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Abstract. Let p be an even positive integer and Up(H) the Banach-Lie group

of unitary operators u which verify that u− 1 belongs to the p-Schatten ideal
Bp(H). Let O be a smooth manifold on which Up(H) acts transitively and

smoothly. Then one can endow O with a natural Finsler metric in terms of

the p-Schatten norm and the action of Up(H). Our main result establishes
that for any pair of given initial conditions

x ∈ O and X ∈ (TO)x

there exists a curve δ(t) = etz ·x in O, with z a skew-hermitian element in the

p-Schatten class, such that

δ(0) = x and δ̇(0) = X,

which remains minimal as long as t‖z‖p ≤ π/4. Moreover, δ is unique with
these properties. We also show that the metric space (O, d) (where d is the

rectifiable distance) is complete. In the process we establish minimality results

in the groups Up(H), and a convexity property for the rectifiable distance. As
an example of these spaces, we treat the case of the unitary orbit

O = {uAu∗ : u ∈ Up(H)}
of a self-adjoint operator A ∈ B(H).

1. Introduction

Let H be an infinite dimensional Hilbert space and B(H) the space of bounded
linear operators acting in H. Denote by Bp(H) the p-Schatten class

Bp(H) = {a ∈ B(H) : Tr((a∗a)p/2) <∞}.

where Tr is the usual trace of B(H). In this paper we shall focus on the case when
p is an even integer. The spaces Bp(H) are Banach spaces with the norms

‖a‖p = Tr((a∗a)p/2)1/p.

We use the subscript h (resp. ah) to denote the sets of hermitian (resp. skew-
hermitian) operators, e.g. Bp(H)h = {x ∈ Bp(H) : x∗ = −x}. Throughout this
paper, ‖ ‖ denotes the usual operator norm. Denote by Gl(H) the linear group
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and by U(H) the unitary group of H. Consider the following classical Banach-Lie
groups groups of operators [12]:

Glp(H) = {g ∈ Gl : g − 1 ∈ Bp(H)},
and

Up(H) = {u ∈ U(H) : u− 1 ∈ Bp(H)},
where 1 ∈ B(H) denotes the identity operator. These groups have differentiable
structure when endowed with the metric ‖g1 − g2‖p (note that g1 − g2 ∈ Bp(H)).
For instance, the Banach-Lie algebra of Up(H) is the (real) Banach space Bp(H)ah.

Let O be a topological space on which Up(H) acts transitively, such that for
any element x ∈ O, the subgroup Gx = {u ∈ Up(H) : u · x = x} is a closed
submanifold of Up(H). This implies that O can be endowed with a differentiable
manifold structure, in a way such that the map

π = πx : Up(H)→ O, πx(u) = u · x
is a smooth submersion. In other words, O ' Up(H)/Gx is a smooth homogeneous
space of the group Up(H). The main object of this paper is the geometric study
of this space, under reasonably general conditions, which are specified below. We
introduce a Finsler metric {‖ ‖x : x ∈ O} in O, (a Riemannian metric if p = 2)
induced by the p norm in Bp(H) and by the action. We focus on the existence
of metric geodesics, i.e. curves of minimal length. Our approach is to study the
metric geometry of the group Up(H) in order to obtain results in O. In the process
we find properties in Up(H) which we claim are interesting in their own right. For
instance:

(1) The one-parameter unitary groups etz ∈ Up(H) (z ∈ Bp(H)ah), regarded as
curves of unitaries, have minimal length in the p-norm, as long as t‖z‖ ≤ π
(note that this condition is given in terms of the usual norm ‖z‖ of z, a
fact that implies that there are arbitrarily long minimal curves in Up(H)).

(2) The map fp(t) = dp(u0, e
tz)p, where dp is the rectifiable metric induced by

the p-norm, and u0 is a fixed element in Up(H), is a strictly convex function,
provided that u0 and the endpoints of the curve lie at distance not greater
than π/4.

Denote by Gx the Banach-Lie algebra of Gx. We shall make the assumption that
Gx is locally exponential: since any element u ∈ Up(H) is of the form u = ez for
some z ∈ Bp(H), we ask that for any element v ∈ Gx close to 1 ∈ Gx, there exists
an element z ∈ Gx such that v = ez. Apparently, if this holds for a given x0 ∈ O,
then it holds for any x ∈ O (since the groups Gx and Gx0 are conjugate by an
inner automorphism). This is equivalent to ask that Gx is a (non complemented)
Banach-Lie subgroup of Up(H).

Using these facts we prove our main results on O:
(1) If x ∈ O and X ∈ (TO)x, then there exists a unique curve γ(t) = etz · x

with γ(0) = x and γ̇(0) = X, which has minimal length in O as long as
t‖X‖x ≤ π/4.

(2) The metric space (O, d) is complete, where d is the rectifiable metric in-
duced by the Finsler metric in O.

There are many examples of this situation. For instance, if A ∈ B(H) is a self-
adjoint operator, its unitary orbit OA = {uAu∗ : u ∈ Up(H)} is a homogeneous
space, the group GA consists of the elements of Up(H) which commute with A. GA
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is a Banach-Lie subgroup of Up(H) since it is an algebraic subgroup (cf. Theorem
4.13 in [5]), and its Lie algebra is given by

GA = {x ∈ Bp(H)ah : xA−Ax = 0}.
Unitary orbits of operators have been studied before from a geometric point of

view in [3, 4, 6, 7, 10, 16, 19]. In this particular framework, restricting the action
to these classical groups Up(H), certain results can be found in [6, 7, 8, 16].

Let us briefly describe the contents of the paper. In Section 2 we introduce the
Finsler metric which is Riemannian if p = 2. In Section 3 we examine the metric
structure of the group Up(H) endowed with the Finsler metric given by the p-norm.
We recall certain known facts, and prove results which we believe are new, among
them the two results described above. In Section 4 we show the consequence of these
facts on the homogeneous space O: existence and uniqueness of short curves with
given initial data. In Section 5 we prove that the metric spaces O are complete.
Section 6 is devoted to the example OA, p = 2, giving a characterization of the
case when OA is a smooth submanifold of the affine Hilbert space A+ B2(H)h. In
Section 7 we state what we believe is the main open problem in this setting, namely
the existence of minimal curves joining given endpoints in O, and prove a partial
positive result.

2. Linear connections and metrics

Let us first consider the case p = 2. One can induce a metric in (the tangent
spaces of) O by means of the decomposition

B2(H)ah = Gx ⊕Fx,
where Fx is the Tr-orthogonal complement of Gx. Apparently, Fx is invariant
by the inner action of Gx. Therefore this decomposition defines what in classical
geometry of homogeneous spaces [22] is called a Reductive Structure.

The kernel of d(πx)1 is Gx, therefore

δx := d(πx)1|Fx : Fx → (TO)x
is a linear isomorphism. Denote by κx its inverse, and by Px the Tr-orthogonal
projection

Px : B2(H)ah → Fx ⊂ B2(H)ah.
We endow (TO)x with the following inner product

(2.1) < V,W >x= Tr(κx(W )∗κx(V )) = −Tr(κx(W )κx(V )), V,W ∈ (TO)x.

Clearly the distribution x 7→< , >x is smooth, in the sense that that if V,W are
tangent fields in O, then the map O 3 x 7→< Vx,Wx >x is smooth, and therefore
(2.1) defines a Riemann-Hilbert metric in O.

The Levi-Civita connection of this metric can be computed. In the paper [17] two
natural linear connections for a homogeneous reductive space were introduced. The
first, which is called the reductive connection ∇r, is the analogous to the connection
that one obtains for a reductive manifold in finite dimensions. It can be described
as follows. If V is a tangent field and W is a tangent vector (at x) in O, then

(2.2) κx(∇rWV (x)) = κx(W )(κx(Vx)) + [κx(Vx), κx(W )],

where [ , ] is the commutator of operators in B(H), and a(b) denotes the the
derivative of b in the direction of a.
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A straightforward computation shows that since the maps κ are isometric, the
reductive connection is compatible with the metric defined.

The second natural connection for a reductive space is the classifying connection
∇c. Suppose that V,W are as above, then put

(2.3) ∇cV (W )(x) = δxPx(κx(V )[κx(W )]x).

These two connections share the same geodesics, which are described below, and
have torsion tensors with opposite signs. It follows that the connection

∇ =
1
2

(∇r +∇c)

has zero torsion, and the same geodesics. We claim that this connection ∇ is the
Levi-Civita connection of the metric (2.1) introduced above, in the sense that it is
symmetric (torsion free) and compatible with the metric. To prove this claim, it
only remains to show that ∇c is compatible with the metric.

Lemma 2.1. The classifying connection ∇c is compatible with the metric < , >x
in O.

Proof. Let V (t), W (t) be two tangent fields along the curve ν(t) in O. Then

<
DcV

dt
,W >ν= −Tr(κν(W )κν(

DcV

dt
)) = −Tr(κν(W )Pν( ˙κν(V ))).

