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Abstract: Increasing urbanization and rising consumption rates are putting pressure on urban systems
to efficiently manage Municipal Solid Waste (MSW). Waste collection, in particular, is one of the most
challenging aspects of MSW management. Therefore, developing computer-aided tools to support
decision-makers is crucial. In this paper, a Scatter Search algorithm is proposed to address the waste
collection problem. The literature is relatively scarce in applying this algorithm, which has proven to
be efficient in other routing problems, to real waste management problems. Results from real-world
instances of an Argentine city demonstrate that the algorithm is competitive, obtaining, in the case
of small instances, the same outcomes as those of an exact solver enhanced by valid inequalities,
although requiring more computational time (as expected), and significantly improving the results of
the latter for the case of larger instances, now requiring much less computational time. Thus, Scatter
Search proves to be a competitive algorithm for addressing waste collection problems.

Keywords: municipal solid waste; waste collection; scatter search; mixed-integer programming; valid
inequalities; case study

1. Introduction

In modern societies, municipal solid waste (MSW) management has emerged as a key
priority for ensuring environmental sustainability, public health and the overall well-being
of communities [1]. Among the various stages of the MSW system, the waste collection
stage is one of the most tricky since it poses significant challenges due to its logistical
complexity [2]. Implementing an efficient waste collection system is essential not only
for maintaining the livability and quality of life for residents, but also for environmental
protection and economic efficiency. Effective route management can significantly reduce
operational costs and improve the overall efficiency of the waste management process [3]
and reduce greenhouse emissions [4].

Moreover, route optimization and planning contributes to greater predictability in
waste collection services. An efficient system allows residents to know when to expect
collection, which helps to reduce waste accumulation in public areas and avoids the need
for emergency services or additional collections outside scheduled times. This predictability
minimizes the costs associated with emergency management and unforeseen interven-
tions. Furthermore, improved planning can enhance the efficiency of scheduling other
municipal services by coordinating routes to avoid conflicts with public transportation or
emergency services, ultimately reducing delays and operational costs related to congestion
and urban planning.

In Argentina, where the case study is focused, the design of waste collection routes
is primarily based on empirical knowledge from decision-makers [5]. While this practical
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experience is invaluable, the literature offers extensive insights into cost reduction and
environmental impact through computational models that support the decision-making
process [6–8]. By providing a solid foundation for decision-making, these computational
support tools enable municipal managers to make adjustments and adapt the system to
the changing needs of the city. However, waste collection problems are well-known NP-
hard challenges, making them computationally difficult to solve [9]. Consequently, the
design of efficient computational methods, based mainly on heuristic and metaheuristic ap-
proaches that can provide good solutions in reasonable computational times, are commonly
employed in the literature.

This study proposes computational models to address the waste collection problem in
the Argentine city of Bahía Blanca, focusing specifically on the downtown area. This sector
was chosen because the collection points, where citizens will deposit their waste, have
already been established. These points are strategically located to maximize waste manage-
ment efficiency and facilitate access for both citizens and collection trucks [10]. The waste
collection problem is mathematically modeled as a vehicle routing problem with time limits
and capacity constraints. This problem is solved in two ways: exactly, using mixed-integer
programming, and heuristically, using a Scatter Search (SS) algorithm. The exact resolution
method is based on mixed-integer programming using different commercial solvers and
valid inequalities to enhance the formulation. The metaheuristic approach employs an
SS algorithm, which has proven efficient in solving various combinatorial optimization
problems. As far as we know, this article is the first work to apply SS to the waste collection
problem and to perform with this approach extensive computational experimentation
using real-world instances. Considering different combination and improvement methods
and different local search sizes, 36 SS configurations were implemented. Both exact and
metaheuristic methods were compared in computational experiments based on real-world
data from Bahía Blanca. The results show that SS is effective in tackling the problem,
producing optimal solutions with small instances, although with longer computational
times—as would be expected when comparing an exact method with a metaheuristic
on problems easily tackled by the exact method. However, with larger instances, the SS
algorithm clearly outperforms the exact method, which—even when enhanced by valid
inequalities—struggled to handle the complexity of the instances. For larger instances, the
SS algorithm obtains better results in smaller computing times.

In this context, this article contributes to the related literature with the following:
(i) the first Scatter Search algorithm to address real-world instances of the waste collection
problem in the literature; (ii) a study of the capacity to enhance the exact resolution of the
problem using valid inequalities; and (iii) a computational experiment conducted on real-
world instances from an Argentine city. This article is an invited extension of our conference
work presented at the “VI Ibero-American Congress of Smart Cities” that was held from 13–
17 November 2014 in Mexico and Cuernavaca City [11]. Compared to our conference work,
the enhancements in this article include addressing a different optimization problem within
waste management and introducing a new metaheuristic solution method. Additionally,
we have expanded the literature review and computational experiments.

This article is structured as follows: Section 2 presents a review of the main related
works. Section 3 develops the exact method for the waste collection problem, including
the mathematical formulation and the used of valid inequalities to enhance the resolution
process. Section 4 presents the Scatter Search algorithm and its main features. Section 5
describes the computational experimentation, including the description of the realistic
instances, the tests performed over the valid inequalities for enhancing the exact resolution,
the proposed implementations of the SS algorithm, and the comparison between the
implementations of SS and the exact method. Finally, Section 6 outlines the main conclusion
and future research lines.
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2. Literature Review

The literature extensively addresses waste collection problems using various com-
putational methods [12]. For a recent review on this topic, interested readers may refer
to Hess et al. [2]. Waste collection problems are well-known variants of traditional vehicle
routing problems, which are generally considered NP-hard [13]—that is, problems for
which no efficient algorithms exist that can solve them in polynomial time with respect to
the problem size. This class characterizes problems that are computationally difficult to
solve [9]. As a result, heuristic and metaheuristic approaches have been widely used to
tackle the computational complexity of waste collection problems [14]. While Scatter Search
has been successfully employed to address several combinatorial optimization problems,
including routing problems [15], it remains relatively underexplored in the context of waste
management, in general, and waste collection problems, in particular [16].

According to a search performed in Scopus with the criteria schema TITLE-ABS-KEY
(list of terms) using as keyword terms: (‘waste’ OR ‘waste management’) AND (‘scatter
search’), only five works related to the application of SS in waste management were found.
Moreover, if the focus is put on waste collection, only two works are mentioned. One is
the work of Zhang et al. [17]. Although the conceptual model in this work refers to the
collection of recyclable waste, the SS algorithm was tested on synthetic instances built
from the procedure developed in Dethloff [18]. The proposed SS outperformed a genetic
algorithm in terms of computational efficiency, achieving similar results in significantly less
time. Another related work is that of Chu et al. [19], who, while not applying SS directly to
waste management, proposed waste collection as a potential application of their algorithm.
Mainly they present an SS to address the periodic capacitated arc routing problem (PCARP).
They compared SS with an insertion heuristic using PCARP instances derived from the
benchmarks of Golden et al. [20] and Belenguer and Benavent [21], with SS outperforming
the insertion heuristic in most cases.

Although no other applications of SS in waste collection routing problems were found,
a few works have applied SS to other waste management-related problems. Yu et al. [22]
used SS to optimize the transport of industrial waste from plants to intermediate recycling
facilities and, eventually, to landfills using a transport-like mathematical model. They
compared two SS versions: the typical SS and a modified SS where the update method
is altered to maintain population diversity, rather than replacing the worst solution as in
the traditional method. The modified version proved more efficient in tests conducted on
synthetic, randomly generated instances.

Similarly, Ortega et al. [23] employed an SS hybridized with linear programming to
design a multi-period reverse logistics network for MSW, which is mainly a location and
transport optimization problem. In this network, the waste generated in towns has to
be allocated to transfer centers and then to treatment plants. While the treatment plant
location is fixed for the whole planning horizon, the location of the transfer centers may
vary. The authors introduced randomness into the problem by varying waste generation
based on empirical probabilistic distributions. They compared their algorithm with CPLEX.
For small problems, SS reached the optimum in slightly more time than CPLEX, but for
larger problems, SS was faster in reaching the optimum when CPLEX succeeded. The
computational experiments were conducted on synthetic instances created by the authors,
as well as on an instance partly based on the region of Gipuzkoa, Spain, and partly synthetic
(mainly regarding waste generation).

Thus, the application of SS to real-world waste management problems is very limited.
Most studies utilize synthetic instances that resemble waste management problems. Only
the work of Ortega et al. [23] applied SS to a realistic instance for the network design of an
actual region, although many key parameters were still synthetically generated. Concerning
the specific problem of waste collection routing, the literature is even scarcer. Only two
works address routing problems potentially representing waste collection, both of which
rely on synthetic instances from benchmarks that are not related to waste management.
Therefore, we consider that there is still a gap in the literature regarding the implementation
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of Scatter Search—a metaheuristic that has proven efficient in solving other combinatorial
optimization problems—specifically, for the waste collection problem, and its testing in
realistic scenarios. As far as we know, this is the first work to propose an SS algorithm
to the waste collection problem and perform an extensive computational experiment in
real-world instances.

3. Exact Resolution

This Section presents the exact resolution approach used for the waste collection
problem of Bahía Blanca. In particular, the basic mathematical formulation as a typical
routing problem and a discussion about some valid cuts to improve the formulation
are presented.

