), and their microenvironment is
characterized by an increased local production of
inflammatory mediators and chemoattractants (35).

The first report using MSCs as vehicles of therapeutic
genes in cancer took advantage of their migratory and
homing capacity towards tumours, showing that the
delivery of Interferon-b (INF-b) was able to improve
animal survival (32). After this work, similar approaches
were explored in the context of experimental models of
cancer diseases (33, 36–48) (see below).

Tissue sources for MSCs

Mesenchymal stromal cells have been isolated and
expanded from a variety of tissues and most frequently
from BM (12) (the most used and best characterized)
and adipose tissue (AT) (49, 50). For instance, they were
obtained from peripheral blood (PB), however their effi-
ciency of isolation is low (51). In addition to adult tis-
sue, MSCs can be derived from extraembryonic tissue
after birth including placenta (52), amnion (53, 54) and
umbilical cord. For the latter case, MSCs were isolated
from whole umbilical cord (55), the Wharton′s jelly
(WJ-MSCs) (56), perivascular areas (human umbilical
cord perivascular cells, HUCPVCs) (57) as well as from
umbilical cord blood (CB-MSCs) (58, 59). A particular
advantage of extraembryonic sources is their ready
availability, which avoids the need of invasive proce-
dures and eliminates other ethical concerns. In addition,
MSCs of such origin may have improved proliferative
capacity, life span and differentiation potential
[reviewed by Ralf Hass 2011 (60)].

MSCs and their migration capability towards injured and
inflamed sites

MSCs have been considered as likely to be one of the
most powerful cells involved in human body repair
mechanisms (61). Several studies have shown that MSCs
preferably engraft in injured or inflamed tissues (62,
63). In physiological conditions, a low frequency of
these cells circulate through peripheral blood (64, 65),
and mainly reside in the BM niche (66). Once endocrine
signals are released in response to injury, sometimes fol-
lowing an increase in plasma concentration of VEGF or
G-CSF (67), MSCs mobilize into the blood stream and
migrate towards the injured sites to promote tissue
regeneration (65, 67). In healthy mice, MSCs intrave-
nously injected are first retained in the capillary layer of
lungs and then in the liver and spleen probably because
of cellular size and their expression of adhesion mole-
cules (68, 69). Mechanisms involved in MSC decelera-
tion within the vasculature and extravasation under
physiological conditions and after their infusion into
different animal disease models are not yet fully under-
stood. It is presumed that MSCs actively migrate from
bloodstream towards tissue extracellular space using
leucocyte-like cell adhesion mechanisms, including roll-
ing and adhesion to endothelial cells mediated by selec-
tins and integrins (70). It has been reported that the
rolling of MSCs is dependent on endothelial cell

Liver International (2014)
© 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd 331

Bayo et al. MSCs and hepatocellular carcinoma



expression of P-selectin, and that MSC adhesion and
transmigration involve the VLA-4/VCAM-1 axis (71).
MSC transmigration likely occurs in response to
chemoattractant stimuli which involve PDGFR, VEG-
FR-1/2, IGF1R, CCR6, CXCR1 and CXCR4 [reviewed
by Spaeth 2008 (72)]. Moreover, most of the ligands
that bind to these receptors induce chemotaxis (72, 73),
transendothelial migration (74–76), activation of adhe-
sion molecules (77, 78) and metalloproteinase (MMP)
activity (79, 80) in MSCs. Several reports indicate that
MSC transmigration occurs by an integration mode in
which endothelial cells retract allowing spreading and
incorporation of MSCs into the endothelial monolayer,
and finally the endothelial cells are re-localized on the
top of MSCs, facing the endothelial lumen and leaving
the endothelial layer intact (74, 81). In addition to this
mechanism, MSCs can transmigrate by paracellular and
transcellular diapedesis, such as described for leucocytes.
However, a very recent study showed that in contrast to
the latter cell types, MSCs are able to display dynamic
non-apoptotic blebbing protrusions, instead of lamelli-
podia or invadosomes, which can exert forces on endo-
thelial cells during early stages of transmigration (82).