Note that since κν(W ) ∈ R(Pν), Tr(κν(W )Pν( ˙κν(V ))) = Tr(κν(W ) ˙κν(V )). Anal-
ogously

< V,
DcW

dt
>ν= −Tr( ˙κν(W )κν(V )).

Then

<
DcV

dt
,W >ν + < V,

DcW

dt
>ν = −Tr(κν(W ) ˙κν(V ))− Tr( ˙κν(W )κν(V ))

=
d

dt
< V,W >ν .

�

The geodesics of these connections are computed explicitly in [17]. For instance,
the geodesic γ with γ(0) = x and γ̇(0) = V is given by

(2.4) γ(t) = eκx(V ) · x, t ∈ R.

In other words, geodesics of O are of the form etz · x, for z ∈ Fx.
The following linear differential equation is usually called the horizontal lifting

equation of the reductive structure:

(2.5)
{

Γ̇ = κγ(γ̇)Γ
Γ(0) = 1.

It is a linear differential equation in B2(H). In order to assure the existence and
uniqueness of solutions, one must check that the mapping

[0, 1] 3 t 7→ κγ(t)(γ̇(t)) ∈ B2(H)ah,

is smooth. This is clear if γ is smooth.
Therefore the equation (2.5) has, for a given γ, a unique solution. One can prove,

as in classical homogeneous reductive spaces [22], the following result.
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Proposition 2.2. Let γ(t), t ∈ [0, 1] be a smooth curve in O. Then the unique
solution Γ of (2.5) verifies

(1) Γ(t) ∈ U2(H), t ∈ [0, 1].
(2) Γ lifts γ: πγ(Γ) = γ.
(3) Γ is horizontal: Γ∗Γ̇ ∈ Fγ .

It will be useful to take a brief look at the natural Riemannian geometry of the
group U2(H). Namely, the metric given by considering the trace inner product, and
therefore, the 2-norm at each tangent space. The tangent spaces of U2(H) are

(TU2(H))u = uB2(H)ah = B2(H)ahu.

The covariant derivative consists of differentiating in the ambient space, and pro-
jecting (orthogonally with respect to the real part of the trace) onto TU2(H).
Geodesics of the Levi-Civita connection are curves of the form

µ(t) = uetx,

for u ∈ U2(H) and x ∈ B2(H)ah. The exponential mapping of this connection is
the map

exp : B2(H)ah → U2(H), exp(x) = ex.

In the general case p > 2, one can endow the homogeneous space O with a
Finsler metric, derived from the p-norm and the group action. Following ideas
in [11], we shall not consider a linear connection in this case, and focus only on
characterizing short curves (or metric geodesics), which are not the geodesics of
any linear connection. First let us introduce some notation. The action of Up(H)
on O induces two kind of maps. If one fixes x ∈ O, one has the submersion

πx : Up(H)→ O, πx(u) = u · x, u ∈ Up(H).

If one fixes u ∈ Up(H) one has the diffeomorphism

`u : O → O, `u(x) = u · x, x ∈ O.

If x ∈ O and X ∈ (TO)x, put

(2.6) ‖X‖x = inf{‖z‖p : z ∈ Bp(H)ah, (dπx)1(z) = X}.

This metric could be called the quotient metric of O, because it is the quotient
metric in the Banach space (TO)x if one identifies it with Bp(H)ah/Gx. Indeed,
since Gx = ker(dπx)1, if z ∈ Bp(H)ah with (dπx)1(z) = X, then

‖X‖x = inf{‖z − y‖p : y ∈ Gx}.

Note that if p = 2, this metric coincides with the previously defined Riemannian
metric. Indeed, if Qx = 1 − Px is the orthogonal projection onto Gx, then each
z ∈ B2(H)ah can be uniquely decomposed as

z = z −Qx(z) +Qx(z) = z0 +Qx(z),

hence

‖z − y‖22 = ‖z0 +Qx(z)− y‖22 = ‖z0‖22 + ‖Qx(z)− y‖22 ≥ ‖z0‖22
for any y ∈ G2,x, which shows that

‖X‖x = inf{‖z − y‖2 : y ∈ Gx} = ‖z0‖2,

where z0 is the unique vector in G⊥x such that (dπx)1(z0) = X.
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This metric inO is invariant by the group action (i.e. the group acts isometrically
on the tangent spaces): if x ∈ O, X ∈ (TO)x and u ∈ Up(H),

‖(d`u)x(X)‖u·x = ‖X‖x.
Indeed, if z ∈ Bp(H)ah, then (dπu·x)1(z) = (d`u)x(X) if and only if

X = ((d`u)x)−1 ◦ (dπu·x)1(z) = (d`u−1)u·x ◦ (dπu·x)1(z)
= (d`u−1 ◦ πu·x)1(z) = (dπx)1(z).

Throughout this paper, L denotes the length functional for piecewise smooth
curves in O, measured with the quotient norm just defined

L(γ) =
∫ t1

t0

‖γ̇(t)‖γ dt,

and d denotes the rectifiable distance in O,

d(x0, x1) = inf{L(γ) : γ ⊂ O joins x0 and x1}.

3. Metric structure of Up(H)

In this section we recall and complete certain facts from [1], concerning the
minimality of geodesics in Up(H). Afterwards we establish local convexity results
for the geodesic distance. These results will be the key to obtain minimality results
in O. Proofs for these statements for the case p = 2 can be found in [1].

Throughout, Lp denotes the length functional for piecewise smooth curves in
Up(H), measured with the p-norm:

Lp(α) =
∫ t1

t0

‖α̇(t)‖p dt

and dp is the rectifiable distance in Up(H):

dp(u1, u2) = inf{Lp(γ) : γ ⊂ Up(H) joins u1 and u2}.

Remark 3.1. (1) The exponential map

exp : Bp(H)ah → Up(H)

is surjective.
(2) The exponential map is a bijection between the sets

Bp(H)ah ⊃ {z ∈ Bp(H)ah : ‖z‖ < π} → {u ∈ Up(H) : ‖1− u‖ < 2}.
(3) Moreover,

exp : {z ∈ Bp(H)ah : ‖z‖ ≤ π} → Up(H),

is surjective.

These facts can be obtained from the following observation. If u ∈ Up(H), then
it has a spectral decomposition u = p0 +

∑
k≥1(1 + αk)pk, where αk are the non

zero eigenvalues of u − 1 ∈ Bp(H). There exist tk ∈ R with |tk| ≤ π such that
eitk = 1 + αk. The elementary estimate

|tk|p(1−
|tk|2

12
)p/2 ≤ |eitk − 1|p = |αk|p

implies that the element z =
∑
k≥1 itkpk, whose exponential is u, lies in Bp(H)ah.
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The following result states that the one parameter groups of unitaries in Up(H)
have minimal length up to a certain critical value of t. This could be derived from
the general theory of Hilbert-Riemann manifolds for the case p = 2. In any case,
the proof, which is essentially contained in [1], is operator theoretic, and provides
a uniform lower bound for the geodesic radius.

Theorem 3.2. The following facts hold.
(1) Let u ∈ Up(H) and x ∈ Bp(H)ah with ‖x‖ ≤ π. Then the curve µ(t) = uetx,

t ∈ [0, 1] is shorter than any other piecewise smooth curve in Up(H) joining
the same endpoints. Moreover if ‖x‖ < π, µ is unique with this property.

(2) Let u0, u1 ∈ Up(H). Then there exists a minimal geodesic curve joining
them. If ‖u0 − u1‖ < 2, this geodesic is unique.

(3) There are in Up(H) minimal geodesics of arbitrary length. Thus the diam-
eter of Up(H) is infinite.

(4) If u, v ∈ Up(H) then√
1− π2

12
dp(u, v) ≤ ‖u− v‖p ≤ dp(u, v).

In particular the metric space (Up(H), dp) is complete.

Proof. Concerning the first statement, in [1] the following was proved. If u ∈ U2(H)
and x ∈ B2(H)ah with ‖x‖ ≤ π, then the curve µ(t) = uetx is minimal for t ∈ [0, 1],
when the length is measured with the p-norm. Clearly it suffices to treat the case
u = 1. Suppose that there exists a curve γ(t) ∈ Up(H) with Lp(γ) < Lp(µ) + ε.
One can approximate x with a skew-hermitian operator z of finite spectrum with
the following properties:

(1) ‖z‖ ≤ ‖x‖ ≤ π.
(2) ‖x‖p − ε/2 < ‖z‖p ≤ ‖x‖p.
(3) There exists a C∞ curve of unitaries joining ex and ez, of p-length less than

ε/2.
The first two conditions are clear. The third can be obtained as follows. Put
e−xez = ey, with y ∈ Bp(H)ah. The element z can be adjusted so as to obtain y of
arbitrarily small p-norm. Then the curve of unitaries ν(t) = exety is C∞, joins ex

and ez with p-length ‖y‖p < ε/2.
Consider now the curve γ1, which is the curve γ followed by the curve exety

above. Then clearly

Lp(γ1) ≤ Lp(γ) + ‖y‖p < Lp(γ) + ε/2.