3.1. Mathematical Formulation

The typical waste collection problem consists in a set of collection points
I = {1, 2, . . . , nI} distributed in an area and a set of collection vehicles or trucks
V = {1, 2, . . . , nV}. In addition, if 0 represents the depot where vehicles start and end their
routes, and where collected waste is deposited, the set I0 = I ∪ {0} is defined. The trucks
have to depart from the depot, visit every collection point to obtain the waste and return
to the depot to unload while respecting certain operative restrictions (truck capacity and
travel time). The objective of the problem is to minimize the traveled distance, which is
typically associated with reduced expenses, particularly in terms of fuel consumption and
greenhouse gas emissions for diesel trucks like those used in the city of the case study.
In order to present the model that is used in the exact solver, the following parameters
are defined:

• Q: Truck capacity.
• cig: Travel time between points i ∈ I0 and g ∈ I0.
• sei: Service time of collection point i ∈ I0. At the depot, the service time corresponds

to the time spent unloading the collected waste.
• bi: Amount of waste generated daily at collection point i ∈ I.
• α: Cost per minute for collection trucks.
• TL: Maximum time a vehicle can spend performing a route including unloading waste

at the depot.

And the model uses the following variables:

• xigl : (binary) 1 if truck l ∈ L travels between collection points i ∈ I0 and g ∈ I0, and 0
otherwise.

• vigl : (continuous non-negative) load of truck l ∈ L when going from collection point
i ∈ I to collection point g ∈ I.

Taking all these elements into account, the following mathematical model based on
Mixed-Integer Linear Programming (MILP) is proposed:

Minimize
f (x) = α ∑

l∈L
∑

i∈I0
∑

g∈I0

(
xiglt

(
cig + sei

))
(1a)

subject to

∑
i∈I0

i ̸=g

∑
l∈L

xigl = 1, ∀ g ∈ I, (1b)

∑
i∈I0

i ̸=g

xigl − ∑
i∈I0

i ̸=g

xgil = 0, ∀ g ∈ I0, l ∈ L, (1c)

∑
i∈I

x0il ≤ 1, ∀ l ∈ L, (1d)
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∑
i,g∈I0

i ̸=g

xigl
(
cig + sei

)
≤ TL, ∀ l ∈ L, (1e)

vigl ≤ Qxigl , ∀ i ∈ I0, g ∈ I0, l ∈ L, (1f)

∑
i∈I0

i ̸=g

vigl + hg ≤ ∑
i∈I0

i ̸=g

vgil + Q

1 − ∑
i∈I0

i ̸=g

xigl

, ∀ g ∈ I, l ∈ L, (1g)

xigl ∈ {0, 1}, vigl ≥ 0, ∀ i ∈ I0, g ∈ I0, l ∈ L.

Equation (1a) represents the objective of minimizing the routing cost, which is based
on the sum of the travel times and the service times (time to empty the collection points) for
each route performed by the fleet of trucks. Equation (1b) presents the requirement that ev-
ery collection point is visited by a collection truck. Equation (1c) requires that if a collection
point is visited by a truck, this collection point is also left by the same truck. Equation (1d)
requires that each collection truck only performs at most one route. Equation (1e) checks
that the route does not exceed the maximum time that the vehicle can spend performing a
route, which includes traveling between collection points, collecting waste of the collection
pint (service time), and unloading waste at the depot in the end of the route. Equation (1f)
ensures that the capacity of the trucks is not exceeded. Finally, Equation (1g) is the sub-
tour elimination constraint, which also keeps track of the accumulated waste throughout
the route.

3.2. Valid Cuts

The routing problems are computationally challenging problems [13], primarily due
to the presence of many symmetric solutions. Two solutions are considered symmetric
if they result in the same objective function value but differ in variable assignments [24].
For instance, one route can be performed by any truck of the homogeneous fleet and the
solution incurs the same cost. Thus, the resolution solver has no mechanism to exclude one
of them and this may have an impact in the efficiency of the resolution process.

To address this issue, Valid Inequalities (VIs) can be introduced into the model. A
VI is a constraint that tightens the feasible region of the problem without eliminating any
optimal solutions. For a thorough review of VIs in routing problems, the interested reader
is referred to the work of Dror et al. [25]. In this paper, the performance for improving
the mathematical formulation of Section 3.1 is tested with four typical VIs that were used
in Mahéo et al. [24].

3.2.1. Furthest Visit

Without loss of generality, since each collection point can only be visited by one of
the trucks in the fleet, the first truck is forced to be the one that visits the collection point
furthest from the depot. These symmetric solutions are avoided using VI (2).

∑
i∈I

xigl = 0, ∀ l ∈ L, l > 0, g ∈ I, g = arg maxg∈I {c0g}. (2)

3.2.2. Vehicles Are Ordered

It is mandated that a vehicle or truck with index l can only depart from the depot if
the truck with index l − 1 has already done so. In scenarios where not all available trucks
are utilized, an unused truck could be swapped for one that is in use. These symmetric
solutions are prevented by means of VI (3).

∑
g∈I
g ̸=0

x0gl ≤ ∑
g∈I
g ̸=0

x0gl−1, ∀ l ∈ L, l > 0. (3)
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3.2.3. Vehicle Has to Start Empty

A vehicle or truck must begin its route with an empty load. This avoids solutions with
varying delivery plans. That is, if a truck completes its collection tour without reaching
full capacity, an alternative solution could be considered where the truck starts with any
load less than the remaining unused capacity. These symmetric solutions are avoided using
VI (4).

∑
g∈I
g ̸=0

v0gl = 0, ∀ l ∈ L. (4)

3.3. Solvers and Implementation Details

Exact solvers play a pivotal role in addressing complex mathematical combinatorial
optimization problems, such as routing problems. In recent years, commercial solvers
have significantly enhanced their capabilities to handle computationally intensive tasks,
driven by a competitive landscape aimed at providing decision-makers with the most
effective options.

There are several solvers available for mixed-integer programming problems. For a
comprehensive list of solvers, refer to the NEOS Server website [26]. Among open-source
solvers are CLP, CBC, LP_Solve, and GLPK [27]. In general, noncommercial MILP software
tools may lack the speed and robustness of their commercial counterparts but provide a
practical alternative for users who cannot afford commercial options [28]. For commercial
solvers, a wide range is available, including CPLEX, Gurobi, XPRESS, and LINDO [29],
with Gurobi and CPLEX among the most commonly used [30,31].

In line with this, the present study compares the performance of two renowned,
state-of-the-art solvers: Gurobi version 11.0.3 [32] and CPLEX version 22.1.1 [33], both
versions released in 2024. By evaluating these solvers, we aim to provide valuable insights
for researchers and practitioners seeking to optimize complex combinatorial optimiza-
tion problems.

The mathematical model and VIs presented in the previous section were implemented
in Python using Pyomo [34] as a modeling environment. Pyomo provides a flexible platform
for defining optimization problems and enables connections to various commercial solvers,
including Gurobi and CPLEX, which were utilized in this study.

4. Scatter Search Algorithm

The Scatter Search algorithm—proposed by Glover in 1977 [35]—is a metaheuristic
optimization technique aimed at solving complex combinatorial and continuous optimiza-
tion problems. A core feature of Scatter Search is its focus on maintaining a reference set of
diverse solutions, which are combined to generate new candidate solutions. This process
enhances the likelihood of finding high-quality solutions [36]. In addition, the flexibility
of SS allows adaptation to various problem domains, making it applicable in areas such
as scheduling, routing, and resource allocation. By effectively balancing exploration and
exploitation, SS aims to provide high-quality solutions efficiently. Its successful application
across fields like logistics, telecommunications, finance, and engineering demonstrates its
capability in addressing real-world optimization challenges [15]. As shown in Figure 1, it
consists of five methods [37]:

• A diversification generation method used to generate a set of diverse solutions that
are the basis for initializing the search. The outcome consists of a set of solutions that
is referred to as the population.

• An improvement method for modifying solutions to improve their quality (in terms
of the objective function) or feasibility.

• A reference set update method used in the main iterative loop of any scatter search
implementation. The output is a set of solutions known as the reference set. Typically,
the number of reference solutions is of the order of 10% of the population size.
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• A subset generation method that produces subsets of reference solutions which become
the input to the combination method.

• A combination method that uses the output from the subset generation method to
create new solutions.

The main iterative loop is executed as long as at least one New Reference Solution
(NRS) is obtained. The process continues until the Stopping Criterion is Satisfied (SCS).

Figure 1. Scatter Search algorithm flowchart.

In this paper, the SS algorithm will be applied using various combinations of some
key elements of the algorithm in order to evaluate the effectiveness of each configuration in
addressing the waste collection problem. Specifically, different combination and improve-
ment methods and different sizes of the local search, in the sense of the number of times the
improvement method is applied to a solution, will be tested. This approach aims to identify
the most effective configurations to optimize waste collection routes and improve overall
system performance. The SS was also coded using Python as the programming language.

5. Computational Experimentation

This Section presents the description of instances considered, the tests performed on
the VIs with the exact method, the proposed implementations of the SS algorithm and the
comparison between the SS and the exact method.