Mechanisms and factors involved in MSC migration
towards hepatocarcinoma (HCC)

The establishment and spread of a tumour is a complex
process and involves an extensive cross-talk between
cancer cells and tissue/tumour microenvironment (83).
This interaction may result in tumour growth promo-
tion, invasion, angiogenesis and metastasis [reviewed by
Sheng-Di Wu 2012 (84)]. During tumour development,
a sustained process of tissue destruction and subsequent
repair leads to a state of unresolved wounds (34). In
particular, the HCC environment is composed by sinu-
soid and tumour endothelial cells, activated hepatic
stellate cells (HSCs), cancer associated fibroblasts
(CAFs), portal fibroblasts (PFs), Kupffer cells, tumour-
associated macrophages (TAMs), NK and NKT lympho-
cytes, dendritic cells and neutrophils (84). This HCC
microenvironment contains several extracellular matrix
components such as collagen, fibronectin and glycosa-
minoglycans (84). A recent report showed that not only
the composition of the ECM but also matrix stiffness is
able to regulate the proliferation and chemotherapeutic
response of HCC cells (83). However, the mechanisms
which govern the interactions between the different
components of HCC milieu are not still completely elu-
cidated. In addition, HCC cells are able to alter their
surrounding microenvironment in order to promote
their own growth and progression (85). To this end,
HCC cells were shown to release cytokines, chemokines
and growth factors such as vascular endothelial growth
factor (VEGF), platelet-derived growth factor (PDGF-
BB), transforming growth factor beta (TGF-b), or
monocyte colony stimulating factor (M-CSF), which
recruit activated HSCs, CAFs, TAMs and endothelial

cells; in turn, these cells respond to such signals by sev-
eral mechanisms promoting HCC growth and invasion
(86–88) (see below).

Homing of MSCs towards experimental tumours has
been reported in several animal models including gli-
oma (89, 90), melanoma (32), breast (33), colon (91),
HCC (92–94) and liver metastasis of colon cancer (95).
In vivo biodistribution assessment of MSCs after their
intravenous administration in subcutaneous or ortho-
topic HCC models suggests that MSCs are localized first
in lungs and thereafter in the liver parenchyma and
spleen (92), following a similar temporal and spatial
pattern to that described in mice free from inflamma-
tion or tumour events (63, 68). We have observed that
one hour after i.v. MSC inoculation, the signal corre-
sponding to transplanted cells is preferentially present
in the lungs of animals bearing or not s.c. Hep3B
tumours. Subsequently, from day 4 and at least up to
day 14, such signal is found in liver and spleen and, in
tumour-bearing mice, within the tumour (Fig. 1). We
have previously shown that the hepatic tropism for i.v.
injected MSCs is increased in tumour-bearing mice and
that MSCs were able to migrate inside HCC tumours
more efficiently when they were established in fibrotic
livers, compared to when HCC tumours were estab-
lished in non-fibrotic mice (92). This enhanced recruit-
ment of MSCs towards the liver and HCC tumours
might be explained, at least in part, by the activation of
liver sinusoidal endothelial cells, likely be mediated by
inflammatory cytokines and chemokines produced by
cancer cells and its microenvironment, with a particular
contribution of HSCs and Kupffer cells (96). In fact, it is
considered that the cross-talk between tumour cells and
their microenvironment could be critical for the recruit-
ment of MSC to HCC. Factors such as VEGF, PDGF,
TGF-b, MCP-1, IL-8, TNF-a, IL-1b, IL-6, SDF-1 or
HGF, which are released by HCC cells and/or diverse
tumour stromal components, have also been described
as chemoattractants for MSCs (73, 80, 86–88, 96–122)
(Fig. 2). However, no reports were published confirm-
ing the role of any of these factors in the recruitment of
MSCs towards HCC tumours. We have recently showed
that factors released by HCC cells and/or HSCs are able
to induce migration of MSCs towards tumour tissue
and to enhance adhesion and invasion capabilities of
these cells in the context of endothelial cells, type IV col-
lagen and fibronectin, with an observed induction in
MMP-2 activity (92), a known required step for trans-
migration through the endothelial barrier (80, 123)
(Fig. 2). In line with this, previous data suggest that
incubation of MSCs with inflammatory cytokines such
as TGF-b, TNF-a or IL-1b can enhance the invasive
properties of MSCs through upregulation of MMP-1,
MMP-2, MMP-3, MMP-9, membrane type 1 (MT1)–
MMP and tissue inhibitors of metalloproteinases
(TIMP-1 and TIMP-2) (73, 77, 80). Other cytokines
that can also modulate the production of MMP/TIMPS
are PDGF-BB and IL-6 (79). The in vitro migration of
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Fig. 1. In vivo non-invasive biodistribution of human MSCs. DiR-labelled human MSCs were i.v. administered and monitored at 1 h, and 4,
8 and 14 days after their infusion in healthy mice (control) and s.c. Hep3B-tumour bearing mice (Hep3B). Values correspond to total radiant
efficiency [(p/s)/(lW/cm2)].