Note that Lp(γ1) < ‖x‖p − ε/2 and that γ1 joins 1 and ez. We claim that there
exists a curve γ2 in U2(H), also joining 1 and ez, with length Lp(γ2) < Lp(γ1)+ε/4.
Indeed, the curve γ1 is of the form γ1(t) = eα(t) for a continuous piecewise C1 path
α ∈ Bp(H)ah with endpoints 0 and z. By compactness of the unit interval, one can
uniformly approximate α by a curve β with the same endpoints, lying in B2(H)ah,
in order that γ2(t) = eβ(t) verifies our claim. These facts imply that the curve γ2

in U2(H) which joins 1 and ez, is shorter than the curve etz (which lies in U2(H)
because the spectrum of z is finite). This contradicts the minimality statement in
U2(H) proved in [1].

Let us prove that if ‖x‖ < π, then µ is unique with the minimality property. To
do this we shall follow a standard procedure, using the first variation formula for



8 ESTEBAN ANDRUCHOW, GABRIEL LAROTONDA AND LÁZARO RECHT

the functional Fp which is given by

Fp(γ) =
∫ 1

0

‖γ̇(t)‖ppdt,

if γ(t) ∈ Up(H), t ∈ [0, 1].
Let γs(t), t ∈ [0, 1], s ∈ (−r, r) be a smooth variation of the curve γ, i.e.
(1) γs(t) ∈ Up(H), for all s, t.
(2) The map (s, t) 7→ γs(t) is smooth.
(3) γ0(t) = γ(t).

We shall use a formula for
d

ds
Fp(γs)|s=0.

obtained in [2] in the context of a C∗-algebra with trace, which applies here be-
cause the formal computations are the same (they only involve partial derivatives
and integration by parts). As in classical differential geometry, we shall call the
expression obtained the first variation formula. Let

Vs =
d

dt
γs and Ws =

d

ds
γs.

With lower case types we denote the left translations

vs = γ∗sVs and ws = γ∗sWs.

Note that Vs,Ws ∈ (TUp(H))γs
whereas vs, ws ∈ Bp(H)ah.

Then
(−1)p/2

p

d

ds
Fp(γs) = Tr(vp−1

s ws)|t=1
t=0 −

∫ 1

0

Tr(
d

dt
[vp−1
s ]ws)dt.

Suppose that γ(t) ∈ Up(H) is a smooth minimal curve, and let γs(t) be a varia-
tion, with fixed endpoints γ(0) and γ(1), i.e. γs(0) = γ(0) and γs(1) = γ(1) for all
s. Then d

dsFp(γs)|s=0 = 0, and thus

0 = Tr(vp−1
0 w0)|t=1

t=0 −
∫ 1

0

Tr(w0
d

dt
(vp−1

0 ))dt.

The fixed endpoints hypothesis implies that the first term vanishes. Then∫ 1

0

Tr(w0
d

dt
(vp−1

0 ))d = 0

for any variation γs with fixed endpoints. Let us denote by Z(t) = d
dt (v

p−1
0 ) and by

A(t) = w0(t). Both A and Z are continuous fields, A in Bp(H)ah and Z in Bq(H)ah,
where 1/p+ 1/q = 1. The variation formula implies that∫ 1

0

Tr(A(t)Z(t))dt = 0

for any continuous field A in Bp(H)ah such that A(0) = A(1) = 0. We claim that
this condition implies that Z(t) = 0 for all t.

First note that the requirement that the field A vanishes at 0 and 1 can be
removed: let fr(t) be a real function which is constant and equal to 1 in the
interval [r, 1 − r] and such that f(0) = f(1) = 0, with 0 ≤ fr(t) ≤ 1 for all t. Let
B(t) be any continuous field in Bp(H)ah and consider Ar(t) = fr(t)B(t). Then∫ 1

0
Ar(t)Z(t)dt = 0, and if r → 0,

∫ 1

0
B(t)Z(t)dt = 0. Also it is clear that the
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integral will vanish if A is non skew-hermitian. Indeed, it is clear if A is hermitian,
and for general A, decompose A as the sum of its hermitian and skew-hermitian
parts.

Fix t0 in the interval [0, 1]. Let Z(t0) = u|Z(t0)| be the polar decomposition,
and consider x = |Z(t0)|q−1u∗ ∈ Bp(H). Consider the constant field A(t) = x in
Bp(H), then

0 =
∫ 1

0

Tr(xZ(t))dt = ‖Z(t0)‖qq.

Then vp−1
0 is constant, and since p is even and v0 is skew-hermitian, v0(t) =

γ(t)∗ ddtγ(t) is constant, i.e. γ(t) = etx for some x ∈ Bp(H)ah.
Fact 2. was proved in [1], the (algebraic) argument for p > 2 is the same as for

p = 2.
Fact 3. was proved in [1].
Fact 4. follows from the elementary estimate in the remark above. �

Let us establish further facts on the metric structure of the group Up(H).

Lemma 3.3. Let a, b ∈ Bp(H), let exp : Bp(H) → 1 + Bp(H) be exp(x) = ex, and
ad a : Bp(H)→ Bp(H) the operator ad a(x) = xa− ax. Then

d expa(b) =

1∫
0

e(1−t)abeta dt = ea F (ad a)b = F (ad a)(ea b),

where F (z) = ez−1
z =

∑
n≥0

zn

(n+1)! . The differential is invertible at a if and only if
σ(ad a) ∩ {2kπi} = ∅ (k ∈ Z6=0), and then

d exp−1
a (w) = e−aF (ad a)−1w.

In particular if ‖a‖ < π then d expa is invertible. If a ∈ Bp(H)ah, then the differ-
ential is a contraction:

‖d expa(b)‖p ≤ ‖b‖p.

Proof. Compute lim
s→0

ea+sb−ea

s , applied to the identity

ea+b − ea =

1∫
0

e(1−t)abet(a+b),

which is elementary and can be proven integrating by parts the functions f(t) =
e(1−t)a and g(t) = et(a+b) in [0, 1]. To prove the second equality, write

e−tabeta = et(Ra−La)(b),

where La(x) = ax and Ra(x) = xa denote left and right multiplication by a. Then∫ 1

0

et(Ra−La) dt =
∑
n≥0

1
n!

∫ 1

0

tn dt(Ra −La)n =
∑
n≥0

1
(n+ 1)!

(Ra −La)n = F (ad a).

If ‖a‖ < π, then ‖ad a‖ < 2π hence σ(ad a) ⊂ B(0, 2π) so the spectrum of ad a does
not intersect the zero set of F . The last assertion is due to the fact that, when a is
skew-hermitian, then ea is a unitary element, hence

‖d expa(b)‖p ≤
∫ 1

0

‖e(1−t)abeta‖p dt = ‖b‖p.
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�

The following elementary lemma will simplify the proof of the next theorem.

Lemma 3.4. Let C, ε > 0, let f(−ε, 1 + ε) → R be a non constant real analytic
function such that f ′(s)2 ≤ Cf ′′(s) for any s ∈ [0, 1]. Then f is strictly convex in
(0, 1).

Proof. By the mean value theorem, the condition on f implies that for each pair
of roots of f ′, there is another root of f ′ in between. Since f is analytic and non-
constant, the set of roots of f ′ is an empty set or has one point α ∈ (−ε, 1 + ε).
If this set of roots does not intersect (0, 1), then f ′′ > 0 there and we are done.
We assume then that there exists α in (0, 1) such that f ′(α) = 0. Note that
−f ′(x) = f ′(α) − f ′(x) =

∫ α
x
f ′′(s)ds > 0 for any x ∈ (−ε, α] and f ′(y) = f ′(y) −

f ′p(α) =
∫ y
α
f ′′(s)ds > 0 for any y ∈ [α, 1 + ε), hence f ′ is strictly negative in

(−ε, α) and strictly positive in (α, 1 + ε), so f is strictly convex in each interval. If
f(α) < [f(1)−f(0)]α+f(0), we are done. If not, by the mean value theorem there
exists x ∈ (0, α), y ∈ (α, 1) such that

f(1)− f(0) =
f(α)− f(0)

α
= f ′(x) < 0

and

f(1)− f(0) =
f(1)− f(α)

1− α
= f ′(y) > 0,

a contradiction. �

Remark 3.5. The Hessian of the p-norms was studied in [2, 18]. We recall a few
facts we will use in the proof of the next theorem. Let a, b, c ∈ Bp(H)ah, let
Ha : Bp(H)ah → R stand for the symmetric bilinear form given by

Ha(b, c) = (−1)
p
2 p

p−2∑
k=0

Tr(ap−2−kbakc).

If Q is the quadratic form associated to H, then (cf. Lemma 4.1 in [2] and equation
(3.1) in [18]):

(1) Qa([b, a]) ≤ 4‖a‖2∞Qa(b).
(2) Qa(b) = p‖ba

p
2−1‖22 + p

2

∑
l+m=n−2 ‖al(ab+ ba)am‖22.

In particular Ha is positive definite for any a ∈ Bp(H)ah.

Our convexity results follow. If u ∈ Up(H), denote by Bp(u, r) the geodesic ball
of radius r around u in Up(H), i.e.