5.1. Description of Instances and Resolution Platform

To carry out the computational experimentation in this work, 10 realistic instances
were constructed with varying numbers of collection points: three instances with 15, three
with 30, three with 50, and one with 100 collection points. All the instances are based on
information gathered on field studies in Bahía Blanca [10]. These instances can be retrieved
from Github (https://github.com/diegorossit/Urban_Science_waste_collection_BBCA.git,
accessed on 27 October 2024 ). The naming convention follows the format: n − id, where
n is the number of collection points, and id is a reference number to distinguish between
instances with the same number of collection points.

Each instance consists of two files: “times.txt”, which contains the matrix of travel
times (minutes) from the depot to the collection points, between collection points, and
from the collection points to the depot; and “waste.txt”, which contains the geographic
coordinates of each collection point, as well as the waste (m3) generated daily by the urban
area assigned to each collection point. Moreover, the service time of a collection point was
set at 0.78 min based on the field work of Carlos et al. [38] for a homogeneous collection

https://github.com/diegorossit/Urban_Science_waste_collection_BBCA.git
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vehicles fleet; the truck unloading time was set at 8 min [39], and the cost per minute
of truck operation (α) was estimated at USD 0.5764 per minute [40]. Also, as in Mahéo
et al. [24], given that the instances are smaller than the actual collection zones in the city,
the capacity and size of the fleet were adjusted to ensure that the problem does not become
trivial, where a single truck can collect all the waste in a single trip (see Table 1). In all cases,
the maximum time to complete a trip or route was set at 6 hours (the working hours of an
employee in the sector in Bahía Blanca).

Table 1. Problem parameters.

Instance Size (Number of
Collection Points) Truck Fleet Size Truck Capacity (m3)

15 8 10
30 16 20
50 20 21

100 20 21

The resolution platform that was used for the SS and the exact method are a per-
sonal computer with a Processor Intel(R) Xeon(R) Silver 4216 CPU @ 2.10 GHz, 2095 Mhz
(2 threads) and 64 GB of RAM within a Windows 11 operative system environment and
Python compiler version 3.10.11.

5.2. Tests over VIs and Solver of Exact Method

This section presents the results of tests analyzing the effect of VIs in enhancing the
MILP model introduced in Section 3.1. As aforementioned, the tests were conducted using
two state-of-the-art solvers, CPLEX and Gurobi, on the three smallest instances involving
15 collection points. Considering that there were three different VIs and all combinations
between VIs and the MILP model were tested, eight runs were performed for each solver
and each instance. A maximum allowable solving time of 7200 s was used for all cases.

Figure 2 illustrates the key results for the three instances. The bars show computing
times (left x-axis), while triangle markers indicate optimality gaps (right x-axis), which
are non-zero when the solver fails to converge within the allotted time (7200 s). For
the sake of clarity, computing times are displayed on a logarithmic scale. The results
of the detailed computing times and optimality gaps are presented in Appendix A. As
aforementioned, each instance was tested with various mathematical formulations that
resulted from the combination of Model (1) and the VIs from Equations (2)–(4). For example,
the tag “Model (1) + Equations (2) and (4)” indicates that VIs (2) and (4) were added to
Model (1). In particular, the tag “Model (1)” represents the base model presented in
Section 3.1 without any VIs.

The comparison between the solvers reveals that Gurobi consistently outperforms
CPLEX in these instances. In some cases, the difference is significant, such as in instance
15-1 with the formulation “Model (1) + Equations (3)–(4)”, where Gurobi finds the optimal
solution in under 8 s, while CPLEX only achieves a suboptimal solution with a 20% gap
after reaching the time limit. Moreover, CPLEX fails to converge to the optimal solution
for any instance or formulation. Additionally, in the formulations in which both solvers
cannot obtain the optimal solution (e.g., “Model (1)” and “Model (1) + Equation (4)” across
all three instances), Gurobi performs better, showing a smaller optimality gap.

Although the internal mechanisms of commercial solvers are not publicly accessible,
these results align with recent findings where Gurobi outperformed CPLEX in complex
integer problems. The detailed results are depicted in Appendix A, where it is shown that
while CPLEX often finds the optimal solution, it typically fails to prove optimality within the
time limit due to a weak lower bound. Nonetheless, as the literature emphasizes, Gurobi’s
performance advantage is problem-specific; different types of problems can lead to cases
where either solver may outperform the other [30,41–43]. Thus, the recommendation for
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Gurobi in this study is derived specifically from the computational experiments conducted
here, without implying its superiority across all problem contexts.

(a) Instance 15-1.

(b) Instance 15-2.

Figure 2. Cont.
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(c) Instance 15-3.

Figure 2. Comparison of solvers and VIs for the exact method.

Regarding the effectiveness of VIs, in instance 15-1, the best result with Gurobi is
achieved using formulation “Model (1) + Equation (2) and (3)” with a computing time
of 7.63 s. For instances 15-2 and 15-3, the best results are obtained with the formulation
“Model (1) + Equations (3) and (4)” yielding times of 22.63 s and 17.45 s, respectively. For
the comparison with the Scatter Search algorithm, the Gurobi solver was used, applying
the formulation “Model (1) + Equations (2) and (3)” as it achieved the smallest average
computing time across the three tested instances.

5.3. Implementations of the SS Algorithm

This section presents the SS algorithms implemented to solve the problem described
in Section 3.1. A permutation coding was considered for the representation of the solutions.
Thus, the variable x is replaced by the chromosome y = [yi], with a permutation of the
order of collection of waste from the nI collection points and the variable v is determined
when the fitness function is calculated. Thus, by handling permutations, constraint (1c)
is always satisfied. The remaining constraints are imposed when evaluating the fitness
function. On the one hand, restrictions (1b), (1d), (1f), and (1g) are met by adding trucks
to the overall route (defined by the chromosome) once the previous truck has filled up or
does not have the capacity to load all the waste deposited at the next collection point. On
the other hand, solutions are penalized in the event they do not meet restriction (1e) or the
size of the fleet (nL) is exceeded, as shown in Equation (5).

f f itness(x) = f (x)− λ min{0, nL − n(x)} − γ ∑
l∈L

min{0, TL − TTl} (5)

where f (x) is the objective function (1a), λ and γ are positive real numbers, n(x) is the
number of trucks required to collect all the accumulated waste, one for each route of the
solution x, and TTl is the summation of the left-hand side of the constraint (1e).

The following are the different methods that were considered:

• Diversification generation method: more_intertools.random_permutation()
(https://pypi.org/project/more-itertools/, accessed on 27 October 2024).

• Improvement methods:

https://pypi.org/project/more-itertools/
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1 Exchange (EXC). Two alleles are chosen randomly and exchanged with each other.
2 Insertion (INS). Two alleles are chosen randomly and the second allele is placed

just after the first one.
3 Inversion (INV). Two alleles are chosen at random and the order of the alleles

between them is reversed.

• Reference set update method: the first half of the solutions in the reference set are
chosen to be the best solutions (in terms of the fitness function value) in the population.
The other half are chosen to be the most diverse (in terms of the Hamming distance)
with respect to the solutions already incorporated in the reference set.

• Subset generation method: all possible pairs of solutions of the reference set are
generated.

• Combination method:

1 Partially Mapped Crossover (PMX) [44].
2 Order Crossover (OX) [45]).
3 Circle Crossover (CX) [46].
4 Modified Circle Crossover (CX2) [47].

In addition, three sizes for local search were considered for the improvement methods:
(1) 10, (2) 20, and (3) 30. Thus, in total, 36 configurations of the SS algorithm were made.
Since SS is based on stochastic procedures, for each instance and SS configuration, 31 runs
were made to obtain a proper sample of the distribution of the results for statistical analysis.
A maximum number of evaluations of the fitness function was set as a stopping criterion
for the algorithms. Table 2 shows the size of the reference set, the size of the population
and the maximum number of fitness function evaluations considered according to the
instance size.

Table 2. Algorithm parameters.

Instance Size
(Number of

Collection Points)
Reference Set Size Population Size

Maximum Number
of Fitness Function

Evaluations

15 10 90 100,000
30 10 90 250,000
50 12 132 500,000

100 14 182 1,000,000

For instances of 15 and 30 collection points, a Kruskal–Wallis Rank Sum Test [48]
was performed to determine whether there are significant differences between the four
combination methods considered, the three improvement methods considered, and the
three sizes for local search considered. When the value of a Kruskal–Wallis test is significant
(p-value < 0.05), a multiple comparison test after Kruskal–Wallis [49] between treatments
was performed to determine which levels are different, with pairwise comparisons adjusted
appropriately for multiple comparisons. The tests were performed using the available
libraries in the programming language R [50].

Figures 3 and 4 show the box-and-whisker plots associated with the results of the
instances of 15 and 30 collection points, respectively, grouped by combination methods,
improvement methods, and local search sizes. In both cases, it can be seen that the PMX
and OX combination methods show the best performance, as well as the EXC improvement
method. The size of the local search does not seem to be relevant. These conclusions are
supported by the hypothesis tests performed (see Tables 3 and 4). A detailed statistical
summary of the computational executions can be found in Appendix B.
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Table 3. Kruskal–Wallis Rank Sum Test: p-values.