Fig. 2. Proposed model for recruitment of MSCs towards HCC. The HCC environment is composed by malignant cells (HCC), endothelial
cells, activated hepatic stellate cells (HSCs), cancer-associated fibroblasts (CAFs) and tumour-associated macrophages (TAMs), among others.
Factors secreted by the tumour and its microenvironment induce the activation of endothelial cells, allowing the adhesion of mobilized
MSCs. For instance, TNF-a, HGF and IL-6 have been reported to upregulate chemokine receptors increasing chemotaxis in MSCs. Moreover,
TNF-a and IL-1b have been shown to be involved in MSC adhesion by activation of VCAM-1, ICAM-1 and -4 and ITGb3. MSCs in turn secrete
cytokines and metalloproteinases (MMPs) and their inhibitors (TIMPs) in order to invade and reach the tumour. For example, IL-8, SDF-1,
TNF-a and IL-1b induce the secretion of several cytokines with an autocrine function on MSCs. The upregulation of metalloproteinases
(MMPs) and their inhibitors (TIMPs) in MSCs by available TNF-a, IL-1b, TGF-b, SDF-1, PDGF and IL-6 are able to increase MSC invasive
properties.
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MSCs through matrigel in the presence of PDGF-BB is
mediated by a reduction in TIMPs expression levels and
an increase in MMP-2 activity, while IL-6 enhances
MSC invasive properties by upregulating MMP-13
expression levels without modulating TIMPs (79). A
recent microarray study revealed that IL-1b treatment
induces in MSCs the upregulation of genes related with
increased cell migration and adhesiveness such as
chemokines (CCL20, CCL5, CXCL3 and CXCL1) and
adhesion molecules (integrin binding sialoprotein
(IBSP), ICAM1, ICAM4 and VCAM-1), among others
(120). These factors can also modulate the interaction of
the different ligands with their receptors; for example,
TNF-a increases the sensitivity to SDF-1 and may induce
the expression of the CC- but no CXC- chemokine
receptors (73). Similarly, short-term stimulation of
MSCs with Flt-3 ligand, SCF, IL-6, HGF and IL-3 was
shown to increase surface expression of CXCR4 (124).
Furthermore, IL-8, SDF-1, MCP-1, TNF-a or IL-1b
may induce in MSCs the secretion of cytokines that in
turn may, in a synergist autocrine mode, act promoting
their migratory behaviour (120, 125–128) (Fig. 2).

Taking together, these data suggest that factors pro-
duced/released by HCC microenvironment are likely
capable of inducing mechanisms leading to increase
migratory and anchorage properties of MSCs towards
HCC.

MSCs and its role in hepatocellular growth and metastasis

Since it is known that MSCs can migrate and anchor
into tumours, several studies were aimed at elucidating
whether MSCs can enhance or suppress tumour growth
and metastasis in different animal models, with diverse
and, sometimes, contradictory results (129). In this
regard, MSCs were shown to stimulate secretion of sev-
eral cytokines and extracellular matrix proteins, modu-
late apoptosis, stimulate endothelial cell proliferation,
and modify immune responses against cancer cells
(130–132). The effect of these cells in HCC regarding
tumour growth and metastasis remains controversial
(detailed in Table 1). For example, in an in vitro model
it was shown that MSCs could inhibit tumour cell pro-
liferation (133). Consistently, co-injection of MSCs with
HCC cells in a subcutaneous tumour model resulted in
a reduced tumourigenesis (41). In addition, co-adminis-
tration of hepatoma cells with MSCs was found to
reduce ascites formation (134); nevertheless, these find-
ings remain to be confirmed by others. We have shown
that soluble factors released by human MSCs can have
different effects on HCC cells proliferation in vitro,
depending on the cell line used; thus, conditioned
media from MSCs was found to suppress Hep3B cells
proliferation, while the opposite effect was achieved in
PLC/PRF/5 cells and no changes were seen in HuH7
cells (92). In this line, systemic administration of MSCs
in HuH7-tumour bearing mice was shown by us not to
affect tumour growth, which was consistent with