Bp(u, r) = {w ∈ Up(H) : dp(u,w) < r}.

Theorem 3.6. Let p be a positive even integer, u ∈ Up(H) and β : [0, 1]→ Up(H)
a non-constant geodesic contained such that β ⊂ Bp(u, π2 ). Assume further that u
does not belong to any prologantion of β. Then

fp(s) = dp(u, β(s))p

is a strictly convex function.
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Proof. We may assume that u = 1 since the action of unitary elements is isometric.
Let v, z ∈ Bp(H)ah such that β(s) = evesz. Since β ⊂ Bp(1, π2 ), it has an analytic
logarithm ws = log(β(s)) = log(evesz). Let γs(t) = etws . Since ‖ws‖ ≤ ‖ws‖p <
π/2, γs is a short geodesic joining 1 and β(s), of length ‖ws‖p = dp(1, β(s)). Then
fp(s) = ‖ws‖pp = Tr((−w2

s)
p
2 ) = (−1)

p
2 Tr(wps), hence

f ′p(s) = (−1)
p
2 p Tr(wp−1

s ẇs) =
1

p− 1
Hws(ẇs, ws).

For x, y ∈ Bpah, we have the formula d expx(y) =
∫ 1

0
e(1−t)xyetx dt from the previous

lemma. Since ews = evesz, then e−ws d expws
(ẇs) = z, namely

(3.1) z =
∫ 1

0

e−twsẇse
tws dt.

Thus Tr(wp−1
s ẇs) =

∫ 1

0
Tr(wp−1

s e−twsẇse
tws) dt = Tr(zwp−1

s ). Hence

f ′′p (s) = (−1)
p
2 p

p−2∑
k=0

Tr(wp−2−k
s ẇsw

k
s z) = Hws

(ẇs, z),

and again by equation (3.1) above, if we put δs(t) = e−twsẇse
tws , then

f ′′p (s) =
∫ 1

0

Hws
(δs(0), δs(t)) dt.

Suppose that for this value of s ∈ [0, 1], R2
s := Qws

(ẇs) 6= 0, where Qws
is the

quadratic form associated to Hws
. If Ks ⊂ Bp(H)ah is the null space of Hws

,
consider the quotient space Bp(H)ah/Ks equipped with the inner product Hws

(·, ·).
An elementary computation shows that δs(t) lives in a sphere of radius Rs of this
pre-Hilbert space, hence

Hw(δs(0), δs(t)) = R2
s cos(αs(t)),

where αs(t) is the angle subtended by δs(0) and δs(t). Then, reasoning in the sphere

Rsαs(t) ≤ Lt0(δs) =
∫ t

0

Q
1
2
ws(e−tws [ws, ẇs]etws) dt

=
∫ t

0

Q
1
2
ws([ws, ẇs]) dt = tQ

1
2
ws([ws, ẇs]).

By property 1. of the above remark,

Rsαs(t) ≤ t 2‖ws‖∞Rs ≤ 2t‖ws‖pRs < Rsπ

if ‖ws‖p < π
2 . So

cos(αs(t)) ≥ cos(2t‖ws‖p)
and then integrating with respect to the t-variable,

f ′′p (s) ≥ R2
s

sin(2‖ws‖p)
2‖ws‖p

> 0

provided Rs 6= 0. On the other hand, the Cauchy-Schwarz inequality for Hws
shows

that if Rs = 0, then

(p− 1)f ′p(s) = Hws
(ws, ẇs) ≤ Q

1
2
ws(ẇs)Q

1
2
ws(ws) = 0.

Assume that Rs is identically zero, s ∈ [0, 1]. Then fp is constant with fp(s) =
fp(0) = ‖v‖p for any s ∈ [0, 1]. Moreover, by property 2. of the above remark,
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Rs = 0 implies w
p
2−1
s z = 0 and an elementary computation involving the functional

calculus of skew-adjoint operators shows that wsz = 0; in particular vz = 0 which
implies ws = v+sz by the Baker-Campbell-Hausdorff formula. But since the norm
of Bp(H) is strictly convex, ws cannot have constant norm unless v is a multiple
of z, and in that case, u and β are aligned contradicting the assumption of the
theorem. So there is at least one point s0 ∈ [0, 1] where Rs0 6= 0, so fp is non
constant and by Lemma 3.4, fp is strictly convex since

(p− 1)2f ′p(s)
2 = H2

ws
(ws, ẇs) ≤ Qws

(ẇs)Qws
(ws) ≤ Cf ′′p (s).

�

Remark 3.7. A careful reading of the proof of the above theorem shows that fp is
in fact strictly convex provided that the uniform norm ‖ws‖ is strictly less than
π/2.

Corollary 3.8. Let u1, u2, u3 ∈ Up(H) with u2, u3 ∈ Bp(u1,
π
4 ), and assume that

they are not aligned (i.e. they do not lie in the same geodesic). Let γ(s) be the
short geodesic joining u2 with u3. Then distp(u1, γ(s)) < π

2 for s ∈ [0, 1] and π
4 is

the radius of convexity of the metric balls of Up(H).

Proof. Note that

distp(u1, γ(s)) ≤ distp(u1, u2) +
1
2
distp(u2, u3)

≤ distp(u1, u2) +
1
2

(distp(u2, u1) + distp(u3, u1)) < 2
π

4
=
π

2
,

hence the conclusion follows from the previous theorem. �

4. Minimality in O: initial values problem

For our main result on minimality in O, we make the assumption that for some
(hence for any) x ∈ O, the group Gx is locally exponential. Namely, there exists
a radius δ > 0 such that if v ∈ Gx with ‖v − 1‖p < δ, then there exists an
element z ∈ Gx such that v = ez. This is equivalent to the fact that Gx is a (non
complemented) Banach-Lie subgroup of Up(H). This property implies in particular,
that Gx is locally geodesically convex: given any pair of elements v1, v2 ∈ Gx with
‖v1 − v2‖p < δ, then there exists a unique minimal geodesic of Up(H), which lies
inside Gx, and joins v1 and v2.

Our argument on minimality in O will consist in comparing the lengths of the
liftings of curves to the unitary group Up(H). For the case p = 2 this technique is
based on the following fact:

Remark 4.1. Let γ(t), t ∈ [0, 1] be a smooth curve in O, with γ(0) = x, and let Γ
be its horizontal lifting. Then

L2(Γ) = L(γ).

Indeed, recall from (2.5) that Γ̇ = κγ(γ̇)Γ, and also note that by definition of the
metric, κx : (TO)x → Fx ⊂ B2(H)ah is isometric. Then

‖γ̇‖γ = ‖κγ(γ̇)‖2 = ‖Γ∗Γ̇‖2 = ‖Γ̇‖2,
and the result follows.



FINSLER GEOMETRY AND ACTIONS OF THE P-SCHATTEN UNITARY GROUPS 13

Let us show that for p > 2 we can still have isometric lifts of curves in O.
First note that the general theory ensures the existence of piecewise C1 liftings

in Up(H) of C1 curves in O, due to the fact that for any fixed x ∈ O, the map

πx : Up(H)→ O, πx(u) = u · x,

is a submersion.
We need to discuss the projection to closed linear spaces in Bp(H) and a few

technical lemmas first.

Remark 4.2. Let 1 < p < ∞. Then for any convex closed set S ⊂ Bp(H)ah there
exists a continuous map QS : Bp(H)ah → S which sends x ∈ Bp(H)ah to its best
approximant QS(x) ∈ S, i.e.

‖x−QS(x)‖p ≤ ‖x− s‖p
for any s ∈ S.

The map QS is single-valued and continuous, because Bp(H) is uniformly convex
and uniformly smooth (see for instance [9]). Note that

‖Q(x)‖p ≤ ‖Q(x)− x‖p + ‖x‖p ≤ ‖0− x‖p + ‖x‖p = 2‖x‖p
and also that

‖x−QS(x)− s‖p ≥ ‖x−QS(x)‖p
for any s ∈ S, hence QS(x−QS(x)) = 0, namely QS ◦ (1−QS) = 0. Also, for any
positive λ ∈ R,

QS(λx) = λQS(x).
Let x ∈ O, let G = Gx be the isotropy group and Gx the Lie algebra of G as

usual. Let Q = QGx
be the projection to the best approximant in Gx. Let

G⊥p
x = Q−1(0) = {x ∈ Bp(H)ah : ‖x‖p ≤ ‖x− y‖p for any y ∈ Gx}.

Then any element z ∈ Bp(H)ah can be decomposed as

z = z −Q(z) +Q(z),

where z − Q(z) ∈ G⊥p
x and Q(z) ∈ Gx. In particular, these facts imply that given

x ∈ O and X ∈ (TO)x, there exists a minimal lifting z0 ∈ Bp(H)ah for x. Indeed,
since

πx : Up(H)→ O, πx(u) = u · x
is a smooth submersion, the differential (dπx)1 is surjective, and thus there exists
z ∈ Bp(H)ah such that d(πx)1(z) = X. Then a minimal lifting is

z0 = z −Q(z) ∈ G⊥p
x .