Instance Combination Method Improvement Method Local Search Sizes

15-1 2.2 × 1016 1.281 × 1008 0.9543
15-2 2.2 × 1016 6.430 × 10−11 0.0799
15-3 2.2 × 1016 5.504 × 1011 0.8066

30-1 2.2 × 1016 2.2 × 1016 0.7939
30-2 2.2 × 1016 2.2 × 1016 0.2394
30-3 2.2 × 1016 2.2 × 1016 0.3931

Table 4. Outputs of the multiple comparison test after Kruskal–Wallis: if TRUE, then statistically
significant differences are found between the compared levels.

Combination Method Improvement Method

1–2 FALSE 2–3 TRUE 1–2 TRUE
1–3 TRUE 2–4 TRUE 1–3 TRUE
1–4 TRUE 3–4 TRUE 2–3 TRUE

Note: The outputs are the same for all instances of 15 and 30 collection points.

Taking into account the conclusions obtained with the instances of 15 and 30 collection
points, the larger instances with 50 and 100 collection points were run with only the
configurations that were more efficient, i.e., the configurations that use PMX or OX as the
combination method and EXC as the improvement method, with a local search size of 20.
Table 5 shows the statistical summary of the configurations executed on instances 50-1,
50-2, 50-3, and 100-1. From left to right, the table reports: the minimum (the best value
of the objective function found), the first quartile, the median, the second quartile, the
(pseudo) median, the lower bound and the upper bound of a 95% confidence interval for
the (pseudo) median, the total runtime (in seconds), of the 31 runs performed in each case,
and the mean runtime of each run (in seconds).

Table 5. Statistical summary (runtimes in seconds) of the configurations executed with the 50-1, 50-2,
50-3, and 100-1 instances.

Instance Comb.
Method min Q1 Median Q2 (Pseudo)

Median lb ub
Total
Run-
times

Mean
Run-
times

50-1 PMX 79.36150 83.38203 84.75679 86.69644 84.96863 84.06797 85.97016 2222.0133 71.6778
OX 82.68168 83.97286 85.37932 86.59845 85.30007 84.68186 85.97304 2285.4383 73.7238

50-2 PMX 83.75382 86.82326 87.46020 88.33636 87.44579 86.90684 88.11156 2217.8015 71.5420
OX 83.06212 86.43129 87.73112 88.63898 87.62016 86.86361 88.21819 2296.5859 74.0834

50-3 PMX 82.61251 84.89225 85.82317 87.49190 86.16902 85.42832 86.90107 2219.7335 71.6043
OX 81.53460 83.37627 85.11994 87.16335 85.19631 84.36194 86.14020 2290.5435 73.8885

100-1 PMX 151.6964 158.0572 159.8413 162.7925 160.0127 158.6192 161.2967 4863.0509 156.8726
OX 156.4116 158.7144 159.7951 161.5936 159.9803 159.1870 160.8702 5184.1772 167.2315

Note: The 100-1 instance was run in a Processor 13th Gen Intel(R) Core(TM) i9-13900K with 128 GB of RAM.

The results of Table 5 show that the mean and total runtime increase approximately
linearly with the size of the problem, which is a good result of an NP-hard problem.
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(a) Instance 15-1.

(b) Instance 15-2.

(c) Instance 15-3.

Figure 3. Box-and-whisker plots associated with the results of the three instances of 15 collection
points grouped by combination methods, improvement methods, and local search sizes.
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(a) Instance 30-1.

(b) Instance 30-2.

(c) Instance 30-3.

Figure 4. Box-and-whisker plots associated with the results of the three instances of 30 collection
points grouped by combination methods, improvement methods, and local search sizes.

5.4. Comparison Between the Scatter Search and the Exact Method

In this section, we compare the results obtained with the Gurobi solver, applying
the formulation “Model (1) + Equations (3) and (4)”, with the SS algorithm configuration
that uses OX as the combination method, EXC as the execution method, and 20 as the
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size of the local search, since it is statistically one of the most efficient among the tested
SS configurations. Table 6 shows the routing cost, lower bound, computing time in sec-
onds, and optimality gap of the exact method; and the percentage difference, calculated
with Equation (6), between the routing cost obtained with the exact method and the mini-
mum and (pseudo) median values obtained with the (OX, EXC, 20) configuration of the
SS algorithm.

% dif. =
(

CSS
∗ − Cexact

∗
Cexact∗

)
% (6)

In Equation (6), CSS
∗ is the routing cost obtained with the SS and Cexact

∗ is the routing
cost obtained with the exact method. Thus, a negative value of % dif. means that the SS
algorithm obtained a smaller (better) solution. In Table 6, the Equation (6) was calculated
using two different values for CSS

∗ : the minimal (best) value and the median value obtained
for the 31 runs for each instance.

From the results presented in Table 6, it can be concluded that for the instances with
15 collection points, the SS algorithm was able to consistently obtain optimal solutions.
Moreover, the median result across the 31 runs of the SS algorithm showed less than a
2% deviation from the optimal value for all three instances with 15 collection points. This
validates the SS algorithm for small instances, as it is capable of producing near-optimal
solutions in most runs. The total runtimes of the SS are much larger (around 250 s; see
Tables A2–A4) than the exact method (around 20 s) as is expected for small instances in
which the stochastic search of metaheuristics is overrun by the systematic search of the
exact method. However, the mean runtime of the SS is competitive against the exact method
(around 7 s, see Tables A2–A4).

Table 6. Comparison of the results obtained with the exact method and the SS algorithm.

Instance
Exact Method Exact Method vs. SS

Routing Cost (USD) Comp. Time (s) Lower Bound Opt. Gap (%) min (%dif) (Pseudo) Median (%dif)

15-1 34.59 24.80 34.59 0.00% 0.00% 1.99%
15-2 33.35 22.63 33.35 0.00% 0.00% 1.80%
15-3 35.22 17.45 35.22 0.00% 0.00% 1.00%
30-1 67.57 7201.82 34.78 94.27% −23.41% −19.37%
30-2 80.61 7200.75 35.16 129.27% −38.49% −36.05%
30-3 48.16 7201.73 35.11 37.17% −00.25% 5.56%
50-1 123.57 7201.58 49.87 147.78% −33.09% −30.97%
50-2 - 7200.03 51.81 - - -
50-3 - 7200.02 49.96 - - -

Note: The minimum and (pseudo) median values are taken from the configuration (OX, EXC, 20).

For instances with 30 collection points, the SS algorithm clearly outperforms the exact
method in terms of finding the best minimal solution. The routing plans generated by
the SS algorithm were more than 20% better than those produced by the exact method for
instances 30-1 and 30-2. However, in instance 30-3, the percentage difference between the
SS and the exact method was much smaller, which aligns with the exact method’s ability
to achieve a relatively small optimality gap for this particular instance size. The median
results follow a similar pattern, with the SS algorithm significantly outperforming the exact
method in instances 30-1 and 30-2, while in instance 30-3, the SS median result was about
5% worse than the exact method’s solution. In these instances, the total computing times
of the SS are much smaller (around 700 s, see Tables A5–A7) than for the exact method,
which used the maximum allowable time of 7200 s for all three instances. The exponential
increase in computational time for the exact method as the instance size doubled from 15 to
30 collection points is typical of NP-hard problems.

For the larger instances with 50 collection points, only the instance 50-1 could be
compared, as the exact method failed to find a solution within the allowable time (7200 s)
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for the other two instances. In instance 50-1, the SS algorithm improved the exact solu-
tion by 33.09% when considering the best solution and by 30.97% when considering the
median solution.

These results highlight the robustness of the SS algorithm in larger instances, where it
clearly outperforms the exact method in both solution quality and computational efficiency.

6. Conclusions

Municipal Solid Waste (MSW) systems are critical components of modern societies,
playing a crucial role in enhancing the sustainability and livability of cities. To achieve these
objectives, various stages of the system must be carefully planned. This article addresses
the waste collection problem, a complex logistics challenge that is often computationally
expensive to solve to optimality. Waste collection is one of the most costly stages of the
MSW system. Therefore, implementing computational intelligence methods to optimize
this stage, which is typically difficult to solve manually, can reduce costs and significantly
impact the system’s overall expenses. In this line, this work proposes a Scatter Search
algorithm to tackle the problem efficiently, being the first work in the literature to apply this
approach to a real-world case study of the waste collection problem. The case study focuses
on the medium-sized Argentine city of Bahía Blanca. Additionally, an exact resolution of
the problem by means of mathematical programming is proposed.

Computational experimentation was performed over scenarios of different sizes to
study the impact of the computational complexity. The exact method was tested using
different valid inequalities to enhance the formulation and two different state-of-the-art
commercial solvers. The results showed that Gurobi was significantly more efficient than
CPLEX for this problem, and that the valid inequalities greatly strengthened the formu-
lation, allowing the model to obtain the optimal solution in small instances, something
that was not possible for the plain mathematical model without the valid inequalities. The
Scatter Search algorithm was tested using different configurations for the improvement
method, the combination method, and the size in the local search operator, giving a total of
36 different configurations of the Scatter Search algorithm. The results showed that the con-
figurations using partially mapped crossover or order crossover as the combination method
and exchange as the improvement method are the most efficient to address this problem.
Moreover, the results showed that the size of the local search is not so relevant for the target
problem. Finally, the comparison between the exact method with the best formulation and
the Scatter Search revealed that the heuristic approach consistently found near-optimal
solutions in smaller instances. Additionally, in larger instances, the SS was able to find
solutions that outperformed the exact method with much smaller computing times. Overall,
the experimentation demonstrated the competitiveness of the Scatter Search algorithm
in addressing large real-world scenarios in the waste collection problem. Additionally, it
confirmed the ability of valid inequalities to enhance the formulation model, facilitating its
application to more complex and realistic instances of waste collection challenges.