another study using different HCC models (40, 94). It
is of note that Niess et al. using an orthotopic model
with HuH7 cells showed that MSCs have a stimulatory
effect in tumour growth, through enhancement of mi-
crovessel density (93). In addition, a pro-tumourigenic
role for MSCs is suggested by results from application
of these cells in a subcutaneous model using MHCC97-
C cells: MSC-treated mice exhibited larger tumours,
although a decreased number of lung metastases were
observed; this effect seems to be related to TGF-b1
downregulation (135). Moreover, MSCs-derived condi-
tioned media were shown to promote the tumour
growth in an in vivo model using HepG2 cells (136). It
was recently described that MSCs exposed to an inflam-
matory microenvironment may facilitate HCC metasta-
sis through TGF-b-induced epithelial to mesenchymal
transition in cancer cells (137). Thus, MSCs could be
able to modulate tumour growth and metastasis
through multiple mechanisms, depending on the type
of the HCC tumour model and likely on their capability
to reach tumour microenvironment.

MSC and gene therapy strategies

Results from preclinical studies using MSCs as carriers
of therapeutic genes suggest their potential role in
tumour therapeutic strategies. One of the first studies
that exploited the combination of gene and cellular tools
for the treatment of cancer demonstrated that MSCs
expressing IFN-b were able to inhibit tumour growth in
a melanoma model using A375SM cells (32). Since then,
several approaches have been explored using MSCs
engineered to secrete immune-stimulatory cytokines
like IFN-a, IFN-b, IL-2 and IL-12 in different tumour
models (33, 40, 43, 138). Furthermore, MSCs have also
been genetically modified to express pro-apoptotic
genes such as tumour necrosis factor-related apoptosis-
inducing ligand (TRAIL) or prodrug converting
enzymes like tyrosine kinase (HSV-tk) or cytosine
deaminase (CD) (39, 48, 139–141). Finally, MSCs have
been used as carriers for the delivery of oncolytic viruses
like Measles viruses or conditionally replicating onco-
lytic adenoviruses (CRAds) near the tumour, taking
advantage of the capability of MSCs to accumulate at
the tumour site and to protect the viruses from the neu-
tralizing antibodies (142–144). In this regard, we have
recently demonstrated using an experimental tumour
model of melanoma that BM-MSCs preloaded with an
oncolytic adenovirus are able to significantly inhibit
tumour growth, overcoming the resistance of the
tumour to non-vehiculized oncolytic viruses (143). Few
studies have been performed using MSCs as vehicles for
gene therapy against HCC (detailed in Table 2). For
instance, MSCs genetically modified, using an adenovi-
rus to secrete Interleukin 12 genes (Ad-IL12-MSC),
were applied in a preventive protocol (36) with the
result of important antimetastatic effects (40). Intrave-
nous administration of Ad-IL12-MSCs generated higher
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intratumoural levels of IL-12 when compared to Ad-
IL12 treatment, without increase in systemic toxicity
(40). In another study, MSCs were engineered to express
the human antiangiogenic factor pigment epithelium-
derived factor (PEDF) using a lentiviral vector; as a
result of this strategy, significant suppression of tumour
growth and pulmonary micrometastases were observed
(94). Another approach was employed by Niess et al.
who make use of MSCs expressing the HSV-TK gene
under the control of tie-2 and CCL5 HCC specific pro-
moters. Interestingly, TK gene was found to be
expressed only once the MSCs reach the tumour micro-
environment to convert the ganciclovir into a phos-
phorylated toxic compound that kills cancer cells (93).
A recent study combined the application of MSCs
expressing TRAIL with the chemotherapeutic agent cis-
platin which reverses TRAIL resistance observed in
HCC. Data indicated that the cotreatment inhibited
tumour growth and reduced vessel density in an animal
model of HCC (145). A new promising strategy recently
reported consists in transducing MSCs with the sodium
iodide symporter (NIS) gene, a transmembrane glyco-
protein responsible for the accumulation of iodide
inside cells. In this case, the therapeutic application of
the radionuclide 131I in a HCC xenograft mouse model
resulted in a delayed tumour growth (146). These data
demonstrate that MSCs can efficiently migrate into the
HCC milieu and deliver therapeutic genes. However,
despite of such promising results, the evaluation of fac-
tors involved in MSC migration towards HCC tumours
can significantly add to achieve higher antitumoural
and/or antimetastatic effects.