Calling Q̄ = 1−Q, we have

Gx = Q̄−1(0) = Im(Q), G⊥p
x = Q−1(0) = Im(Q̄),

and also
Q̄2 = Q̄, Q2 = Q, Q̄ ◦Q = Q ◦ Q̄ = 0.

Lemma 4.3. Let p be an even positive integer. Let x ∈ O and X ∈ (TO)x. An
element z ∈ Bp(H)ah with (dπx)1(z) = X is a minimal lifting for X if and only if
Tr(zp−1y) = 0 for all y ∈ Gx. For any X ∈ (TO)x there exists a unique minimal
lifting z ∈ G⊥p

x such that ‖z‖p = ‖X‖x.
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Proof. Suppose that z0 is a minimal lifting, and for a fixed y ∈ Gx, let f(t) =
‖z0 − ty‖pp. Then f is a smooth map with a minimum at t = 0, i.e. f ′(0) = 0.
A straightforward computation shows that f ′(t) = Tr((z0 − ty)p−1y), and thus
Tr(zp−1

0 y) = 0. Conversely, suppose that Tr(zp−1
0 y) = 0 for all y ∈ Gx and

suppose that there exists y0 ∈ Gx such that ‖z0 − y0‖p < ‖z0‖p. Then the map
f(t) = ‖z0 − ty0‖pp would not have a minimum at t = 0. This is a contradiction,
since f is convex and f ′(0) = 0. The existence of minimal liftings was established
in the previous remark: take any w ∈ Bp(H)ah such that (dπx)1(w) = X and then
take z = w − QGx

(w). If (dπx)1(z1) = (dπx)1(z2) = X for z1, z2 ∈ Bp(H)ah, then
z1 − z2 ∈ Gx; if z1 and z2 are minimal liftings of X, then we have

‖z1‖p ≤ ‖z1 − (z1 − z2)‖p = ‖z2‖p
and the reversed inequality also holds, hence ‖z1‖p = ‖z2‖p = ‖X‖x. To prove
uniqueness we may assume then that ‖z1‖p = ‖z2‖p = 1. Consider the smooth
convex function g : Gx → R>0 given by

y 7→ ‖z1 − y‖pp.
Now g(0) = ‖z1‖pp = 1 is a minimum for g, and we are assuming that g(z1 − z2) =
‖z2‖pp = 1 is another minimum. Hence g must be constant on the straight segment
s(z1 − z2) ∈ Gx for any s ∈ [0, 1]. In particular (with s = 1

2 ),

‖1
2

(z1 + z2)‖pp = ‖z1‖pp = ‖z2‖pp = 1,

which forces z1 = z2, since Bp(H) is uniformly convex. �

Having established the linear result on minimal liftings, let us prove two technical
lemmas in order to extend the isometric lifting property to smooth curves γ ⊂ O.

Lemma 4.4. Let k ≥ 1, w ∈ Bp(H) with ‖w‖p < π
2 . Then

T = 1 +
(adw)2

4k2π2

is invertible in B(Bp(H)) and

‖T−1‖ ≤
(

1− ‖w‖
2

k2π2

)−1

≤

(
1−
‖w‖2p
k2π2

)−1

.

Proof. Since ‖adw‖ ≤ 2‖w‖ ≤ 2‖w‖p < π, the map T is invertible and its inverse
can be computed with the Neumann series. �

Remark 4.5. Consider g(r) =
r

sin(r)
with g(0) = 1. Then g : [0, π)→ R is positive

and increasing, and from the Weierstrass expansion of sin(z) we obtain

g(z) =
∏
k≥1

(
1− z2

k2π2

)−1

,

for any z such that |z| < π.

Proposition 4.6. Let F (z) =
ez − 1
z

, g(r) =
r

sin(r)
. Let w ∈ Bp(H) with ‖w‖p <

π
2 . Let t ∈ [0, 1]. Then

‖F (adw)−1‖ ≤ g(‖w‖) ≤ g(‖w‖p).
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Proof. The Weierstrass expansion of F (z) = ez−1
z is given by

F (z) =
∏
k≥1

(
1 +

z2

4k2π2

)
where the product converges uniformly on compact sets to F . Then F (adw) is
invertible since ‖adw‖ < π and

F (adw)−1 =
∏
k≥1

(
1 +

(ad (w))2

4k2π2

)−1

.

Hence

‖F (adw)−1‖ ≤
∏
k≥1

(
1− ‖w‖

2

k2π2

)−1

= g(‖w‖) ≤ g(‖w‖p)

by the previous lemma. �

Lemma 4.7. Let 1 < p < ∞, x ∈ O and Q = QGx
be the best approximant

projection. Let Γ ⊂ Up(H) be a piecewise C1 curve parametrized in the interval
[0, 1]. Then there exists a piecewise C1 curve z : [0, 1]→ Gx with z(0) = 0 such that

F (ad z)ż = −Q(Γ∗Γ̇).

If uΓ = ez ∈ Gx, then uΓ : [0, 1]→ Bp(H) obeys the differential equation

u̇Γu
∗
Γ = −Q(Γ∗Γ̇),

and Lp(uΓ) ≤ 2Lp(Γ).

Proof. Assume first that Γ is C1 in the whole [0, 1]. Let R0 = max
t∈J
‖Γ̇‖p, where J

is an open interval containing [0, 1] where Γ is differentiable. Let 0 < R < π
2 and

put G = Gx. Then if x ∈ G ∩B(0, R), the map F (adx) is invertible by the previous
lemma, its inverse is analytic and can be written as a power series in adx, hence

F (adx)−1 : G → G

because G is a Banach-Lie algebra. Moreover, since g is increasing,

‖F (adx)−1‖ ≤ g(‖x‖p) ≤ g(R).

Let f : J ×B(0, R) ∩ G → G be given by

f(t, x) = −F (adx)−1QG(Γ∗(t)Γ̇(t)).

Then f is continuous since Q and F−1 are continuous, moreover

‖f(t, x)‖p ≤ ‖F (adx)−1‖ 2‖Γ̇(t)‖p ≤ g(R)2R0 = L

by Remark 4.2 and the previous lemma. Since H(adx) = F (adx)−1 is analytic in
the ball ‖x‖p < π

2 , we have

‖H(adx)−H(ad y)‖ ≤ C(R)‖adx− ad y‖ ≤ 2C(R)‖x− y‖p

where C(R) is the bound for H ′ in ‖z‖p ≤ R. Then

‖f(t, x)− f(t, y)‖p ≤ 4C(R)R0‖x− y‖p = K‖x− y‖p.
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Then f satisfies a Lipschitz condition, uniformly respect to t ∈ J , hence by Propo-
sition 1.1 of Ch. IV in [15], there exists a continuous solution z0 : (−b, b) ×
B(0, R/4)→ G ∩B(0, R) of the integral equation

z(t) =
∫ t

0

f(s, z(s)) ds

with z0(0) = 0. Here b is any real number

0 < b <
R

4LK
=

sin(R)
32C(R)R2

0

Note that z0 is in fact C1. Differentiating both sides and multiplying by F (ad z(t))
gives the equation stated. We have proved so far that the equation

F (ad z)ż = −Q(Γ∗Γ̇)

has a local solution defined around zero. By a standard argument, it follows that
one can find a piecewise C1 solution defined on the whole interval [0, 1]: let N ∈ N
such that 1

N < b and let tk = k
N . Then [tk, tk+1] (k = 0, 1, · · ·N) is a partition of

[0, 1] such that the integral equation

z(t) =
∫ tk+1

tk

f(s, z(s)) ds

with the initial conditions z0(0) = 0, zk(tk) = zk−1(tk) for k ≥ 1, has a solution
zk : [tk, tk+1] → G. Then the curve z1]z2] · · · ]zN is a piecewise C1 solution of the
equation defined in the whole [0, 1].

If Γ is piecewise C1 instead of C1, one might replace the argument above for a
similar argument in each of the intervals where Γ is C1, and use the continuity of
Γ to state the boundary conditions for z.

If uΓ(t) = ez(t), then

u̇Γ(t) = d expz(t)(ż(t)) =
∫ 1

0

esz(t)ż(t)e−sz(t)ds uΓ(t) = F (ad z(t))ż(t)uΓ(t)

by Lemma 3.3. Then u̇ = F (ad z)ż u, and hence u̇u∗ = −Q(Γ∗Γ̇). Thus

‖u̇‖p = ‖Q(Γ∗Γ̇)‖p ≤ 2‖Γ∗Γ̇‖p = 2‖Γ̇‖p,

and therefore Lp(u) ≤ 2Lp(Γ). �

Proposition 4.8. Let x0 ∈ O, γ = Γ · x0 ⊂ O a C1 curve defined in an interval
containing [0, 1]. Then γ admits a piecewise C1 lift β ⊂ Up(H) (that is β · x0 = γ)
such that L(γ) = Lp(β) ≤ Lp(Γ). We shall call β an isometric lift of γ.