Future research lines could explore hybrid approaches that combine Scatter Search
with other metaheuristics and perform a comparative analysis between Scatter Search
and other computational intelligent mataheuristics. Additionally, dynamic models can
be applied for real-time adjustments to planned routes based on smart bins information,
integrating smart city technologies like IoT to enhance decision-making. Another critical
research line is to incorporate sustainability assessments to evaluate the environmental
impacts of collection routes alongside travel costs, thereby addressing the waste collection
problem in a multi-objective manner. Finally, engaging with practitioners to discuss these
solutions and gather feedback will be essential to ensure the practicality and effectiveness
of the proposed strategies.
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Appendix A. Comparison Between Solvers and Valid Inequalities for Exact Method

This Appendix presents the detailed results of the comparison between the commercial
solvers Gurobi and CPLEX and valid inequalities for the exact method. In Table A1, the re-
sults for each instance and solver are presented. For each instance, the following data are out-
lined: Upper Bound (UB) (i.e., the incumbent integer feasible solution obtained by the solver),
computing time in seconds, optimality gap, and the lower bound (LB) (i.e., solution of the
relaxed problem). The optimality gap is estimated as in Gurobi Optimization, LLC [32] with
the information of the UB and LB with Equation (A1).

opt. gap =

(
UB − LB

LB

)
% (A1)

From the detailed results, it can be observed that CPLEX occasionally reaches the
optimal solution but lacks sufficient information to confirm this due to a weak lower bound.
In contrast, a key strength of Gurobi lies in its ability to generate competitive lower bounds,
which significantly reduces computing times. This capability enables Gurobi to converge
more effectively on optimal solutions, enhancing its performance relative to CPLEX.

https://github.com/diegorossit/Urban_Science_waste_collection_BBCA.git
https://github.com/diegorossit/Urban_Science_waste_collection_BBCA.git
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Table A1. Detailed results for the comparison between solvers and VIs for the exact method.

Gurobi

15_1 15_2 15_3

Formulations UB Comp. Time (sec) opt. gap LB UB Comp. Time (sec) opt. gap LB UB Comp. Time (sec) opt. gap LB

Model (1) 34.93 7203.08 35% 22.64 33.37 7204.15 36% 21.35 35.31 7203.75 34% 23.33
Model (1) + Equation (2) 34.59 99.20 0% 34.59 33.35 161.67 0% 33.35 35.22 129.31 0% 35.22
Model (1) + Equation (3) 34.59 15.40 0% 34.59 33.35 21.23 0% 33.35 35.22 50.60 0% 35.22
Model (1) + Equations (2) and (3) 34.59 7.63 0% 34.59 33.35 39.64 0% 33.35 35.22 45.59 0% 35.22
Model (1) + Equation (4) 34.93 7203.70 36% 22.19 33.52 7204.27 38% 20.65 35.71 7203.84 36% 22.91
Model (1) + Equations (2) and (4) 34.59 104.81 0% 34.59 33.35 115.65 0% 33.35 35.22 126.38 0% 35.22
Model (1) + Equations (3) and (4) 34.59 24.80 0% 34.59 33.35 22.63 0% 33.35 35.22 17.45 0% 35.22
Model (1) + Equations (2) and (4) 34.59 10.91 0% 34.59 33.35 46.10 0% 33.35 35.22 23.84 0% 35.22

CPLEX

Formulations UB Comp. Time (sec) opt. gap LB UB Comp. Time (sec) opt. gap LB UB Comp. Time (sec) opt. gap LB

Model (1) 34.59 7203.66 42% 20.08 33.35 7203.32 44% 18.57 35.22 7209.65 37% 22.03
Model (1) + Equation (2) 34.59 7208.26 20% 27.60 33.35 7203.53 39% 20.21 35.22 7205.12 19% 28.36
Model (1) + Equation (3) 35.10 7203.38 43% 19.87 33.49 7206.26 45% 18.44 35.22 7206.83 39% 21.37
Model (1) + Equations (2) and (3) 35.10 7210.45 20% 28.12 35.16 7205.62 39% 21.34 35.22 7213.45 19% 28.43
Model (1) + Equation (4) 34.59 7203.27 42% 20.08 33.35 7204.08 44% 18.57 35.22 7203.04 37% 22.03
Model (1) + Equations (2) and (4) 34.59 7208.77 20% 27.62 33.64 7203.77 40% 20.20 35.22 7210.53 19% 28.36
Model (1) + Equations (3) and (4) 35.10 7202.95 43% 19.87 33.49 7205.99 45% 18.45 35.69 7209.10 40% 21.38
Model (1) + Equations (2) and (4) 35.10 7210.04 20% 28.14 33.93 7205.62 37% 21.33 35.22 7205.89 19% 28.42
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Appendix B. Scatter Search. Statistical Summary of the Computational Experiments

This appendix contains the box-and-whisker plots of the 36 SS algorithm configura-
tions considered with the instances of 15 (see Figures A1–A3) and 30 (see Figures A4–A6)
collection points, and the corresponding statistical summary tables. Thus, Tables A2–A4
show the statistical summary of the experiments performed with the 15-1, 15-2, and 15-3
instances, respectively, and Tables A5–A7 show the statistical summary of the experiments
performed with the 30-1, 30-2, and 30-3 instances, respectively. In each table, from left to
right is reported, for each configuration of the SS algorithm: the minimum (the best value
of the objective function found), the first quartile, the median, the second quartile, the
(pseudo) median, the lower bound and the upper bound of a 95% confidence interval for
the (pseudo) median, the total runtime (in seconds), of the 31 runs performed in each case,
and the mean runtime of each run (in seconds). The pseudomedian of a distribution F is
the median of the distribution of (u + v)/2, where u and v are independent, each with [48].

Figure A1. Instance 15-1. Box-and-whisker plots of the results grouped by combination methods,
improvement method: EXC (white), INS (blue), and INV (gray), and local search sizes: 10, 20, and 30,
from left to right.

Figure A2. Instance 15-2. Box-and-whisker plots of the results grouped by combination methods,
improvement method: EXC (white), INS (blue), and INV (gray), and local search sizes: 10, 20, and 30,
from left to right.
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Figure A3. Instance 15-3. Box-and-whisker plots of the results grouped by combination methods,
improvement method: EXC (white), INS (blue), and INV (gray), and local search sizes: 10, 20, and 30,
from left to right.

Figure A4. Instance 30-1. Box-and-whisker plots of the results grouped by combination methods,
improvement method: EXC (white), INS (blue), and INV (gray), and local search sizes: 10, 20, and 30,
from left to right.
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Figure A5. Instance 30-2. Box-and-whisker plots of the results grouped by combination methods,
improvement method: EXC (white), INS (blue), and INV (gray), and local search sizes: 10, 20, and 30,
from left to right.

Figure A6. Instance 30-3. Box-and-whisker plots of the results grouped by combination methods,
improvement method: EXC (white), INS (blue), and INV (gray), and local search sizes: 10, 20, and 30,
from left to right.
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Table A2. Instance 15-1. Statistical summary (runtimes in seconds).

Combin.
Method

Improv.
Method

Local Search
Size min Q1 Median Q2 (Pseudo)