Other progenitor cells as potential vehicles for
antitumoural genes

Regarding other progenitor/stem cells which could be of
interest as vehicles of antitumoural genes, some reports
have shown that liver stem cells have the ability to
migrate to HCC both in vitro and in vivo (147, 148). The
authors showed that stem cell administration through
the portal vein results in the majority of cells being local-
ized within tumour stroma, and only few cells in other
organs such as kidneys, lungs or spleen (148). Recently,
Cavallari et al. reported that intratumoural inoculation
of conditioned medium from human liver stem cells
(HLSCs-CM) was able to inhibit tumour growth in a
subcutaneous HepG2 cell line model (136). The benefi-
cial effect achieved with HLSCs-CM on HCC tumours
was found to be mediated, at least in part, by the regula-
tor of the nodal pathway, LEFTY, which was not found
as component of BM-MSC conditioned media.

Other possible cell carrier candidates are the Multipo-
tent Adult Progenitor Cells (MAPCs) that belongs to a
plastic adherent progenitor cell population which can be
isolated from the BM (149, 150) and have the ability to
engraft in highly vascularized tumours as is the case of
HCC (151). These cells have some similar phenotype

and functional characteristics to those of MSCs, includ-
ing the capacity to differentiate into connective tissue
lineages and the presence of some MSCs surface markers
(152). In addition, MAPCs are also considered as endo-
thelial progenitor cells (EPCs) and their differentiation
into functional endothelium both in vitro and in vivo has
been described (16, 153, 154). Moreover, it was observed
that after systemic administration in an orthotopic HCC
model, undifferentiated MAPCs were recruited to the
tumour and differentiated in vivo into endothelial cells,
contributing to the tumour vasculature (151). Although
other endothelial progenitor cells have the potential to
incorporate into tumour vasculature, MAPCs can be
more easily transduced with therapeutic genes and
expanded in vitro (151, 155, 156). This settles MAPCs as
an interesting alternative to MSCs, since they can spon-
taneously differentiate in vivo into endothelial cells and
are thus potential vehicles for site-specific gene therapy.

Conclusions

This review summarized our current knowledge on the
use of stem cells as carriers for therapeutic genes with a
focus on factors mediating their recruitment to HCC.
One of the challenges for the researchers involved in the
gene therapy field is the poor transduction efficiency
caused by the lack of tumour selectivity of viral and
non-viral vectors [reviewed by Clare E (157)]. In addi-
tion, antiviral immunity as pre-existing immunity to
parental wild type viruses remains a problem. In order
to overcome them, a great interest is placed on the use
of several cell types as vehicles for therapeutic genes. In
particular, the use of MSCs for gene delivery appears to
be a good candidate strategy for cancer therapy. In addi-
tion to the characteristics shared with other progenitor
cells, such as the ability to selectively migrate towards
injured areas and remodelling tissues, their abundance
and accessibility coupled with their simplicity to be
genetically manipulated make them a widely available
candidate. Moreover, their ability to anchor into
tumour may be improved by means of different strate-
gies such as: (i) increasing the expression of certain cell
surface receptors, i.e. by overexpressing one or more of
them in MSCs; (ii) irradiating the tumour in order to
increase migration and anchorage of MSCs because of
the induction of tumoural cytokines/chemokines
expression levels (158). However, a better understand-
ing of the axes inducing MSC migration towards HCC
would help increasing their specific recruitment and
thus, their therapeutic efficacy. Despite the significant
advances achieved in this field, several concerns remain
about the use of MSCs as carriers for therapeutic genes.
Among them, it is controversial whether or not they
enhance tumourigenesis. It is also important to state
that we should be cautious in extrapolating data from
laboratory rodents to the clinical setting. These
potentially useful strategies need to be tested in large
mammalian models closer to the human. Finally,
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although potent antitumour effects have been observed
using engineered MSCs in animal models, their isola-
tion, characterization and expansion need to be stan-
dardized, with the aim of using them for therapeutic
purposes in clinical trials against advanced HCC.
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