Proof. Let u = uΓ = ez be the curve of the previous lemma. Then β = Γuγ is a
lift of γ because u ∈ G. Moreover,

‖β̇‖p = ‖Γ̇u+ Γu̇‖p = ‖Γ∗Γ̇ + u̇u∗‖p = ‖Γ∗Γ̇−Q(Γ∗Γ̇)‖p
= min

y∈G
‖Γ∗Γ̇− y‖p ≤ ‖Γ∗Γ̇‖p = ‖Γ̇‖p,

hence L(γ) = Lp(β) ≤ Lp(Γ). �
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Theorem 4.9. Let p be a positive even integer, x ∈ O, X ∈ (TO)x and z0 ∈
Bp(H)ah a minimal lifting for X. Then the curve

δ(t) = etz0 · x,

which verifies δ(0) = x and δ̇(0) = X, has minimal length ‖z0‖p in the interval [0, 1]
if ‖z0‖p < π/4. Moreover, the curve δ is unique with this property, in the sense that
if γ ⊂ O is another curve joining x to ez0 · x of length ‖z0‖p, then γ(t) = etz0 · x.

Proof. Let γ be a smooth curve in O with γ(0) = x and γ(1) = ez0 · x. Denote by
β as above an isometric lift of γ. Note that the curve ε(t) = etz0 is an isometric lift
for δ. Then it suffices to compare β and ε (note that both curves start at 1). There
exists in Up(H) a minimal curve α(t) = etz with ez = β(1), with Lp(α) ≤ Lp(β).
We claim that Lp(ε) ≤ Lp(α), a fact which ends the proof. If ‖z‖p = Lp(α) > π/4,
this fact is clear. Suppose that ‖z‖p ≤ π/4. Let ν(t) = ez0ety be the minimal
geodesic of Up(H), lying inside ez0Gx (i.e. y ∈ Gx), connecting ez0 to ez. Then by
Theorem 3.6, the map fp(s) = dpp(1, ν(s)) is convex. We claim that f ′p(0) = 0, and
thus

Lp(ε)p = dp(1, ν(0))p = fp(0) ≤ fp(1) = dp(1, ν(1))p = Lp(α)p.

As in the proof of Theorem 3.6, f ′p(0) = (−1)p/2Tr(zp−1
0 y), which vanishes by

Lemma 4.3, because z0 is a minimal lift. If L(γ) = ‖z0‖p (i.e. if γ is also short),
then

fp(1) = ‖z‖pp ≤ Lp(β)p = L(γ)p = ‖z0‖pp = fp(0)

and then z = z1 because fp is strictly convex. In particular β(1) = ez0 and
Lp(β) = Lp(ε) = ‖z0‖p. Since ‖z0‖ ≤ ‖z0‖p < π/2, the curve ε is the unique short
geodesic joining 1 to ez0 in Up(H), and then β = ε. �

5. Completeness of the metric spaces O

We prove that the space O is a complete metric space with the rectifiable metric.
Let us prove first an inequality in Up(H) relating the distance among two geodesics
with the distance of the endpoints. Throughout we assume that p is a positive even
integer.

Theorem 5.1. Let g(r) =
r

sin(r)
. Let u, v, w ∈ Up(H) with v, w ∈ Bp(u, r0) and

r0 ∈ [0, π4 ]. Let γ be the short geodesic joining v to w. Let α (resp. β) be the short
geodesic joining u to v (resp. u to w). Let γt be the short geodesic joining α(t) with
β(t). Then

Lp(γt) ≤ t g(r0)Lp(γ) ≤ π t

2
√

2
Lp(γ)

for any t ∈ [0, 1].

Proof. We may suppose u = 1 without loss of generality. Let γt = etlog(γ). Since
γt(0) = α(t) and γt(1) = β(t), and γt is a short geodesic joining these same
endpoints, one has the inequality

Lp(γt) ≤ Lp(γt).

Let us use the dot to denote the derivative with respect to the s variable. Then

γ̇t = d exptlog(γ)(t dlogγ(γ̇)) = t d expt ln(γ)(d exp−1
γ (γ̇)),
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hence
‖γ̇t‖p ≤ t ‖d exp−1

γ (γ̇)‖p
by Lemma 3.3, since the differential of the exponential map is a contraction. By
the same lemma,

(5.1) ‖γ̇t‖p ≤ t ‖F (ad (log(γ))−1γ̇‖p ≤ t g(‖log(γ)‖) ‖γ̇‖p

where the last inequality is due to Proposition 4.6. Now by Corollary 3.8, ‖log(γ)‖ ≤
‖log(γ)‖p < r0 < π

4 , and since g is increasing in [0, π), the term g(‖log(γ)‖) is
bounded by g(r0), which in turn is bounded by g(π4 ) = π

2
√

2
. Integrating (5.1) with

respect to the variable s in [0, 1] gives the inequalities for the p-lengths. �

Corollary 5.2. Let u1, u2, u3 ∈ Up(H) such that dp(ui, uj) < r0 ≤ π
4 , u2 = u1e

x,
u3 = u1e

y. Then

|dp(u1, u2)− dp(u1, u3)| ≤ ‖x− y‖p ≤ g(r0) dp(u2, u3).

Proof. The first inequality is just the reversed triangle inequality, since ‖x‖p =
dp(u1, u2) and ‖y‖p = dp(u1, u3). By the invariance of the metric under left action
of the unitary group, we may assume that u1 = 1. Then for each t ∈ [0, 1], (in the
notation of the previous result)

dp(etx, ety) = ‖log(etxe−ty)‖p = Lp(γt),

which is less or equal than g(r0) t dp(u2, u3) by the same proposition. Then

‖1
t
log(etxe−ty)‖p ≤ g(r0) dp(u2, u3),

and taking the limit t→ 0+ gives the result. �

Remark 5.3. Recall Clarkson’s inequalities [23] for the Bp(H) spaces, p ∈ [2,+∞),

2‖x‖pp + 2‖y‖pp ≤ ‖x− y‖pp + ‖x+ y‖pp,

for any x, y ∈ Bp(H).

Theorem 5.4. (Weak semi-parallelogram law) Let γ be a short geodesic in Up(H)
and u ∈ Up(H) such that dp(u, γ) < r0 ≤ π

4 . Then

1
2
g(r0) [dp(u, γ(0))p + dp(u, γ(1))p]− dp(u, γ(1/2))p ≥ 1

2p
Lp(γ)p.

Proof. We may assume that γ(1/2) = 1. Then γ(0) = ex, γ(1) = e−x and u = ey

with x, y ∈ Bp(H)ah. Then, by Clarkson’s inequality,

1
2p
Lp(γ)p = ‖x‖pp ≤

1
2
[
‖x+ y‖pp + ‖x− y‖pp

]
− ‖y‖pp

=
1
2
[
‖x+ y‖pp + ‖x− y‖pp

]
− dp(u, γ(1/2))p.

Now apply Corollary 5.2. �

Let us finish this section by proving completeness of the geodesic distance.

Theorem 5.5. The metric space (O, d) is complete.
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Proof. Let {bn}n≥1 be a Cauchy sequence in O, and fix π/4 ≥ ε > 0. Then there
exists n0 such that d(bn, bm) < ε if n,m ≥ n0. Consider the (submersion) map

π = πbn0
: Up(H)→ O, π(u) = u · bn0 .

For n,m ≥ n0, let γn,m be a smooth curve in O joining bn with bm at (respectively)
t = 0 and t = 1, such that

d(bn, bm)p ≤ L(γn,m)p < d(bn, bm)p + ε.

Then by Proposition 4.8 the curve γn0,m lifts, via π, to a curve µm of Up(H) with
µm(0) = 1,

π(µm(t)) = γn0,m(t), t ∈ [0, 1],
such that Lp(µm) = L(γn0,m). Denote by um = µm(1). Then

ε+ d(bn0 , bm)p > L(γn0,m)p = Lp(µm)p ≥ dp(1, um)p.

For each n,m ≥ n0, let vn, zn,m ∈ Bp(H)ah be such that ωn,m(t) = evnetzn,m is the
unique minimal geodesic in Up(H) which joins un and um at t = 0 and t = 1. Then

dp(1, ωn,m(t)) < π/4

if ε is small enough. Hence by Theorem 5.4, if n,m ≥ n0 then

2ε > ε+
1
2
d(bn0 , bn)p +

1
2
d(bn0 , bm)p ≥ 1

2
dp(1, un)p +

1
2
dp(1, um)p

≥ 1
g(π/4)2p−1

(dp(1, ωn,m(1/2))p + dp(un, um))p ≥ 1
g(π/4)2p−1

dp(un, um)p.

It follows that {un}n≥1 is a Cauchy sequence in Up(H), which is complete. There-
fore the sequence bn = π(un) is convergent in O. �

6. Submanifold structure of OA
In this section we consider the case O = OA = {uAu∗ : u ∈ U2(H)}, for a

bounded self-adjoint operator A, and we study its local structure as a subset of
B(H). An elementary computation shows that all elements in OA are of the form
A + k with k ∈ B2(H)h. If A itself lies in B2(H), then OA ⊂ B2(H)h. Otherwise,
OA ⊂ A+B2(H), which can be regarded as an affine Hilbert space. In either case,
a natural question is whether the manifold OA is a differentiable submanifold of
the ambient Hilbert space. This is the purpose of this section. We show that the
orbits OA are not, in general, differentiable submanifolds of A + B2(H). We show
that OA ⊂ B2(H)h is a differentiable submanifold if and only if the spectrum of A
is finite.