Median lb ub Total
Runtimes

Mean
Runtimes

PMX EXC 10 34.59096 34.80424 34.98869 35.31725 35.10107 34.95119 35.31720 243.68339 7.86075
PMX EXC 20 34.59096 34.86188 34.98869 35.72651 35.21642 34.95989 35.40944 207.04524 6.67888
PMX EXC 30 34.59096 34.94258 34.98869 35.71786 35.24804 34.98868 35.49298 191.32109 6.17165
PMX INS 10 34.59096 34.93681 35.02904 35.60258 35.23934 35.00881 35.49601 263.45977 8.49870
PMX INS 20 34.59096 34.93681 35.12703 35.83891 35.35184 35.08669 35.59676 229.96111 7.41810
PMX INS 30 34.59096 34.93681 35.24808 35.49594 35.23083 35.04350 35.43840 217.88484 7.02854
PMX INV 10 34.59096 34.95987 35.08092 35.71498 35.30537 35.03196 35.52474 267.14046 8.61743
PMX INV 20 34.67166 35.08092 35.62852 36.01472 35.59175 35.37194 35.85050 231.33146 7.46231
PMX INV 30 34.59096 35.05786 35.91096 36.25105 35.67753 35.44991 35.97443 219.01970 7.06515
OX EXC 10 34.59096 34.93681 35.23079 35.70922 35.25384 35.07809 35.44986 231.14924 7.45643
OX EXC 20 34.59096 34.91952 35.30572 35.71498 35.27983 35.08385 35.48148 194.77790 6.28316
OX EXC 30 34.59096 34.67166 35.08092 35.82450 35.23946 34.95993 35.48443 182.80096 5.89681
OX INS 10 34.59096 34.74660 34.93681 34.98581 34.95990 34.80425 35.13281 264.53177 8.53328
OX INS 20 34.59096 34.59096 34.93681 35.25673 34.93688 34.78975 35.10975 229.01960 7.38773
OX INS 30 34.59096 34.78694 34.93681 35.26826 34.96274 34.90220 35.15868 216.53589 6.98503
OX INV 10 34.59096 34.98581 35.23079 35.40371 35.24462 35.10683 35.52475 267.98669 8.64473
OX INV 20 34.59096 34.93681 35.12703 36.02048 35.45007 35.04638 35.79576 232.05914 7.48578
OX INV 30 34.59096 34.93681 35.33454 36.06372 35.46722 35.15582 35.83898 219.81882 7.09093
CX EXC 10 34.59096 35.15585 35.44983 35.91961 35.52714 35.32585 35.74099 222.05486 7.16306
CX EXC 20 34.59096 34.98293 35.42101 35.86773 35.45504 35.22783 35.72363 189.66683 6.11828
CX EXC 30 34.59096 35.08092 35.38642 35.64005 35.41524 35.22788 35.62569 178.91450 5.77144
CX INS 10 34.93681 35.90520 36.30869 36.76118 36.33454 36.02624 36.65452 258.99309 8.35462
CX INS 20 34.59096 35.45847 35.97437 36.66031 36.05195 35.73220 36.42977 224.35371 7.23722
CX INS 30 34.59096 35.26249 36.15306 36.73236 36.07049 35.68336 36.42406 212.69208 6.86103
CX INV 10 34.67166 35.52476 36.03201 36.59114 36.08384 35.78712 36.43552 259.40189 8.36780
CX INV 20 34.59096 35.27402 35.96861 36.54503 35.91387 35.59974 36.23950 226.78883 7.31577
CX INV 30 34.59096 35.26826 35.91673 36.52773 35.90070 35.57952 36.19918 216.42255 6.98137
CX2 EXC 10 34.67166 35.49594 36.15306 36.69489 36.18476 35.85039 36.49609 232.64759 7.50476
CX2 EXC 20 34.59096 35.26537 35.96861 36.42974 35.89079 35.65446 36.24241 196.65155 6.34360
CX2 EXC 30 34.67166 35.72939 36.38939 36.79577 36.28275 36.00893 36.66612 185.13147 5.97198
CX2 INS 10 35.32878 36.62572 37.54800 38.30599 37.45871 36.94277 37.86217 266.94226 8.61104
CX2 INS 20 34.90223 36.48162 37.44424 38.03219 37.31848 36.66893 37.76419 230.21344 7.42624
CX2 INS 30 34.59096 36.49315 37.32896 38.08983 37.28032 36.84764 37.73815 217.89116 7.02875
CX2 INV 10 34.93681 36.59114 37.40389 37.99760 37.31742 36.89372 37.74691 269.12641 8.68150
CX2 INV 20 35.32878 36.64014 37.51341 38.25411 37.47034 36.96007 38.00915 232.88722 7.51249
CX2 INV 30 34.59096 36.42398 37.02345 37.68057 37.10931 36.65164 37.57973 220.83009 7.12355
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Table A3. Instance 15-2. Statistical summary (runtimes in seconds).

Combin.
Method

Improv.
Method

Local Search
Size min Q1 Median Q2 (Pseudo)

Median lb ub Total
Runtimes

Mean
Runtimes

PMX EXC 10 33.34589 33.37472 33.49576 33.78974 33.60532 33.49580 33.73214 227.75893 7.34706
PMX EXC 20 33.34589 33.47847 33.68022 33.90214 33.72628 33.57073 33.96260 193.70328 6.24849
PMX EXC 30 33.34589 33.37472 33.49000 33.67157 33.50802 33.43241 33.72633 182.34684 5.88216
PMX INS 10 33.34589 33.49288 33.97996 34.43533 33.98722 33.74071 34.24511 263.04966 8.48547
PMX INS 20 33.46694 33.68886 34.00878 34.39210 34.05206 33.87327 34.21623 229.88504 7.41565
PMX INS 30 33.34589 33.49000 33.52459 34.17018 33.79832 33.56488 33.95395 217.47901 7.01545
PMX INV 10 33.34589 33.43236 33.64563 33.76668 33.66869 33.55622 33.78966 267.02398 8.61368
PMX INV 20 33.34589 33.51017 33.76668 33.95978 33.74652 33.65138 33.87620 230.50383 7.43561
PMX INV 30 33.34589 33.43236 33.55917 33.97707 33.70549 33.52462 33.85884 219.22672 7.07183
OX EXC 10 33.34589 33.44389 33.70328 33.86179 33.71767 33.57075 33.88770 229.91375 7.41657
OX EXC 20 33.34589 33.50729 33.76668 34.38345 33.94542 33.67742 34.10389 195.04656 6.29182
OX EXC 30 33.34589 33.47271 33.64563 33.77245 33.64563 33.56782 33.76668 182.48869 5.88673
OX INS 10 33.34589 33.37472 33.64563 33.81280 33.66285 33.53901 33.76086 264.40133 8.52908
OX INS 20 33.34589 33.37472 33.64563 33.81280 33.66868 33.55627 33.80125 229.29051 7.39647
OX INS 30 33.34589 33.43812 33.63987 33.74939 33.59379 33.51877 33.70334 217.31168 7.01005
OX INV 10 33.34589 33.64275 33.76668 34.32869 33.88645 33.70616 34.06637 268.06627 8.64730
OX INV 20 33.34589 33.64275 33.81280 34.25664 33.91238 33.74359 34.29691 232.63654 7.50440
OX INV 30 33.34589 33.52747 33.76668 34.06930 33.81849 33.66584 34.01446 220.26735 7.10540
CX EXC 10 33.34589 33.37472 33.49576 33.95978 33.66584 33.51021 33.89634 222.08047 7.16389
CX EXC 20 33.34589 33.42083 33.63987 33.91079 33.68013 33.55628 33.83583 189.45881 6.11157
CX EXC 30 33.34589 33.37472 33.70328 34.07507 33.74260 33.57067 34.00014 177.81074 5.73583
CX INS 10 33.34589 33.90502 34.45262 35.04057 34.46412 34.17891 34.76682 259.44712 8.36926
CX INS 20 33.49000 34.14135 34.59673 35.14144 34.64280 34.35470 34.94826 225.07482 7.26048
CX INS 30 33.37472 33.54188 34.43533 34.85323 34.30566 34.03188 34.62557 212.64264 6.85944
CX INV 10 33.34589 33.52459 33.65140 34.00013 33.76089 33.61400 33.91940 260.00214 8.38717
CX INV 20 33.34589 33.37472 33.63987 33.89926 33.66286 33.51309 33.88201 227.02476 7.32338
CX INV 30 33.34589 33.62546 33.87620 34.39786 33.97136 33.76384 34.12980 216.41019 6.98097
CX2 EXC 10 33.34589 33.53611 34.11830 35.05786 34.35471 33.93387 34.68322 231.42931 7.46546
CX2 EXC 20 33.37472 34.02607 34.57367 34.93681 34.56799 34.28830 34.84753 196.16718 6.32797
CX2 EXC 30 33.37472 33.66004 34.13559 34.86476 34.28402 33.97416 34.69187 183.38571 5.91567
CX2 INS 10 33.49000 34.93393 35.46712 35.78992 35.38606 35.08090 35.68042 265.78683 8.57377
CX2 INS 20 33.34589 34.79847 35.46712 35.92826 35.38210 35.03192 35.78415 230.63251 7.43976
CX2 INS 30 33.65140 34.34310 35.34031 35.64293 35.13424 34.79847 35.45847 218.36783 7.04412
CX2 INV 10 33.37472 34.28834 34.71777 35.78415 35.01603 34.58802 35.43836 268.83379 8.67206
CX2 INV 20 33.34589 33.79262 34.66013 35.42677 34.72070 34.28255 35.20772 233.39165 7.52876
CX2 INV 30 33.37472 33.66293 34.74660 35.31437 34.72647 34.33444 35.06652 221.32340 7.13946
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Table A4. Instance 15-3. Statistical summary (runtimes in seconds).

Combin.
Method

Improv.
Method

Local Search
Size min Q1 Median Q2 (Pseudo)

Median lb ub Total
Runtimes

Mean
Runtimes

PMX EXC 10 35.21926 35.26249 35.58240 35.74957 35.54210 35.45850 35.67456 227.71527 7.34565
PMX EXC 20 35.21926 35.21926 35.58240 35.74957 35.54489 35.43258 35.66306 194.81453 6.28434
PMX EXC 30 35.21926 35.29708 35.66310 35.79568 35.55641 35.48434 35.72358 183.07657 5.90570
PMX INS 10 35.21926 35.49306 35.78415 36.02048 35.79617 35.63136 35.94266 266.05218 8.58233
PMX INS 20 35.21926 35.45847 35.71498 35.95996 35.74837 35.58237 35.90234 232.48314 7.49946
PMX INS 30 35.21926 35.58240 35.78415 35.98302 35.78413 35.64009 35.90807 219.23577 7.07212
PMX INV 10 35.21926 35.21926 35.62852 35.79568 35.58237 35.46714 35.72358 268.63915 8.66578
PMX INV 20 35.21926 35.37201 35.64581 35.78415 35.62559 35.50167 35.74958 231.71591 7.47471
PMX INV 30 35.21926 35.21926 35.40371 35.95420 35.60547 35.44114 35.79568 219.80032 7.09033
OX EXC 10 35.21926 35.31437 35.74957 35.98302 35.74375 35.56508 35.89941 242.16606 7.81181
OX EXC 20 35.21926 35.28843 35.62852 35.88214 35.57376 35.46711 35.76973 194.91102 6.28745
OX EXC 30 35.21926 35.28843 35.57664 35.76109 35.55928 35.44405 35.70923 181.91904 5.86836
OX INS 10 35.21926 35.28843 35.71498 35.79568 35.57664 35.48444 35.74958 264.82807 8.54284
OX INS 20 35.21926 35.28843 35.64581 36.00896 35.64977 35.48437 35.79566 229.24999 7.39516
OX INS 30 35.21926 35.29708 35.68616 35.91961 35.68610 35.50164 35.82444 217.21216 7.00684
OX INV 10 35.21926 35.21926 35.66310 36.04066 35.69477 35.47583 35.87061 269.37530 8.68953
OX INV 20 35.21926 35.68904 35.86485 36.17612 35.90231 35.74958 36.09830 233.15601 7.52116
OX INV 30 35.21926 35.57952 35.77262 36.13289 35.80140 35.66313 35.97141 220.73601 7.12052
CX EXC 10 35.21926 35.31437 35.71498 35.88791 35.68137 35.53626 35.80724 223.12399 7.19755
CX EXC 20 35.21926 35.30572 35.74957 36.02048 35.68054 35.53921 35.85622 190.05782 6.13090
CX EXC 30 35.21926 35.35472 35.83603 35.99743 35.79851 35.59677 35.92537 178.46300 5.75687
CX INS 10 35.66310 36.09254 36.45856 36.89664 36.51188 36.30293 36.73813 258.61783 8.34251
CX INS 20 35.21926 35.73227 36.25682 36.76118 36.24549 36.01479 36.44419 222.54077 7.17873
CX INS 30 35.21926 35.72939 36.06660 36.49891 36.09080 35.90226 36.30580 211.01199 6.80684
CX INV 10 35.21926 35.40371 35.84756 36.50468 35.97941 35.72075 36.19922 259.19600 8.36116
CX INV 20 35.21926 35.74957 36.02625 36.35193 36.03029 35.87642 36.17616 226.44557 7.30470
CX INV 30 35.21926 35.72363 36.15306 36.31734 36.12424 35.93112 36.32315 215.50162 6.95167
CX2 EXC 10 35.28843 35.78415 36.08965 36.75254 36.23662 35.97145 36.47011 231.04708 7.45313
CX2 EXC 20 35.21926 35.84468 36.36057 36.60843 36.27787 36.02330 36.49895 194.29054 6.26744
CX2 EXC 30 35.21926 35.94843 36.40668 36.78424 36.37367 36.13575 36.64306 182.08140 5.87359
CX2 INS 10 35.21926 36.23088 36.75830 37.21079 36.69778 36.38939 37.00328 264.41698 8.52958
CX2 INS 20 35.74957 36.45856 37.00040 37.55952 37.02864 36.72077 37.32900 228.83163 7.38167
CX2 INS 30 35.34031 36.16171 37.00616 37.49612 37.01976 36.59396 37.36073 216.29497 6.97726
CX2 INV 10 35.21926 36.28852 36.82747 37.39236 36.82747 36.53062 37.11280 267.69497 8.63532
CX2 INV 20 35.40371 36.49891 36.76983 37.17332 36.81017 36.59400 37.00332 231.97497 7.48306
CX2 INV 30 35.62852 36.30005 36.78136 37.04363 36.70892 36.48733 36.93411 219.82824 7.09123
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Table A5. Instance 30-1. Statistical summary (runtimes in seconds).

Combin.
Method

Improv.
Method

Local Search
Size min Q1 Median Q2 (Pseudo)

Median lb ub Total
Runtimes

Mean
Runtimes

PMX EXC 10 51.06504 53.01911 53.87221 55.39396 54.18930 53.52346 54.83772 881.08183 28.42199
PMX EXC 20 51.18033 53.42548 54.44863 55.79457 54.54374 53.92409 55.20086 737.33660 23.78505
PMX EXC 30 51.91238 53.73099 54.49474 55.71675 54.66767 54.02208 55.32479 691.54074 22.30777
PMX INS 10 52.11989 54.03937 55.56688 56.29606 55.58562 54.85789 56.19518 1037.05853 33.45350
PMX INS 20 50.59814 54.06531 55.16339 56.55256 55.33776 54.59850 56.14619 894.97129 28.87004
PMX INS 30 51.80286 52.98452 54.90400 56.01361 54.74001 53.99612 55.47184 846.55571 27.30825
PMX INV 10 52.45998 54.74837 55.63029 56.65344 55.62599 55.00486 56.22979 1049.03119 33.83972
PMX INV 20 52.38505 54.78295 56.35658 56.71108 55.94052 55.19506 56.55546 907.41383 29.27141
PMX INV 30 52.83465 54.71378 55.44007 56.96470 55.59566 55.01924 56.40270 861.09960 27.77741
OX EXC 10 51.47430 53.61859 54.62732 56.40558 54.83195 54.15177 55.68505 905.71830 29.21672
OX EXC 20 51.75675 53.43413 54.18348 55.82916 54.48335 53.87801 54.98472 754.31409 24.33271
OX EXC 30 50.59814 54.25841 55.27291 56.51798 55.40981 54.77719 55.96461 700.88260 22.60912
OX INS 10 52.56950 53.86068 54.55239 55.61876 54.76566 54.20653 55.36514 1057.72009 34.12000
OX INS 20 50.60391 52.50321 53.79151 54.93282 53.78863 53.18339 54.39675 902.89111 29.12552
OX INS 30 50.24653 53.71081 54.22959 55.17780 54.48466 53.95291 55.12304 851.61238 27.47137
OX INV 10 51.42819 54.16618 55.20374 56.85518 55.38387 54.74837 56.03378 1064.09214 34.32555
OX INV 20 52.77125 54.39099 56.09719 57.55553 56.22526 55.43138 57.07703 908.57995 29.30903
OX INV 30 52.29858 54.99911 56.69667 57.31055 56.27156 55.67352 56.98488 859.53252 27.72686
CX EXC 10 51.66452 53.61570 54.53509 56.41422 54.93138 54.20077 55.50636 871.22559 28.10405
CX EXC 20 51.57806 53.76557 54.58121 55.61876 54.59850 54.04802 55.12304 725.63137 23.40746
CX EXC 30 49.95832 53.23815 54.28147 54.88671 54.19499 53.60122 54.70222 678.97770 21.90251
CX INS 10 53.24968 55.71964 57.51518 58.73719 57.18807 56.39117 57.99361 1034.47365 33.37012
CX INS 20 52.91535 55.81475 56.93300 57.86392 56.76440 56.18077 57.33073 882.38903 28.46416
CX INS 30 53.11134 55.20086 56.17789 57.46907 56.22405 55.56981 56.95313 832.18669 26.84473
CX INV 10 53.23815 55.70811 57.17510 58.92453 57.26012 56.43151 57.99938 1031.70938 33.28095
CX INV 20 53.77422 55.40837 56.99064 57.98208 56.79170 56.10001 57.48638 893.67188 28.82813
CX INV 30 53.61282 55.86662 56.58715 57.94462 56.78169 56.25282 57.35955 842.95357 27.19205
CX2 EXC 10 54.06819 55.67352 56.84654 58.18960 56.98344 56.27012 57.71981 936.78281 30.21880
CX2 EXC 20 52.18330 54.98182 56.52951 58.01955 56.34582 55.46310 57.23273 768.74164 24.79812
CX2 EXC 30 51.43972 55.82916 56.77160 57.58724 56.66455 55.92714 57.22404 711.29197 22.94490
CX2 INS 10 53.67623 55.57841 57.40566 59.18680 57.41143 56.59291 58.46916 1092.76569 35.25051
CX2 INS 20 54.44287 56.83501 58.17230 59.30209 58.09449 57.32208 58.91300 921.59958 29.72902
CX2 INS 30 54.12007 57.07422 58.22418 59.97073 58.26309 57.54977 59.12628 862.70223 27.82910
CX2 INV 10 54.64461 57.81780 58.97929 60.37134 59.11907 58.35099 59.77475 1097.34856 35.39834
CX2 INV 20 55.37090 57.79475 58.73143 60.02549 58.88416 58.22412 59.56438 931.48914 30.04804
CX2 INV 30 55.55536 57.01370 59.48654 60.08313 58.82654 57.99361 59.69982 873.67884 28.18319



Urban Sci. 2024, 8, 240 26 of 29

Table A6. Instance 30-2. Statistical summary (runtimes in seconds).