The obstruction for OA to be a submanifold is that its tangent spaces may not
be closed in B2(H). The tangent space of OA at A (i.e. the derivatives at A of
smooth curves in B2(H), lying inside OA) is apparently given by

(TOA)A = {xA−Ax : x ∈ B2(H)ah}.

D. Herrero, D. Voiculescu, C. Apostol and L. Fialkow, among others, established
several important results on the closedness of commutators (see the books [4, 14]
and the references therein for a complete review on the subject). In particular, L.
Fialkow [13] addressed the problem of the spectral characterization of Rosenblum’s
operators restricted to the Schatten ideals. Let us cite Fialkow’s result: denote by
τAB the operator τAB(x) = Ax− xB. Let J be any Schatten ideal.
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Theorem 6.1. (Fialkow [13]) The following are equivalent
(1) τAB : B(H)→ B(H) is bounded below.
(2) τAB : J → J is bounded below for some J .
(3) τAB : J → J is bounded below for any J .
(4) σl(A) ∩ σr(B) = ∅.

Here σl(A) (resp. σr(B)) denotes the left (resp. right) spectrum of A (resp. B).
Recall the map

πA : U2(H)→ OA, πA(u) = uAu∗

and its differential at the identity

δA : B2(H)ah → (TOA)A, δA(x) = xA−Ax.
The Banach-Lie algebra B2(H)ah can be decomposed

B2(H)ah = G ⊕ F ,
for G = {x ∈ B2(H)ah : xA = Ax} and F = G⊥. Let

PA : B2(H)ah → F ⊂ B2(H)ah
be the orthogonal projection. Note that since ker δA = F , then

δA|F : F → (TOA)A
is a linear bijection. If (TOA)A ⊂ B2(H)h were closed, then δA|F would be an
isomorphism between Banach spaces, and therefore there would exist a constant
CA such that

(6.1) ‖xA−Ax‖2 ≥ CA‖x− PA(x)‖2.

Theorem 6.2. Let A ∈ B(H) be self-adjoint. Then (TOA)A ⊂ B2(H)h is closed if
and only if the spectrum of A is finite.

Proof. First note that if (TOA)A ⊂ B2(H)h is closed, then

{xA−Ax : x ∈ B2(H)} ⊂ B2(H)

is also closed. Indeed, since A is self-adjoint, the derivation δA, which is clearly
defined on B2(H), maps B2(H)ah into B2(H)h, and B2(H)h into B2(H)ah. Therefore
if δA(xn) → y in B2(H), and one decomposes xn = xahn + xhn in its hermitian
and skew-hermitian parts, then both δA(xahn ) ∈ B2(H)h and δA(xhn) ∈ B2(H)ah
are convergent. The hypothesis that δA(B2(H)ah) = (TOA)A is closed clearly
implies that also δA(B2(H)h) is closed, and our claim follows. We may decompose
H = Hpp ⊕ Hc in two orthogonal subspaces which reduce A, such that App =
A|Hpp : Hpp → Hpp has a dense subset of eigenvalues in its spectrum, and Ac =
A|Hc

: Hc → Hc has no eigenvalues. Since this decomposition reduces A, then
clearly δApp

(B2(Hpp)) and δAc
(B2(Hc)) are closed, by a similar argument as above.

Let us reason first with Ac, usually called the continuous spectrum part. Note
that δAc

is injective. If x ∈ B2(Hc) satisfies δAc
(x) = 0 then x commutes with

Ac, and thus the real and imaginary parts of x commute with Ac. This means
that there is a non zero compact self-adjoint operator y which commutes with
Ac. This is clearly not possible: let p be any spectral (finite rank) projection of
y, then p commutes with Ac, and therefore pAcp, being a finite rank self-adjoint
operator, would have an eigenvalue, and therefore Ac would have an eigenvalue.
It follows that δAC

is bounded below, and therefore by Fialkow’s Theorem 6.1,
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σl(Ac)∩ σr(Ac) = ∅, which is impossible because for self-adjoint operators, the left
and right spectra coincide.

Thus Hc = {0}, and the spectrum of A = App + 0Hc
has a dense subset of

eigenvalues. Suppose that there are infinitely many different non zero eigenvalues
{λn : n ≥ 1}, ordered such that |λ1| ≥ |λ2| ≥ . . . . Let {en : n ≥ 1} be an
orthonormal set in H, consisting of the corresponding eigenvectors of A. These
vectors span a subspace H0 which reduces A. If we denote by A0 = A|H0 , it is clear
again that δA0(B(H0)) is closed. Thus we may suppose H = H0. We shall write
operators in H as matrices with respect to this basis. Let us show that δA(H) is
not closed. With these reductions, it is clear that F consists of diagonal matrices.
Therefore PA(x) consists of leaving the main diagonal of x fixed, and replacing all
non diagonal entries of x with zeros. For each n ≥ 1, consider the n× n matrix bn
with 1/n in all entries, and xn the operator on H with matrix ibn in the main n×n
corner block, and zeros elsewhere. Note that xn is i times a rank one projection,
and therefore its 2-norm is 1. Also note that ‖PA(xn)‖2 = 1/

√
n→ 0. Therefore

‖xn − PA(xn)‖2 → 0.

A straightforward matrix computation shows that xnA − Axn is zero but on the
main n× n corner block, where it has the matrix with 1

n (aj − ai) at the i, j-entry.
Therefore

‖xnA−Axn‖22 =
1
n2

n∑
i,j=1

a2
j + a2

i − 2ajai =
2
n2
{n

n∑
k=1

a2
k −

n∑
k=1

a2
k}

≤ 2
n

n∑
k=1

a2
k ≤

2
n
‖A‖22,

thus ‖xnA−Axn‖2 → 0. It follows that (TOA)A is not closed.
If the spectrum of A is finite, then A =

∑n
i=1 λipi, for pairwise orthogonal

self-adjoint projections pi which sum 1. One can write operators in B2(H) as
n× n matrices in terms of the decomposition H =

∑n
i=1R(pi). A straightforward

computation shows that if x ∈ B2(H)ah with matrix (xi,j), then δA(x) is, in matrix
form,

δA(x) =


0 (λ2 − λ1)x1,2 (λ3 − λ1)x1,3 . . . (λn − λ1)x1,n

(λ1 − λ2)x2,1 0 (λ3 − λ2)x2,3 . . . (λn − λ2)x2,n

. . . . . . . . . . . . . . .
(λ1 − λn)xn,1 (λ2 − λn)xn,2 (λ2 − λ1)x1,2 . . . 0

 .

Since λi 6= λj if i 6= j, it follows that {xA−Ax : x ∈ B2(H)ah} consists of operators
in B2(H)h whose n× n matrices have zeros on the diagonal, i.e.

{xA−Ax : x ∈ B2(H)ah} = {z ∈ B2(H)h : pizpi = 0, i = 1, . . . , n},

which is clearly closed in B2(H)h. �

Remark 6.3. If the spectrum of A is finite, the optimal constant CA can be com-
puted. If A =

∑n
i=1 pi as above, the set {x ∈ B2(H) : xA = Ax} consists of block

diagonal matrices. Thus

PA(x) =
n∑
i=1

pixpi.
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Using the matrix form of δA(x),

‖δA(x)‖22 =
∑
i6=j

‖(λj − λi)xi,j‖2 ≥ inf
i6=j
|λj − λi|2

∑
i 6=j

‖xi,j‖22

= inf
i6=j
|λj − λi|2‖x− PA(x)‖22.

Thus CA = infi 6=j |λj − λi|2.

The finite spectrum situation contains interesting cases. For instance, if A = P
is a projection with infinite rank and co-rank, the orbit O equals the connected
component of the restricted Hilbert-Schmidt Grassmannian corresponding to the
polarization H = R(P ) ⊕ R(P )⊥ (see [6, 21]) with virtual dimension 0 (i.e. the
component containing P ). From the above proposition it is clear that the finite
spectrum condition is necessary for OA to be a submanifold of A+ B2(H)ah (or a
differentiable manifold with the 2-norm topology). In the rest of this section we
shall prove that it is also sufficient.

To establish the equivalence between the existence of the submanifold structure
for OA ⊂ A + B2(H)ah and the finite spectrum condition, the following general
result on homogeneous spaces is useful. A proof can be found in [20].

Lemma 6.4. Let G be a Banach-Lie group acting smoothly on a Banach space X.
For a fixed x ∈ X, denote by πx : G → X the smooth map πx(g) = g · x. Suppose
that

(1) πx is an open mapping, when regarded as a map from G onto the orbit
{g · x : g ∈ G} of x (with the relative topology of X).