Combin.
Method

Improv.
Method

Local Search
Size min Q1 Median Q2 (Pseudo)

Median lb ub Total
Runtimes

Mean
Runtimes

PMX EXC 10 49.74504 50.53474 51.48583 52.05937 51.35325 50.99587 51.75098 866.66081 27.95680
PMX EXC 20 49.94679 50.46845 51.42819 52.03919 51.25815 50.92378 51.57232 722.85330 23.31785
PMX EXC 30 49.08792 50.93535 51.83168 52.38793 51.71461 51.29557 52.11989 675.78662 21.79957
PMX INS 10 50.06207 51.80286 52.39657 52.93841 52.38352 51.93826 52.82593 1017.67223 32.82814
PMX INS 20 50.73649 51.46566 52.61561 53.16321 52.45854 52.03055 52.92112 876.12927 28.26223
PMX INS 30 50.06207 51.92103 52.83465 53.33614 52.76837 52.19771 53.14304 827.92987 26.70742
PMX INV 10 49.89491 51.62994 52.33317 52.94706 52.26113 51.81724 52.71078 1028.13709 33.16571
PMX INV 20 49.83727 51.60976 52.59256 53.28138 52.50612 52.08530 52.94996 886.08724 28.58346
PMX INV 30 51.27832 52.52627 53.02487 53.73387 53.17474 52.71361 53.61570 837.62361 27.02012
OX EXC 10 49.37037 50.88635 51.65876 52.55221 51.67893 51.26391 52.10836 895.56372 28.88915
OX EXC 20 49.58941 50.75954 51.50312 52.30435 51.55788 51.14574 52.01902 740.58223 23.88975
OX EXC 30 49.01299 50.79989 51.38208 52.10836 51.49444 51.06503 51.97289 683.61961 22.05225
OX INS 10 49.02452 50.57221 51.41666 51.94985 51.35324 50.95548 51.73083 1038.97999 33.51548
OX INS 20 49.88338 50.86618 51.64723 52.45710 51.71784 51.26103 52.12566 885.74781 28.57251
OX INS 30 48.69596 50.71919 51.44548 52.63579 51.64291 51.09963 52.13142 834.56697 26.92152
OX INV 10 50.48286 52.20636 53.24968 54.12295 53.29435 52.62714 53.97597 1062.18632 34.26407
OX INV 20 50.67308 52.33029 52.69055 53.60417 52.87072 52.53198 53.26700 901.22178 29.07167
OX INV 30 51.19186 52.32164 53.26120 54.10278 53.19059 52.66749 53.75693 840.90345 27.12592
CX EXC 10 50.41945 51.11692 51.92967 52.49457 51.88065 51.52046 52.26403 862.95733 27.83733
CX EXC 20 49.67587 51.18321 51.57806 52.00173 51.57229 51.26679 51.86627 714.57964 23.05096
CX EXC 30 49.16286 51.17745 51.53771 52.20924 51.63646 51.30712 52.05644 667.59255 21.53524
CX INS 10 52.06225 53.46872 54.12007 55.50060 54.42113 53.91260 55.06257 1018.25457 32.84692
CX INS 20 49.43378 52.99605 54.24688 55.59282 54.28946 53.56378 54.96741 870.52058 28.08131
CX INS 30 51.26679 53.56959 54.81754 55.93291 54.81466 54.18348 55.38243 818.01102 26.38745
CX INV 10 51.26679 53.46007 54.40252 55.13169 54.28145 53.79733 54.85797 1031.82092 33.28455
CX INV 20 50.55203 52.97299 54.14889 55.07116 53.98365 53.41391 54.56969 878.18085 28.32841
CX INV 30 51.72216 53.48024 54.45439 54.87518 54.18346 53.72225 54.63600 829.36701 26.75377
CX2 EXC 10 50.03902 52.26400 53.00758 53.74828 53.02915 52.52047 53.52927 926.92980 29.90096
CX2 EXC 20 50.64426 52.53492 53.39378 54.41693 53.42838 52.90093 53.94423 753.77314 24.31526
CX2 EXC 30 49.29544 52.77989 53.46295 54.33335 53.53701 53.03640 54.04514 694.61395 22.40690
CX2 INS 10 53.13439 54.16042 56.07990 57.96191 56.13610 55.41990 57.08287 1075.41473 34.69080
CX2 INS 20 54.31029 55.98191 57.20392 58.14060 57.16501 56.58138 57.78034 901.75945 29.08901
CX2 INS 30 52.19483 54.17771 56.18942 57.41719 56.06261 55.23833 56.99064 844.93842 27.25608
CX2 INV 10 53.14016 55.37955 57.09440 59.13492 57.36532 56.37963 58.25307 1078.62075 34.79422
CX2 INV 20 52.62138 54.54662 55.90121 57.41719 55.97614 55.17492 56.76584 908.90025 29.31936
CX2 INV 30 52.78278 55.54959 56.89841 58.22418 56.89121 56.17213 57.59300 852.43323 27.49785
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Table A7. Instance 30-3. Statistical summary (runtimes in seconds).

Combin.
Method

Improv.
Method

Local Search
Size min Q1 Median Q2 (Pseudo)

Median lb ub Total
Runtimes

Mean
Runtimes

PMX EXC 10 48.80548 50.31282 51.12269 52.18906 51.19762 50.66731 51.71063 878.12475 28.32660
PMX EXC 20 48.86888 50.24653 51.19762 51.78557 51.08802 50.69614 51.61267 737.05760 23.77605
PMX EXC 30 49.00146 50.82871 51.43972 52.25535 51.50893 51.06798 51.91244 687.98596 22.19310
PMX INS 10 49.34155 51.71928 52.65020 53.71081 52.75107 51.96426 53.35920 1034.64337 33.37559
PMX INS 20 49.98138 50.97858 52.12566 53.48024 52.35316 51.73365 52.97304 889.41709 28.69087
PMX INS 30 50.32146 52.02190 52.27553 53.74540 52.69156 52.18037 53.16895 839.41356 27.07786
PMX INV 10 50.75378 51.88068 52.77701 53.37937 52.60985 52.18330 53.03928 1044.30079 33.68712
PMX INV 20 50.32146 52.21212 52.89230 53.93562 52.99758 52.47434 53.56091 898.29205 28.97716
PMX INV 30 49.53177 51.54924 52.67902 53.77422 52.72513 52.09107 53.35055 849.39456 27.39982
OX EXC 10 49.30696 50.99876 51.77981 52.55509 51.83583 51.31862 52.39653 902.29349 29.10624
OX EXC 20 48.04460 50.21194 50.92094 51.39360 50.84456 50.44251 51.18033 746.78063 24.08970
OX EXC 30 49.35884 50.72784 51.75675 52.20636 51.53190 51.08230 51.93259 693.01672 22.35538
OX INS 10 48.37316 50.33587 50.93247 51.41378 50.88780 50.50015 51.25238 1047.95678 33.80506
OX INS 20 48.67290 49.97561 50.95552 52.28129 51.12845 50.58085 51.65011 898.56316 28.98591
OX INS 30 48.41928 50.44251 51.58959 52.44845 51.47142 50.92670 52.00749 843.49820 27.20962
OX INV 10 50.23500 51.75387 53.35920 54.48898 53.15313 52.50898 53.77134 1059.09986 34.16451
OX INV 20 50.18312 51.58670 52.55797 54.14025 52.80439 52.11989 53.38225 902.16492 29.10209
OX INV 30 49.44530 53.01046 53.50907 54.46016 53.54265 53.01046 54.09119 850.08570 27.42212
CX EXC 10 49.48565 50.92382 51.81439 52.36487 51.75675 51.25526 52.14295 868.52623 28.01698
CX EXC 20 48.88041 50.47421 51.70487 52.40234 51.55848 51.08527 52.07383 723.63057 23.34292
CX EXC 30 49.69893 50.71055 51.46854 52.58679 51.56590 51.08810 52.04494 674.05238 21.74363
CX INS 10 51.36478 53.25832 54.80025 55.67640 54.65565 53.92409 55.41418 1034.39624 33.36762
CX INS 20 50.30417 52.67326 54.29876 55.59859 54.42990 53.52059 55.25562 876.13563 28.26244
CX INS 30 51.71063 53.73387 55.01352 55.96750 54.90544 54.22383 55.49483 825.90955 26.64224
CX INV 10 51.52042 53.36208 54.66767 55.97614 54.69505 54.03649 55.37667 1040.66017 33.56968
CX INV 20 52.21788 54.01920 54.92706 55.78592 55.00488 54.51204 55.53518 885.35162 28.55973
CX INV 30 50.79989 53.96155 54.99046 55.87527 54.94723 54.32758 55.52077 836.78412 26.99304
CX2 EXC 10 50.10242 52.08531 53.34190 54.89536 53.43557 52.66749 54.18924 937.06006 30.22774
CX2 EXC 20 50.20041 52.57238 53.72234 54.74549 53.70649 53.03064 54.48321 764.68281 24.66719
CX2 EXC 30 49.74504 51.88933 53.54365 54.41981 53.26409 52.64732 54.01055 705.87219 22.77007
CX2 INS 10 50.43675 55.15763 56.20095 57.53824 56.22256 55.56400 56.93588 1071.65137 34.56940
CX2 INS 20 51.17456 54.32470 56.20671 57.95038 56.17357 55.27579 57.12034 904.03375 29.16238
CX2 INS 30 52.90959 55.56688 57.45754 59.60759 57.51518 56.47475 58.59597 845.40639 27.27117
CX2 INV 10 53.34767 56.06549 57.84951 59.19833 57.70828 56.74855 58.57580 1076.21986 34.71677
CX2 INV 20 54.40828 56.43440 57.59588 58.92165 57.78786 56.99640 58.69108 910.16465 29.36015
CX2 INV 30 52.94417 55.71099 56.89265 58.72278 56.89121 56.17213 57.59300 853.29243 27.52556
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