(2) The differential d(πx)1 : (TG)1 → X splits: its kernel and range are closed
complemented subspaces.

Then the orbit {g ·x : g ∈ G} is a smooth submanifold of X, and the map πx : G→
{g · x : g ∈ G} is a smooth submersion.

Theorem 6.5. OA ⊂ A + B2(H)ah is a differentiable submanifold if and only if
the spectrum of A is finite.

Proof. The necessary part is clear. Suppose that the spectrum of A is finite,
A =

∑n
i=1 λipi. We shall use Lemma 6.4 above. Note that in our case G = U2(H),

d(πx)1 = δA. Its kernel is complemented, its range is complemented by the pre-
vious theorem. Therefore it remains to prove that πA : U2(H) → OA is open, or
equivalently, that it has a local continuous cross section defined on a neighborhood
of A ∈ OA. Since the range of δA is closed, there exists a constant CA as in (6.1):
‖xA− Ax‖2 ≥ CA‖x− PA(x)‖A, for x ∈ B2(H)ah. Note that PA can be extended
to a ‖ ‖-contractive idempotent map, which we shall still call PA,

PA : B(H)→ {x ∈ B(H) : xA = Ax} ⊂ B(H), PA(x) =
n∑
i=1

pixpi.

Clearly, PA|B2(H) is the Tr-orthogonal projection onto the closed subspace {x ∈
B2(H) : xA = Ax}. Also it is clear that the inequality (6.1) is still valid for
x ∈ B2(H). Moreover, PA has the following modular property: if y, z ∈ {x ∈
B(H) : xA = Ax}, then PA(yxz) = yPA(x)z. Consider the open ball B = {b ∈
OA : ‖b−A‖2 < CA}. We define the following map in B:

σ : B → U2(H), σ(b) = uΩ(PA(u∗)), if b = uAu∗,
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where Ω is the unitary part in the polar decomposition of an invertible operator in
Gl2(H) (g = Ω(g)|g|). Several facts involving the well definition of σ need to be
checked. First note that PA(u) lies in Gl2(H): since b = uAu∗ ∈ B, one has that

CA‖u− PA(u)‖2 ≤ ‖uA−Au‖2 = ‖uAu∗ −A‖2 < CA,

i.e. ‖1−PA(u)u∗‖ = ‖u−PA(u)‖ ≤ ‖u−PA(u)‖2 < 1, and thus PA(u) is invertible.
Moreover, PA(u) − 1 = PA(u − 1) ∈ B2(H), and therefore PA(u) ∈ GL2(H), and
thus Ω(E(u)∗) ∈ U2(H). Next note that it does not depend on the unitary u
performing b = uAu∗: if also b = u′Au′∗, then u′ = uv for vA = Av, and thus

u′Ω(PA(u′∗)) = uvΩ(PA(v∗u∗)) = uvΩ(v∗PA(u∗)) = uΩ(PA(u∗)).

Let us prove that σ is continuous. It suffices to show that it is continuous at A.
Suppose that unAu∗n → A. Then as above, ‖unA − Aun‖2 → 0, and therefore
‖un − PA(un)‖2 → 0, or equivalently,

‖1− unPA(u∗n)‖2 = ‖1− PA(un)u∗n‖2 = ‖un − PA(un)‖2 → 0.

Therefore (since Ω is continuous), σ(unAu∗n) = unΩ(PA(u∗n)) = Ω(unPA(u∗n))→ 1.
Finally, σ is a cross section: if b = uAu∗,

σ(b)Aσ(b)∗ = uΩ(PA(u∗))AΩ(PA(u∗))∗u∗ = uAu∗,

because the fact that PA(u∗) commutes with A implies that also Ω(PA(u∗)) com-
mutes with A. �

We finish this section by returning to the case of an arbitrary self-adjoint operator
A. We shall prove that the projection PA verifies that ‖PA(x)‖ ≤ ‖x‖.

Proposition 6.6. The projection PA is ‖ ‖-contractive.

Proof. We shall prove this result by giving an alternate construction of PA. Let Π
be a finite partition of the spectrum of A by Borel sets {∆1, . . . ,∆n(Π)}. Denote
by pi the spectral projection of A corresponding to the set ∆i, and by

EΠ(x) =
n(Π)∑
i=1

pixpi, x ∈ B2(H).

Consider the partial order ≥ on finite partitions given by refinement. Then {EΠ}
is a net of contractions acting in the Hilbert space B2(H). Therefore it has a weak
operator convergent subnet, which for simplicity we shall denote again by {EΠ}.
Therefore there exists a contraction F acting on B2(H) such that

Tr(y∗EΠ(x))→ Tr(y∗F (x)), for all x, y ∈ B2(H).

We claim that F is the orthogonal projection onto Gp, i.e. F = PA. First note that
if x ∈ B2(H)ah commutes with A, then it commutes with its spectral projections
and therefore

EΠ(x) =
n(Π)∑
i=1

pixpi = x

n(Π)∑
i=1

pi = x,

therefore F (x) = x. Let p be a spectral projection of A. Since the index set {Π} of
the convergent net {EΠ} is co-final, there exists a partition Π0 (an index of the net)
which is finer than {p, 1−p}. Therefore for any partition Π = {p1, . . . , pn(Π)} ≥ Π0,
the projections pi are either sub-projections of p or 1−p, and thus ppi = pip equals
pi or 0. Then pEΠ(x) =

∑
ppi 6=0 pixpi = EΠ(x)p. It follows that for any x, and
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Π ≥ Π0, A commutes with EΠ(x). Then A commutes with F (x). It follows that F
is an idempotent operator acting in B2(H)ah, whose range is GA. Apparently, all
the operators EΠ are symmetric with respect to the trace inner product, therefore
F is symmetric. Then F is the Tr-orthogonal projection onto GA, i.e. F = PA.
This description of PA allows us to prove that it is also ‖ ‖-contractive. Indeed,
note that for any fixed x, the net of operators {EΠ(x)} converges to PA(x) in the
weak operator topology: if ξ, η ∈ H, denote by ξ ⊗ η the rank one operator given
by ξ ⊗ η(α) =< α, η > ξ,

< EΠ(x)ξ, η > = Tr((EΠ(x)ξ)⊗ η) = Tr(EΠ(x)ξ ⊗ η)
= − < ξ ⊗ η,Eπ(x) >→ − < ξ ⊗ η, PA(x) >=< PA(x)ξ, η > .

On the other hand, the operators EΠ(x) clearly verify ‖EΠ(x)‖ ≤ ‖x‖. Then
‖PA(x)‖ ≤ ‖x‖.

�

7. Open problem: geodesics joining given endpoints

In this section we consider the problem of finding a minimal curve in O joining
two given endpoints. First let us remark that the answer is positive, at least locally,
for the case p = 2. In this case O is a Riemann-Hilbert manifold, and therefore
there exists a uniform radius R > 0 such that any two elements x0, x1 ∈ O with
d2(x0, x1) < R are joined by a unique minimal geodesic.

For p ≥ 2, it was shown in [1] that if O = OP = {uPu∗ : u ∈ Up(H)}, with P
an infinite self-adjoint projection of B(H), then any two elements P0, P1 of OP are
joined by a minimal geodesic, which is unique if ‖P0 − P1‖ < 1.

Let us state the following partial answer to this question.

Proposition 7.1. Suppose that G is finite dimensional. If x0, x1 ∈ O satisfy
dp(x0, x1) < π/4, then there exists a unique minimal curve joining them, which is
of the form δ(t) = etz · x0, with z ∈ G⊥p

x0 .

Proof. Since dp(x0, x1) < π/4, there exists a smooth curve γ(t) ∈ O, t ∈ [0, 1] such
that γ(i) = xi, i = 0, 1, and L(γ) < π/4. Then by Proposition 4.8, there exists a
smooth isometric lift Γ(t) ∈ Up(H) with Γ(0) = 1, Γ(1) = u1 and Lp(Γ) = L(γ).
Note that u1 · x0 = x1. Denote by d the distance

d = dp(1, u1Gx0) = inf{dp(1, u) : w ∈ u1Gx0}.

Let wn be a sequence in u1Gx0 such that dp(1, wn) → d. Since G is finite di-
mensional, there exists a convergent subsequence, which we still denote by wn,
wn → w0. We may also suppose that dp(1, wn) < π/4 for all n. Note that
dp(1, w0) ≤ dp(1, u1) < π/4. In other words, w0 achieves the distance between
q and u1Gx0 . By the convexity property of dp, it is unique: if v0 is another ele-
ment with d = dp(1, v0), and µ(t) is the geodesic joining w0 and v0, since the map
fp(t) = dp(1, µ(t))p is strictly convex, it follows that v0 = w0. Clearly there exists
z ∈ Bp(H)ah such that ‖z‖ < π/4 and µ(t) = etz is the minimal curve in Up(H)
joining 1 and w0. Then it is apparent that δ(t) = etz · x0 is the unique minimal
curve joining x0 and x1 in O. As shown before, the fact that w0 is a critical point
of the distance function, implies that z ∈ G⊥p

x0 . �
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